Dynamic Control of Parallel-Server Systems

Jim Dai Georgia Institute of Technology

Tolga Tezcan University of Illinois at Urbana-Champaign

May 13, 2009

- Parallel-server systems
- Part I: Background
- Part II: Dynamic control
- Tezcan-Dai (2009), Dynamic Control of N-Systems with Many Servers: Asymptotic Optimality of a Static Priority Policy in Heavy Traffic, *Operations Research*.
- Dai-Tezcan (2008), Optimal Control of Parallel Server Systems with Many Servers in Heavy Traffic, *Queueing Systems*.

PARALLEL-SERVER SYSTEMS WITH MANY SERVERS

- *I* customer classes: arrival rate for class $i \in \mathcal{I}$ is λ_i .
- *J* server pools: pool $j \in \mathcal{J}$ has N_j servers.

PARALLEL-SERVER SYSTEMS WITH MANY SERVERS

- *I* customer classes: arrival rate for class $i \in \mathcal{I}$ is λ_i .
- *J* server pools: pool $j \in \mathcal{J}$ has N_j servers.
- Large number of servers; motivated by customer call/contact centers.

DECISIONS

- Design: should agents be cross-trained?
- Staffing: long term and short term
- Routing
 - When an arrival finds idle servers, which server to join?
 - When a server finishes service, which customer to serve next?

DECISIONS

- Design: should agents be cross-trained?
- Staffing: long term and short term
- Routing
 - When an arrival finds idle servers, which server to join?
 - When a server finishes service, which customer to serve next?
- These decisions are made at different time scales. In this talk, we focus on routing decisions.

- ED, QD, and QED regimes
- Square-root safety staffing rule
- Customer abandonment
- Distributions of random times

S. Zeltyn and A. Mandelbaum (2005), Call centers with impatient customers: many-server asymptotics of the M/M/n + G queue, *Queueing Systems*, **51**.

SAMPLE FROM A US HEALTH INSURANCE COMPANY

			-				
Time	Calls	Answered	Abandoned%	ASA	AHT	Occ%	# of agents
Total	20,577	19,860	3.5	30	307	95.1	
8:00	332	308	7.2	27	302	87.1	59.3
8:30	653	615	5.8	58	293	96.1	104.1
9:00	866	796	8.1	63	308	97.1	140.4
9:30	1,152	1,138	1.2	28	303	90.8	211.1
10:00	1,330	1,286	3.3	22	307	98.4	223.1
10:30	1,364	1,338	1.9	33	296	99.0	222.5
11:00	1,380	1,280	7.2	34	306	98.2	222.0
11:30	1,272	1,247	2.0	44	298	94.6	218.0
12:00	1,179	1,177	0.2	1	306	91.6	218.3
12:30	1,174	1,160	1.2	10	302	95.5	203.8
13:00	1,018	999	1.9	9	314	95.4	182.9
13:30	1,061	961	9.4	67	306	100.0	163.4
14:00	1,173	1,082	7.8	78	313	99.5	188.9
14:30	1,212	1,179	2.7	23	304	96.6	206.1
15:00	1,137	1,122	1.3	15	320	96.9	205.8
15:30	1,169	1,137	2.7	17	311	97.1	202.2
16:00	1,107	1,059	4.3	46	315	99.2	187.1
16:30	914	892	2.4	22	307	95.2	160.0
17:00	615	615	0.0	2	328	83.0	135.0
17:30	420	420	0.0	0	328	73.8	103.5
18:00	49	49	0.0	14	180	84.2	5.8

Table 1 Example of half-hour ACD report.

TIME-VARYING ARRIVAL RATE (GREEN, KOLESAR AND SOARES)

- **13:30:** 100% occupancy, relately high abandonment rate (9.4%), more than 1 minute ASA; Efficiency-Driven (ED) regime.
- **17:00**, 83% server utilization, no abandonment, ASA less than 2 seconds; Quality-Driven QD regime.
- 14:30 96.6% utilization, abandonment 2.7%, ASA 23 seconds; Quality- and Efficiency-Driven (QED) regime.

STAFFING RULE?

Assume that $\mu = 1$. In the M/M/n setting,

λ	п	util.	$\mathbb{P}\{ delay \}$
100	107	93.4%	38%
1000	1021	97.9%	40%
5000	5047	<mark>99.0%</mark>	39.4%

•
$$R = \lambda/\mu$$
,

• Square-root safety-staffing rule:

$$n = \lceil R + \beta \sqrt{R} \rceil?$$

- Any relationship between α and β ?
- $\alpha = 40\%$, $\beta = 0.65$. $1000 + .65\sqrt{1000} = 1020.6$.

