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Outline

Parallel-server systems

Part I: Background

Part II: Dynamic control

Tezcan-Dai (2009), Dynamic Control of N-Systems with Many Servers:
Asymptotic Optimality of a Static Priority Policy in Heavy Traffic,
Operations Research.

Dai-Tezcan (2008), Optimal Control of Parallel Server Systems with Many
Servers in Heavy Traffic, Queueing Systems.
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Parallel-Server Systems with Many Servers

λ1 λ2 λ3

µ1 µ2
µ1

µ2 µ2

N1 N2

I customer classes: arrival rate for class i ∈ I is λi .

J server pools: pool j ∈ J has Nj servers.

Large number of servers; motivated by customer call/contact centers.
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Decisions

15 40 20

0.5
10.5

1 1

50 50

Design: should agents be cross-trained?

Staffing: long term and short term

Routing
When an arrival finds idle servers, which server to join?
When a server finishes service, which customer to serve next?

These decisions are made at different time scales.
In this talk, we focus on routing decisions.
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Part I: Background

ED, QD, and QED regimes

Square-root safety staffing rule

Customer abandonment

Distributions of random times

S. Zeltyn and A. Mandelbaum (2005), Call centers with impatient customers:

many-server asymptotics of the M/M/n + G queue, Queueing Systems, 51.
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Sample from a US health insurance company
CALL CENTERS WITH IMPATIENT CUSTOMERS 367

Table 1
Example of half-hour ACD report.

Time Calls Answered Abandoned% ASA AHT Occ% # of agents

Total 20,577 19,860 3.5 30 307 95.1
8:00 332 308 7.2 27 302 87.1 59.3
8:30 653 615 5.8 58 293 96.1 104.1
9:00 866 796 8.1 63 308 97.1 140.4
9:30 1,152 1,138 1.2 28 303 90.8 211.1

10:00 1,330 1,286 3.3 22 307 98.4 223.1
10:30 1,364 1,338 1.9 33 296 99.0 222.5
11:00 1,380 1,280 7.2 34 306 98.2 222.0
11:30 1,272 1,247 2.0 44 298 94.6 218.0
12:00 1,179 1,177 0.2 1 306 91.6 218.3
12:30 1,174 1,160 1.2 10 302 95.5 203.8
13:00 1,018 999 1.9 9 314 95.4 182.9
13:30 1,061 961 9.4 67 306 100.0 163.4
14:00 1,173 1,082 7.8 78 313 99.5 188.9
14:30 1,212 1,179 2.7 23 304 96.6 206.1
15:00 1,137 1,122 1.3 15 320 96.9 205.8
15:30 1,169 1,137 2.7 17 311 97.1 202.2
16:00 1,107 1,059 4.3 46 315 99.2 187.1
16:30 914 892 2.4 22 307 95.2 160.0
17:00 615 615 0.0 2 328 83.0 135.0
17:30 420 420 0.0 0 328 73.8 103.5
18:00 49 49 0.0 14 180 84.2 5.8

The interval that starts at 17:00 presents a contrasting service pattern. There is no
abandonment and the average wait is negligible (2 sec). The agents’ occupancy is far
below 100% (83%). Such a service regime will be called Quality-Driven (QD), in the
sense that the emphasis is on customers’ service quality.

Finally, the last interval (14:30) demonstrates an intermediate service regime: uti-
lization is high (96.6%), and abandonment and waiting are neither negligible nor high.
Since in this half-hour, high efficiency and service level are achieved simultaneously,
this operational regime has been called QED (Quality and Efficiency-Driven).

The examples above show that there exist clear differences in operational-
performance which, as will now become clear, could be pre-designed (though we do
not claim that this is the case here). We shall now present formal definitions of the three
operational regimes.
First, calculate the offered load R = λ

µ
for the three intervals. We get

RED = 1061 :
1800
306

= 180.37

for the ED-interval (1800 is the number of seconds in an interval), RQD = 112.07 for
the QD-interval, and, finally, RQED = 204.69 for the QED-interval.
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Time-Varying Arrival Rate (Green, Kolesar
and Soares)
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Different Operational Regimes

13:30: 100% occupancy, relately high abandonment rate (9.4%),
more than 1 minute ASA; Efficiency-Driven (ED) regime.

17:00, 83% server utilization, no abandonment, ASA less than 2
seconds; Quality-Driven QD regime.

14:30 96.6% utilization, abandonment 2.7%, ASA 23 seconds;
Quality- and Efficiency-Driven (QED) regime.
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Staffing Rule?

Assume that µ = 1. In the M/M/n setting,

λ n util. P{ delay }
100 107 93.4% 38%

1000 1021 97.9% 40%
5000 5047 99.0% 39.4%

R = λ/µ,

Square-root safety-staffing rule:

n = dR + β
√

Re?

Any relationship between α and β?

