Maximum pressure policies for stochastic processing networks: throughput optimality

Jim Dai

H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology

Joint work with Wuqin Lin at Kellogg

2 Maximum Pressure Policies

3 Main Results – Illustrated by Examples

- Throughput Optimality
- Asymptotic Optimality in Heavy Traffic

4 Main Results for General Stochastic Processing Networks

5 Conclusions

Stochastic Processing Networks (Harrison 00)

An activity

- uses certain resources to
- process certain classes and
- produce certain (possibly different) classes.

Jim Dai (Georgia Tech)

Modeling Capability

Activities are very general

July 28, 2009

4 / 47

Jim Dai (Georgia Tech)

Semiconductor Wafer Fabs (Fabrication Facilities)

Multiclass queueing networks

Call Centers

- picture from Larréché et al. 1997 Jim Dai (Georgia Tech) MPPs

July 28, 2009 6 / 47

Parallel Server Systems

э

Input Queued Data Switches

- In each time slot, at most one packet is sent from each input port
- In each time slot, at most one packet is sent to each output port
- Multiple packets can be transferred in a single time slot
- A high speed switch needs to maintain thousands of flows

Networks of Switches

Switch 2

э

-

Networks with Alternate Routes

Laws and Louth (1990) Kelly and Laws (1993) Dai and Kim (2004)

- Allow dynamic routing decision.
- Model applications in communication networks, supply chains, and road traffic.

Performance Measures

First order ones:

- Throughput: rate at which entities leave a system
- Utilization

Second order ones:

- Cycle time: processing time plus waiting time of an entity; average and variance of cycle time
- Holding cost.

Control decisions can have dramatic impact on key performance measures.

Kumar-Seidman Network

• Traffic intensity:

$$\rho_1 = \lambda_1 m_1 + \lambda_2 m_4 = 0.8 \text{ and } \rho_2 = \lambda_1 m_2 + \lambda_2 m_3 = 0.8.$$

Kumar-Seidman Network

Traffic intensity:

 $\rho_1 = \lambda_1 m_1 + \lambda_2 m_4 = 0.8$ and $\rho_2 = \lambda_1 m_2 + \lambda_2 m_3 = 0.8$.

• Pull policy - give priority to products closer to completion

WIP Levels at Two Stations

Utilization and Cycle Time

# departed	100	1,000	10,000	100,000
Average cycle time	13.68	99.87	927.96	7277.62
Utilization A	0.65	0.48	0.46	0.71
Utilization B	0.49	0.67	0.73	0.44
Overall Utilization	0.57	0.58	0.60	0.58

the throughput is about 0.7.

Inefficient Sequencing Policies

- First-in-first-out (FIFO) (Bramson 1994, Seidman 1994)
- $c\mu$ rule (Harrison 99)
- Shortest processing time first
- Shortest remaining processing time first
- Exhaustive service (Kumar-Seidman 1990)

• . . .

Symptoms:

- WIP is high, and
- bottleneck machines are underutilized

Maximum Pressure Policies: Semiconductor Wafer Fabs

Server k chooses to work on a buffer that has the highest pressure. The pressure at buffer i is

$$p_i = \mu_i (Z_i(t) - Z_{i+1}(t)).$$

Generalization: $\alpha_i Z_i^{\beta}(t)$

Maximum Pressure Policies: Parallel Server Systems

For example, processor $1\ {\rm chooses}$ to work on buffer $i\ {\rm that}\ {\rm attains}$

 $\max\{\mu_1 Z_1(t), \mu_2 Z_2(t), \mu_4 Z_3(t)\}.$

Maximum Pressure Policies: Alternate Routing

• An MPP translates into: Join-the-shortest-queue and server 1 idles when $Z_3(t) > Z_1(t)$.

Maximum Pressure Policies: Alternate Routing

- An MPP translates into: Join-the-shortest-queue and server 1 idles when $Z_3(t) > Z_1(t)$.
- MPPs can be idling policies.

Non-Idling Server 1

Number of jobs in queue 3

Features of Maximum Pressure Policies

- They are simple.
- They are semi-local.
- They are throughput optimal.
- They are asymptotically optimal in workload and certain holding cost structure.

Outline of Rest of Talk

3 Main Results – Illustrated by Examples

- Throughput Optimality
- Asymptotic Optimality in Heavy Traffic

Main Results for General Stochastic Processing Networks

5 Conclusions

Rate Stability

Rate stability

With probability one,

$$\lim_{t\to\infty} Z_i(t)/t = 0, \text{ for each buffer } i$$

which is equivalent to that departure rate is equal to arrival rate.