QED THEOREM (HALFIN-WHITT, 1981)

- Consider a sequence of M/M/n models, n = 1, 2, 3, ...
- Then the following **3 points of view** are equivalent:
 - Customer:

$$\lim_{n\to\infty} \mathbb{P}\{\mathsf{Wait}>0\} = \alpha, \quad 0<\alpha<1;$$

• Server: $\rho_n = \lambda_n / (n\mu)$

$$\lim_{n\to\infty}\sqrt{n}(1-\rho_n)=\beta,\quad 0<\beta<\infty;$$

• Manager:

$$n \approx R + \beta \sqrt{R}$$
, when $R = \lambda \times \mathbb{E}(S)$ large;

• Here,

$$\alpha = \left[1 + \beta \Phi(\beta) / \phi(\beta)\right]^{-1}$$

and ϕ and Φ are the standard normal density and the distribution.

Square-Root Safety Staffing and QED

- Servers' utilization: $R/n \approx 1 \frac{\beta}{\sqrt{n}}$
- For $\alpha = 0.5$, $\beta \approx 0.508$.
- Let $\mu = 1$, and $\lambda = 50, 500, 5000$.

- GARNETT, O., MANDELBAUM, A. and REIMAN, M. (2002). Designing a call center with impatient customers. *Manufacturing and Service Operations Management*, **48** 566–583.
- S. BORST, A. MANDELBAUM, AND M. REIMAN, *Dimensioning large call centers*, Operations Research, 52 (2004), pp. 17–34.
- S. HALFIN AND W. WHITT, *Heavy-traffic limits for queues with many exponential servers*, Operations Research, 29 (1981), pp. 567–588.

An example: 50 agents, 48 calls per minute, 1 minute average service time, 2 minute average patience;

	M/M/n	M/M/n + M
Fraction abandoning	0	3.1%
Average waiting time	20.8 sec.	3.6 sec.
Waiting time's 90th percentile	58.1 sec.	12.5 sec.
Average queue size	17	3
Agents' utilization	96%	93%

An example: 50 agents, 55 calls per minute, 1 minute average service time, 2 minute average patience;

	M/M/n	M/M/n+M
Fraction abandoning	0	10.2%
Average speed to answer	87.7 sec.	12.5 sec.
Average queue size	72.2	11.2
Agents' utilization	98.8%	98.8%

 $\lambda^* = 55(1 - 0.102) = 49.39.$ Wrong model, wrong output!

PATIENCE TIME DISTRIBUTIONS: HAZARD RATE

• Does the distribution matter?

- In QED regime, the distribution of patience time "does not matters" with a given mean (M-Z 2005, Dai-He 2009), but one must build customer patience into the model.
- In QED regime, service time distribution matters (Reed, \dots)
- In ED regime, the performance is mainly driven by the patience time distribution. (Whitt 2006)

WHITT'S STUDY: M/GI/100/200 + GI

$M/GI/100/200 + GI$ model with $\lambda = 120$ and $E[T] = 1.0$							
	E_2 time-to-abandon cdf Service cdf			LN(1, 4) time-to-abandon cdf Service cdf			
Perf. meas.	E_2	LN(1,4)	Approx.	E_2	LN(1, 4)	Approx.	
$P(A_s)$	0.16653 ±0.00035	0.16683 ±0.00060	0.16667	0.1678 ±0.00023	0.1696 ±0.00054	0.16667	
$E[Q_s]$	40.25 ±0.057	39.56 ±0.097	41.11	14.51 ±0.018	14.52 ±0.043	14.63	
$\operatorname{Var}(Q_s)$	139.6 ±0.69	221.6 ±1.09	0.00	61.1 ±0.18	81.5 ±0.30	0.00	
$SCV(Q_s)$	0.086	0.142	0.00	0.290	0.387	0.000	
$E[N_s]$	140.3 ±0.057	139.5 ±1.22	141.11	114.4 ±0.019	114.2 ±0.47	114.6	
$P(W_s=0)$	$\begin{array}{c} 0.00046 \\ \pm 0.00006 \end{array}$	0.0068 ± 0.00035	0.00000	0.032 ±0.00037	0.065 ±0.00077	0.000	
$E[W_s \mid S_s]$	0.353 ± 0.00051	0.343 ±0.00094	0.365	0.126 ±0.00017	0.125 ±0.00040	0.131	
$\operatorname{Var}(W_s \mid S_s)$	0.0097 ±0.000058	0.0176 ±0.000087	0.0000	0.0046 ±0.000014	0.0066 ±0.000027	0.0000	
$SCV(W_s \mid S_s)$	0.078	0.149	0.000	0.290	0.422	0.000	
$E[W_s \mid A_s]$	0.247 ±0.00025	0.261 ±0.00041	0.231	0.095 ±0.00008	0.103 ±0.00014	0.077	