α = 40%, β = 0.65. 1000 + .65
√

1000 = 1020.6.
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QED Theorem (Halfin-Whitt, 1981)

Consider a sequence of M/M/n models, n = 1, 2, 3, . . .

Then the following 3 points of view are equivalent:

Customer:
lim

n→∞
P{Wait > 0} = α, 0 < α < 1;

Server: ρn = λn/(nµ)

lim
n→∞

√
n(1− ρn) = β, 0 < β <∞;

Manager:

n ≈ R + β
√

R, when R = λ× E(S) large;

Here,
α = [1 + βΦ(β)/φ(β)]−1

and φ and Φ are the standard normal density and the distribution.
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Square-Root Safety Staffing and QED

Servers’ utilization: R/n ≈ 1− β√
n

For α = 0.5, β ≈ 0.508.

Let µ = 1, and λ = 50, 500, 5000.

Utilization

100%
99.3%

92.6%
97.6%

500 500050
Offered Load
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Square-Root Safety-Staffing Rule

Garnett, O., Mandelbaum, A. and Reiman, M. (2002).
Designing a call center with impatient customers. Manufacturing and
Service Operations Management, 48 566–583.

S. Borst, A. Mandelbaum, and M. Reiman, Dimensioning
large call centers, Operations Research, 52 (2004), pp. 17–34.

S. Halfin and W. Whitt, Heavy-traffic limits for queues with
many exponential servers, Operations Research, 29 (1981),
pp. 567–588.
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Abandonment affects system performance: I

An example: 50 agents, 48 calls per minute, 1 minute average service
time, 2 minute average patience;

M/M/n M/M/n + M

Fraction abandoning 0 3.1%
Average waiting time 20.8 sec. 3.6 sec.
Waiting time’s 90th percentile 58.1 sec. 12.5 sec.
Average queue size 17 3
Agents’ utilization 96% 93%
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Abandonment affects system performance: II

An example: 50 agents, 55 calls per minute, 1 minute average service
time, 2 minute average patience;

M/M/n M/M/n + M

Fraction abandoning 0 10.2%
Average speed to answer 87.7 sec. 12.5 sec.
Average queue size 72.2 11.2
Agents’ utilization 98.8% 98.8%

λ∗ = 55(1− 0.102) = 49.39.
Wrong model, wrong output!
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Patience Time Distributions: Hazard rate

Does the distribution matter?
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Some Insights

In QED regime, the distribution of patience time “does not matters”
with a given mean (M-Z 2005, Dai-He 2009), but one must build
customer patience into the model.

In QED regime, service time distribution matters (Reed, ... )

In ED regime, the performance is mainly driven by the patience time
distribution. (Whitt 2006)
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Whitt’s Study: M/GI/100/200 + GI
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Part II: Back to the Parallel Server System

λ1 λ2 λ3

µ1 µ2
µ1

µ2 µ2

N1 N2

Design: should agents be cross-trained?

Staffing: long term and short term

Routing
When an arrival finds idle servers, which server to join?
When a server finishes service, which customer to serve next?

These decisions are made at different time scales.
In this talk, we focus on routing decisions.
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Dynamic control

A simple policy π∗

An LP and the asymptotic framework

State space collapse (SSC) and hydrodynamic models
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Costs

holding cost hi per class i waiting customer per unit time;

penalty cost ci per abandoned customer from class i

class i has exponential patience time distribution with rate γi .

the “total cost” per class i customer per unit time is

hi + ciγi .

Assume that buffer 1 is the cheapest:

h1 + c1γ1 ≤ hi + ciγi i ∈ I.
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Routing Policies: Design Objectives

15 40 20

0.5
10.5

1 1

50 50

Simple

“Robust” to deal with fluctuating λ: e.g., λ = (20, 50, 10).

Asymptotically optimal
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A Dynamic Priority Policy π∗

Let
X (t) =

∑
i∈I

Qi (t) +
∑
j∈J

Zj(t)

be the total number of customers in the system at time t.

Let
X̂ (t) = X (t)− |N| =

∑
i∈I

Qi (t)−
∑
j∈J

Ij(t).

∑
i∈I Qi (t) ≥ (X̂ (t))+,∑
j∈J Ij(t) ≥ (X̂ (t))−,

Note that

x = a− b, a, b > 0

a ≥ x+,

b ≥ x−,

a = x+ only when b = 0,

b = x− only when a = 0.
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The Routing Policy π∗ for the Example

When a server in the slow pool is ready to pick, choose

argmax{Q1(t),Q2(t)}.

When a server in the fast pool is ready to pick, choose

argmax{Q1(t)− (X̂ (t))+,Q2(t),Q3(t)}.

When an arriving customer is to choose a pool, choose

argmax{I1(t)− (X̂ (t))−, I2(t)}.