Traffic Intensity

•
$$\rho_1 = \lambda(1/\mu_1 + 1/\mu_3 + 1/\mu_5), \rho_2 = \lambda(1/\mu_2 + 1/\mu_4)$$

• $\rho = \max\{\rho_1, \rho_2\}$: traffic intensity of the network

Theorem

The network is rate stabilizable only if $\rho \leq 1$.

Stability Result

Theorem (Dai-Lin 05)

The network is rate stable under maximum pressure policies if it is stabilizable (i.e. $\rho \leq 1$).

э

Proof: Fluid Model Approach

Theorem (Dai-Lin 05)

A stochastic processing network is rate stable if the corresponding continuous, deterministic fluid model is weakly stable.

Fluid Model Equations

Let $T_k(t)$ be the cumulative time that class k jobs have received in [0, t].

$$\begin{split} &Z_1(t) = Z_1(0) + \lambda t - \mu_1 T_1(t), \\ &Z_k(t) = Z_k(0) + \mu_{k-1} T_{k-1}(t) - \mu_k T_k(t), \\ &T_k(0) = 0 \text{ and } T_k(\cdot) \text{ is nondecreasing,} \\ &(T_1(t) + T_3(t) + T_5(t)) - (T_1(s) + T_3(s) + T_5(s)) \leq (t-s) \\ &(T_2(t) + T_4(t)) - (T_2(s) + T_4(s)) \leq (t-s) \end{split}$$

Fluid Model under MPP

$$\sum_{i} \dot{\bar{T}}_{i}(t) p_{i} = \max\left\{\sum_{i} a_{i} p_{i} : a_{1} + a_{3} + a_{5} \le 1, a_{2} + a_{4} \le 1.\right\}$$
(1)

• The pressure
$$p_i = \mu_i (\bar{Z}_i(t) - \bar{Z}_{i+1}(t)).$$

- The drift of the quadratic function $f(t) = \sum_i \bar{Z}_i^2(t)/2$ is given by $\dot{f}(t) = \lambda Z_1(t) \sum_i \dot{T}_i(t) p_i$.
- Under a maximum pressure policy, $\dot{f}(t)$ is minimized among all policies.

Weak Stability of Fluid Model

Definition (Weak Stability)

A fluid model is said to be weakly stable if for every fluid model solution with $\bar{Z}(0) = 0$, $\bar{Z}(t) = 0$ for $t \ge 0$.

- Consider the quadratic function $f(t) = \sum_i \bar{Z}_i^2(t)/2$.
- Under a maximum pressure policy, $\dot{f}(t) \leq 0$. Therefore, $\bar{Z}(t) = 0$ for all t if $\bar{Z}(0) = 0$; the fluid model is weakly stable.
- Weak stability of the fluid model implies the rate stability of the stochastic network.

Fluid Limits

- Fluid model equations are justified through a fluid limit procedure.
- A function (\bar{Z},\bar{T}) is said to be a fluid limit if

$$\frac{1}{r_n}(Z(r_nt,\omega),T(r_nt,\omega))\to (\bar{Z}(t),\bar{T}(t))$$

as $r_n \to \infty$ for some sample path ω

Holding Cost

Assume i.i.d. interarrival times and service times. (variance: σ_a^2 and $\sigma_j^2, j = 1, 2, 3$)

• Objective function: the expected cumulative discounted holding cost:

$$J \equiv \mathbb{E}\left(\int_0^\infty e^{-\gamma t} h\big(Z(t)\big) dt\right).$$

• For example, linear holding cost:

$$h(Z(t)) = h_1 Z_1(t) + h_2 Z_2(t) + h_3 Z_3(t).$$

Main Results – Illustrated by Examples Asymptotic Optimality in Heavy Traffic

Heavy Traffic Regime and Diffusion Approximation

- Consider networks in heavy traffic.
- Diffusion Scaling: $\widehat{Z}^r(t) = Z(rt)/\sqrt{r}$.

$$\widehat{J}_{\pi}^{r} \equiv \mathbb{E}\left(\int_{0}^{\infty} e^{-\gamma t} h(\widehat{Z}^{r}(t)) dt\right).$$

Asymptotic Optimality in Heavy Traffic

Heavy Traffic Condition and Bottlenecks

Asymptotic Optimality in Heavy Traffic

Heavy Traffic Condition and Bottlenecks

Heavy traffic condition

At least one server is critically loaded; allow some servers to be under-utilized (can be unbalanced).