Jim Dai (Georgia Tech)

PART II: BACK TO THE PARALLEL SERVER SYSTEM

- Design: should agents be cross-trained?
- Staffing: long term and short term
- Routing
 - When an arrival finds idle servers, which server to join?
 - When a server finishes service, which customer to serve next?

PART II: BACK TO THE PARALLEL SERVER SYSTEM

- Design: should agents be cross-trained?
- Staffing: long term and short term
- Routing
 - When an arrival finds idle servers, which server to join?
 - When a server finishes service, which customer to serve next?
- These decisions are made at different time scales. In this talk, we focus on routing decisions.

- \bullet A simple policy π^*
- An LP and the asymptotic framework
- State space collapse (SSC) and hydrodynamic models

- holding cost h_i per class i waiting customer per unit time;
- penalty cost c_i per abandoned customer from class i
- class *i* has exponential patience time distribution with rate γ_i .
- the "total cost" per class *i* customer per unit time is

$$h_i + c_i \gamma_i$$
.

Assume that buffer 1 is the cheapest:

$$h_1 + c_1 \gamma_1 \leq h_i + c_i \gamma_i \quad i \in \mathcal{I}.$$

ROUTING POLICIES: DESIGN OBJECTIVES

- Simple
- "Robust" to deal with fluctuating λ : e.g., $\lambda = (20, 50, 10)$.
- Asymptotically optimal

A Dynamic Priority Policy π^*

Let

$$X(t) = \sum_{i \in \mathcal{I}} \mathcal{Q}_i(t) + \sum_{j \in \mathcal{J}} \mathcal{Z}_j(t)$$

be the total number of customers in the system at time t.

Let

$$\hat{X}(t) = X(t) - |N| = \sum_{i \in \mathcal{I}} Q_i(t) - \sum_{j \in \mathcal{J}} I_j(t).$$

Note that

- • $\sum_{i\in\mathcal{I}}Q_i(t)\geq (\hat{X}(t))^+$,
 - $\sum_{j\in\mathcal{J}}I_j(t)\geq (\hat{X}(t))^-$,

$$x = a - b, \quad a, b > 0$$

$$a \ge x^+,$$

$$b \ge x^-,$$

$$a = x^+ \text{ only when } b = 0,$$

$$b = x^- \text{ only when } a = 0.$$

The Routing Policy π^* for the Example

- \bullet When a server in the slow pool is ready to pick, choose ${\rm argmax}\{Q_1(t),Q_2(t)\}.$
- When a server in the fast pool is ready to pick, choose $\operatorname{argmax}\{Q_1(t) - (\hat{X}(t))^+, Q_2(t), Q_3(t)\}.$
- When an arriving customer is to choose a pool, choose

$$\arg\max\{l_1(t) - (\hat{X}(t))^-, l_2(t)\}.$$

The following characteristics define the proposed policy π^* :

- each server is non-idling;
- a server chooses the leading customer in a buffer with the longest queue, where the queue length in buffer 1 is adjusted to be $Q_1(t) (\hat{X}(t))^+$,
- an arriving customer joins the server pool that has a maximum number of idle servers, except that the number of idle servers at the slowest pool, assumed to be pool 1, is adjusted to be l₁(t) - (X(t))⁻.

Gurvich and Whitt (2009), Service-level differentiation in many-server service systems via queue-ratio routing, *OR*; Queue-and-idleness-ratio controls in many-server service systems, *MOR*

SSC FOR QUEUE LENGTH

MANY-SERVER HEAVY TRAFFIC: CAPACITY SCALES WITH VOLUME

• We assume that the sequence of arrival rates to class *i* satisfies

$$\lim_{r \to \infty} \frac{\lambda_i^r}{|\mathcal{N}^r|} = \lambda_i, \text{ for all } i \in \mathcal{I} \text{ and for some } 0 < \lambda_i < \infty.$$
(1)

• Also, the sequence of number of servers in each pool is assumed to satisfy

$$\lim_{r \to \infty} \frac{N_j^r}{|N^r|} = \beta_j, \text{ for all } j \in \mathcal{J} \text{ and for some } \beta_j > 0 \text{ and} \quad (2)$$