15 40 20

0.5
10.5

1 1

50 50
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The Policy π∗

The following characteristics define the proposed policy π∗:

each server is non-idling;

a server chooses the leading customer in a buffer with the longest
queue, where the queue length in buffer 1 is adjusted to be
Q1(t)−

(
X̂ (t)

)+
,

an arriving customer joins the server pool that has a maximum
number of idle servers, except that the number of idle servers at the
slowest pool, assumed to be pool 1, is adjusted to be I1(t)−

(
X̂ (t)

)−
.

Gurvich and Whitt (2009), Service-level differentiation in many-server
service systems via queue-ratio routing, OR;
Queue-and-idleness-ratio controls in many-server service systems, MOR
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SSC for Queue Length
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SSC for Idle Server
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Many-Server Heavy Traffic: capacity scales
with volume

We assume that the sequence of arrival rates to class i satisfies

lim
r→∞

λr
i

|N r |
= λi , for all i ∈ I and for some 0 < λi <∞. (1)

Also, the sequence of number of servers in each pool is assumed to
satisfy

lim
r→∞

N r
j

|N r |
= βj , for all j ∈ J and for some βj > 0 and (2)

Jim Dai (Georgia Tech) Many-Server Asymptotic Optimality May 13, 2009 27 / 37



Asymptotic Framework: Example

15 40 20
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1 1

50 50

β = (1/2, 1/2),

λ = (.15, .4, .2)

Jim Dai (Georgia Tech) Many-Server Asymptotic Optimality May 13, 2009 28 / 37



Static Planning LP

The static planning problem (SPP) is defined by

min ρ

s.t.∑
j∈J (i)

βjµijxij = λi , for all i ∈ I,

∑
i∈I(j)

xij ≤ ρ, for all j ∈ J ,

xij ≥ 0, for all j ∈ J and i ∈ I.

(3)
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Multiple LP Solutions
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Many-Server Heavy Traffic Condition

Let (ρ∗, x∗) be an optimal solution to the SPP. We assume that

ρ∗ = 1 and
∑

i∈J (j)

x∗ij = 1 for all j ∈ J .

for each class i ∈ I

λr
i =

∑
j∈J (i)

µjx
∗
ij N

r
j + θi

√
|N r | (4)

some θi .
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Five Assumptions

The many-server heavy traffic condition holds.

Buffer 1 is the cheapest buffer, namely,

h1 + c1γ1 ≤ hi + ciγi and γ1 ≥ γi , for all i ∈ I. (5)

Service time and patience time distributions are exponential.

Service rates are pool-dependent only, not class-dependent; we index
the server pools in a way so that

µ1 ≤ µj for all j ∈ J . (6)

An LP graph is connected.
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Objective Function

Let Qr
i (t) denote the number of class k customers in queue at time t;

Let R r
i (t) denote the number of class k customers who have

abandoned the system by time t.

We define the diffusion scaling for these processes by

Q̂r
i (t) =

Qr
i (t)√
|N r |

and R̂ r
i (t) =

R r
i (t)√
|N r |

for t ≥ 0 and i ∈ I.

For a fixed T > 0, the total cost in [0,T ] is

ζr (T ) =
∑
i∈I

(∫ T

0
hi Q̂

r
i (s) ds + ci R̂

r
i (T )

)
.
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Asymptotic Optimality

Theorem

Assume the five assumptions, and an appropriate initial condition. Then,
the total cost ζr (T ) is asymptotically minimized as r →∞ in the
following sense: for any x > 0,

lim inf
r→∞

P{ζr ,π(T ) > x} ≥ lim inf
r→∞

P{ζr ,π∗(T ) > x}. (7)
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Proof Steps

A lower bound

The lower bound proof is similar to the proof of Theorem 3.2 in
Tezcan-Dai (2006).

The bound is achieved under π∗

The policy π∗ is asymptotically efficient; fluid model has a certain
invariant state.
A certain state space collapse (SSC) result holds under diffusion
scaling.
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State Space Collapse under π∗

1 All buffers except buffer 1 are empty; namely, for i ≥ 2,

‖Q̂r
i (t)‖T → 0 as r →∞.

2 All pools are fully busy except pool 1; namely, for j ≥ 2,

‖Î r
j (t)‖T → 0 as r →∞.

3 All waiting happens in buffer 1;

‖Q̂r
1(t)−

(
X̂ r (t)

)+‖ → 0 as r →∞.

4 All idling happens in pool 1;

‖Î r
1 (t)−

(
X̂ r (t)

)−‖ → 0 as r →∞.
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Proving State Space Collapse

Study a deterministic hydrodynamic model;

Prove a state space collapse (SSC) result for the hydrodynamic model;

Apply Dai-Tezcan (05):

SSC for a deterministic hydrodynamic model implies multiplicative SSC
for the corresponding stochastic parallel server system;
Extend Bramson’s framework from conventional heavy traffic to
many-server heavy traffic.
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