Asymptotic Optimality in Heavy Traffic

Heavy Traffic Condition and Bottlenecks

Heavy traffic condition

At least one server is critically loaded; allow some servers to be under-utilized (can be unbalanced).

Asymptotic Optimality in Heavy Traffic

Heavy Traffic Condition and Bottlenecks

Heavy traffic condition

At least one server is critically loaded; allow some servers to be under-utilized (can be unbalanced).

Asymptotic Optimality in Heavy Traffic

Heavy Traffic Condition and Bottlenecks

Heavy traffic condition

At least one server is critically loaded; allow some servers to be under-utilized (can be unbalanced).

• Bottlenecks: servers that are critically loaded.

Asymptotic Optimality in Heavy Traffic

Heavy Traffic Condition and Bottlenecks

Heavy traffic condition

At least one server is critically loaded; allow some servers to be under-utilized (can be unbalanced).

• Bottlenecks: servers that are critically loaded.

Asymptotic Optimality on Quadratic Holding Cost

Theorem (Asymptotic Optimality (Dai-Lin 07))

For networks that satisfy the heavy traffic condition and have a single bottleneck, the maximum pressure policy is asymptotically optimal for the quadratic holding cost in that

$$\lim_{r \to \infty} \widehat{J}^r_{\mathrm{MPP}} \le \liminf_{r \to \infty} \widehat{J}^r_{\pi},$$

where
$$\widehat{J}_{\pi}^r = \mathbb{E}\left(\int_0^{\infty} e^{-\gamma t} \left(\widehat{Z}_1^r(t)^2 + \widehat{Z}_2^r(t)^2 + \widehat{Z}_3^r(t)^2\right) dt\right).$$

Workload Process

- ∢ ⊒ →

< □ > < 同 > < 回 >

э

Workload Process

$$y = \left(\frac{1}{2}, \frac{1}{6}, \frac{1}{6}\right)'$$
$$W(t) = y \cdot Z(t)$$

< □ > < 同 > < 回 >

•
$$W(t) = \frac{1}{2}Z_1(t) + \frac{1}{6}Z_2(t) + \frac{1}{6}Z_3(t)$$

• $\widehat{W}^r(t) = W(rt)/\sqrt{r} = y \cdot \widehat{Z}^r(t).$

.⊒ →

э

Asymptotic Optimality on Workload Process

Theorem (Workload Optimality (Dai-Lin 07))

For networks that satisfy the heavy traffic condition and have a single bottleneck, the maximum pressure policy is asymptotically optimal for workload in that for each $t \ge 0$ and w > 0,

$$\mathbb{P}\Big(\lim_{r\to\infty}\widehat{W}^r_{\mathrm{MPP}}(t) > w\Big) \leq \mathbb{P}\Big(\liminf_{r\to\infty}\widehat{W}^r_{\pi}(t) > w\Big).$$

A Lower Bound on Workload Process

We can write $\widehat{W}^r(t)$ as

$$\widehat{W}^{r}(t) = \widehat{X}^{r}(t) + \widehat{Y}^{r}(t),$$

where $\widehat{Y}^{r}(t) \geq 0$ and nondecreasing. This implies

$$\widehat{W}^{r}(t) \ge \widehat{W}^{*,r}(t) \equiv \widehat{X}^{r}(t) - \inf_{0 \le s \le t} \widehat{X}^{r}(s).$$

Letting $\widehat{W}^*(t) \equiv \widehat{X}^*(t) - \inf_{0 \le s \le t} \widehat{X}^*(s),$ $\mathbb{P}\Big(\liminf_{r \to \infty} \widehat{W}^r(t) > w\Big) \ge \mathbb{P}\Big(\widehat{W}^*(t) > w\Big).$

A Heavy Traffic Limit Theorem

Theorem

For networks that satisfy the heavy traffic condition and have a single bottleneck, under the maximum pressure policy,

$$(\widehat{W}^r, \widehat{Z}^r) \Rightarrow (\widehat{W}^*, \widehat{Z}^*),$$

where $\widehat{Z}^* = y \widehat{W}^* / \|y\|^2.$

A key to the proof of this theorem is to show a state space collapse result:

$$\|\widehat{Z}^r(\cdot) - \frac{y\widehat{W}^r(\cdot)}{\|y\|^2}\|_T \to 0$$
 in probability as $r \to \infty$.