ASYMPTOTIC FRAMEWORK: EXAMPLE

The static planning problem (SPP) is defined by

$$\begin{split} \min \rho \\ \text{s.t.} \\ &\sum_{j \in \mathcal{J}(i)} \beta_j \mu_{ij} x_{ij} = \lambda_i, \text{ for all } i \in \mathcal{I}, \\ &\sum_{i \in \mathcal{I}(j)} x_{ij} \leq \rho, \text{ for all } j \in \mathcal{J}, \\ &x_{ij} \geq 0, \text{ for all } j \in \mathcal{J} \text{ and } i \in \mathcal{I}. \end{split}$$

(3)

MULTIPLE LP SOLUTIONS

• Let (ρ^*, x^*) be an optimal solution to the SPP. We assume that

$$ho^* = 1 \quad ext{and} \quad \sum_{i \in \mathcal{J}(j)} x^*_{ij} = 1 \ \ ext{for all} \ j \in \mathcal{J}.$$

• for each class $i \in \mathcal{I}$

$$\lambda_i^r = \sum_{j \in \mathcal{J}(i)} \mu_j x_{ij}^* N_j^r + \theta_i \sqrt{|N^r|}$$
(4)

31 / 37

some θ_i .

- The many-server heavy traffic condition holds.
- Buffer 1 is the cheapest buffer, namely,

 $h_1 + c_1 \gamma_1 \le h_i + c_i \gamma_i$ and $\gamma_1 \ge \gamma_i$, for all $i \in \mathcal{I}$. (5)

- Service time and patience time distributions are exponential.
- Service rates are pool-dependent only, not class-dependent; we index the server pools in a way so that

$$\mu_1 \le \mu_j \text{ for all } j \in \mathcal{J}. \tag{6}$$

• An LP graph is connected.

- Let $Q_i^r(t)$ denote the number of class k customers in queue at time t;
- Let $R_i^r(t)$ denote the number of class k customers who have abandoned the system by time t.
- We define the diffusion scaling for these processes by

$$\hat{Q}_i^r(t) = rac{Q_i^r(t)}{\sqrt{|N^r|}} ext{ and } \hat{R}_i^r(t) = rac{R_i^r(t)}{\sqrt{|N^r|}} ext{ for } t \geq 0 ext{ and } i \in \mathcal{I}.$$

• For a fixed T > 0, the total cost in [0, T] is

$$\zeta^{r}(T) = \sum_{i \in \mathcal{I}} \left(\int_{0}^{T} h_{i} \hat{Q}_{i}^{r}(s) \, ds + c_{i} \hat{R}_{i}^{r}(T) \right)$$

THEOREM

Assume the five assumptions, and an appropriate initial condition. Then, the total cost $\zeta^{r}(T)$ is asymptotically minimized as $r \to \infty$ in the following sense: for any x > 0,

$$\liminf_{r\to\infty} \mathbb{P}\{\zeta^{r,\pi}(T) > x\} \ge \liminf_{r\to\infty} \mathbb{P}\{\zeta^{r,\pi^*}(T) > x\}.$$
(7)

- A lower bound
 - The lower bound proof is similar to the proof of Theorem 3.2 in Tezcan-Dai (2006).
- The bound is achieved under π^*
 - The policy π^* is asymptotically efficient; fluid model has a certain invariant state.
 - A certain state space collapse (SSC) result holds under diffusion scaling.

STATE SPACE COLLAPSE UNDER π^*

• All buffers except buffer 1 are empty; namely, for $i \ge 2$,

$$\|\hat{Q}_i^r(t)\|_T o 0$$
 as $r o \infty$.

2 All pools are fully busy except pool 1; namely, for $j \ge 2$,

$$\|\hat{l}_j^r(t)\|_{\mathcal{T}} o 0$$
 as $r o \infty$.

All waiting happens in buffer 1;

$$\|\hat{Q}_1^r(t)-ig(\hat{X}^r(t)ig)^+\| o 0$$
 as $r o\infty.$

All idling happens in pool 1;

$$\| \hat{l}_1^r(t) - \left(\hat{X}^r(t)
ight)^- \| o 0 extrm{ as } r o \infty.$$

- Study a deterministic hydrodynamic model;
- Prove a state space collapse (SSC) result for the hydrodynamic model;
- Apply Dai-Tezcan (05):
 - SSC for a deterministic hydrodynamic model implies multiplicative SSC for the corresponding stochastic parallel server system;
 - Extend Bramson's framework from conventional heavy traffic to many-server heavy traffic.