Asymptotic Optimality Proof

Consider the optimization problem

- The optimal solution is given by $q^* = yw/\|y\|^2$.
- For any given w, it is optimal to distribute the workload to the buffers in proportion to y.
- MPP not only minimizes the workload process W(t), but also distributes it in the optimal way.

A Stochastic Processing Network Model

Basic elements:	Indexes:
$\mathbf{I}+1$ buffers	$i\in\mathcal{I}\cup\{0\}$
${f K}$ processors	input and service processors $k \in \mathcal{K}$
${f J}$ activities	input and service activities $j\in\mathcal{J}$

Material consumption:

- μ_j : service rate for activity j;
- $B_{ij} = 1$ if activity j processes jobs in in buffer i and $B_{ij} = 0$ otherwise;
- P^j_{ii'} is a fraction of buffer i jobs served by activity j that go next to buffer i';

Resource Allocation

- $A_{kj} = 1$ if activity j requires processor k and 0 otherwise; multiple processors may be needed to activate an activity.
- Allocation space $\mathcal A$ is the set of $a\in \mathbb R^{\mathbf J}_+$ satisfying

$$\sum_{j} A_{kj} a_j \leq 1$$
 for each service processor,
 $\sum_{j} A_{kj} a_j = 1$ for each input processor;

- a_j the level at which activity j is undertaken;
- more constraints on *a* can be added to suit modeling need.

Maximum Pressure Policies: SPNs

 $\mathcal{E} = \{a_1, ..., a_u\}$ – the extreme points of \mathcal{A} . $\mathcal{A}(t)$ - the set of feasible allocations at time t. $\mathcal{E}(t) = \mathcal{A}(t) \cap \mathcal{E}$ - the set of feasible extreme allocations at time t. At any time t, choose an allocation

$$a \in \arg \max_{a \in \mathcal{E}(t)} \sum_{j} a_j p_j,$$

where

$$p_j = \mu_j \left(\sum_{i \in \mathcal{I} \cup \{0\}} B_{ij} \left(Z_i(t) - \sum_{i'} P_{ii'}^j Z_{i'}(t) \right) \right)$$

is the pressure under activity j.

Main Results for General Stochastic Processing Networks

Static Plannning Problem

The static planning problem (Harrison 00):

$$\begin{array}{ll} \mbox{minimize} & \rho \\ \mbox{subject to} & Rx = 0 \\ & \sum_{j} A_{kj} x_{j} = 1 \mbox{ for each input processor } k \\ & \sum_{j} A_{kj} x_{j} \leq \rho \mbox{ for each service processor } k \\ & x \geq 0 \end{array}$$

-
$$R_{ij} = \mu_j (B_{ij} - \sum_{i'} B_{i'j} P_{i'i}^j)$$

- A: capacity consumption matrix
- x_j : fraction of time for activity j;
- ρ : utilization of bottleneck servers.

Stability Result

Theorem

If the stochastic processing network operating under any operational policy is rate stable or pathwise stable, the static planning LP has a feasible solution with $\rho \leq 1$. Conversely, suppose that Assumption 1 is satisfied. If the static planning LP has a feasible solution with $\rho \leq 1$, the stochastic processing network operating under a maximum pressure policy is rate stable.

Assumption 1

Assumption

For any vector $z \in \mathbb{R}_+^{\mathbf{I}}$, there exists an $a \in \arg \max_{a \in \mathcal{E}} \sum_i v(a, i) z_i$ such that v(a, i) = 0 if $z_i = 0$, where $v(a, i) = \sum_j a_j R_{ij}$ is the consumption rate of buffer i under allocation a.

The assumption holds when each activity is associated with one buffer (in Leontief networks).

Asymptotic Optimality

Theorem

For networks that satisfy Assumption 1 and the heavy traffic condition, and have a single bottleneck, the maximum pressure policy is asymptotically optimal for both workload and quadratic holding cost.

- HT condition: The static planning problem has a unique optimal solution (x^*, ρ^*) with $\rho^* = 1$.
- CRP condition (single bottleneck): The dual of the static planning problem has a unique optimal solution (y^*, z^*) .

Extensions

- When the networks have more than one bottlenecks, the asymptotic optimality do not hold in general. Ata-Lin (07) proves a heavy traffic limit theorem for maximum pressure policies.
- Lin is generalizing the results to a richer family of maximum pressure policies called β-maximum pressure policies.

- Stochastic processing networks are general.
- Maximum pressure policies are semi-local and do not use arrival rate information.
- Maximum pressure policies are throughput optimal.
- Maximum pressure policies are asymptotic optimal for workload and certain quadratic holding cost.