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Stochastic Processing Networks

Stochastic Processing Networks (Harrison 00)

Activities

(Classes)
Buffers

Processors/Servers
(Resources)

An activity

uses certain resources to

process certain classes and

produce certain (possibly different) classes.
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Stochastic Processing Networks

Modeling Capability

Activities are very general

Multiclass Station

Possession
Simultaneous Resource

Parallel ServersAssembly

Dynamic Routing
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Stochastic Processing Networks

Semiconductor Wafer Fabs (Fabrication Facilities)
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Multiclass queueing networks
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Stochastic Processing Networks

Call Centers

- picture from Larréché et al. 1997
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Stochastic Processing Networks

Parallel Server Systems

3 421

1 2 3

h1 h2 h3 h4

µ2µ1 µ5
µ8µ4µ3 µ6

µ7
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Stochastic Processing Networks

Input Queued Data Switches

Atlanta

LA

SFChicago San Francisco

Switch

SF

LA

Atlanta LA

Chicago Atlanta SF LA

Chicago

SF
to

Chicago
to

SFLA
to to

LA

Atlanta

In each time slot, at most one packet is sent from each input port

In each time slot, at most one packet is sent to each output port

Multiple packets can be transferred in a single time slot

A high speed switch needs to maintain thousands of flows
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Stochastic Processing Networks

Networks of Switches

Switch 1

Flow B

Flow D

Flow C

Flow A
F

Switch 3

Switch 2
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Stochastic Processing Networks

Networks with Alternate Routes

2 32

4

1

3

1

Laws and Louth (1990)

Kelly and Laws (1993)

Dai and Kim (2004)

Allow dynamic routing decision.

Model applications in communication networks, supply chains, and
road traffic.
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Stochastic Processing Networks

Performance Measures

First order ones:

Throughput: rate at which entities leave a system

Utilization

Second order ones:

Cycle time: processing time plus waiting time of an entity;
average and variance of cycle time

Holding cost.

Control decisions can have dramatic impact on key performance measures.
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Stochastic Processing Networks

Kumar-Seidman Network

λ1 = 1

λ2 = 1

m1 = 0.1 m2 = 0.7

m3 = 0.1

A B

m4 = 0.7

Traffic intensity:

ρ1 = λ1m1 + λ2m4 = 0.8 and ρ2 = λ1m2 + λ2m3 = 0.8.

Pull policy – give priority to products closer to completion
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Stochastic Processing Networks

WIP Levels at Two Stations
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Stochastic Processing Networks

Utilization and Cycle Time

λ1 = 1

λ2 = 1

m1 = 0.1 m2 = 0.7

m3 = 0.1

A B

m4 = 0.7

# departed 100 1, 000 10, 000 100, 000
Average cycle time 13.68 99.87 927.96 7277.62
Utilization A 0.65 0.48 0.46 0.71
Utilization B 0.49 0.67 0.73 0.44
Overall Utilization 0.57 0.58 0.60 0.58

the throughput is about 0.7.
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Stochastic Processing Networks

Inefficient Sequencing Policies

First-in-first-out (FIFO) (Bramson 1994, Seidman 1994)

cµ rule (Harrison 99)

Shortest processing time first

Shortest remaining processing time first

Exhaustive service (Kumar-Seidman 1990)

. . .

Symptoms:

WIP is high, and

bottleneck machines are underutilized
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Maximum Pressure Policies

Maximum Pressure Policies: Semiconductor Wafer Fabs
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Enter

Server k chooses to work on a buffer that has the highest pressure. The
pressure at buffer i is

pi = µi(Zi(t)− Zi+1(t)).

Generalization: αiZ
β
i (t)
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Maximum Pressure Policies

Maximum Pressure Policies: Parallel Server Systems

3 421

1 2 3

µ2µ1 µ5
µ8µ4µ3 µ6

µ7

For example, processor 1 chooses to work on buffer i that attains

max{µ1Z1(t), µ2Z2(t), µ4Z3(t)}.
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Maximum Pressure Policies

Maximum Pressure Policies: Alternate Routing

Server 2

Server 1

General Distribution Exponential

Exponential 

Poisson(.1)

Poisson(.17)

Poisson(.8)

Poisson(.8)
Server 3

An MPP translates into: Join-the-shortest-queue and server 1 idles
when Z3(t) > Z1(t).

MPPs can be idling policies.
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Maximum Pressure Policies

Non-Idling Server 1

0

200

400

600

800

1000

1200

1400

1600

0 10000 20000 30000 40000 50000

exponential distribution

Number of jobs in queue 3

Jim Dai (Georgia Tech) MPPs July 28, 2009 19 / 47



Maximum Pressure Policies

Features of Maximum Pressure Policies

They are simple.

They are semi-local.

They are throughput optimal.

They are asymptotically optimal in workload and certain holding cost
structure.
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Maximum Pressure Policies

Outline of Rest of Talk

3 Main Results – Illustrated by Examples
Throughput Optimality
Asymptotic Optimality in Heavy Traffic

4 Main Results for General Stochastic Processing Networks

5 Conclusions
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Main Results – Illustrated by Examples Throughput Optimality

Rate Stability

Rate stability

With probability one,

lim
t→∞

Zi(t)/t = 0, for each buffer i

which is equivalent to that departure rate is equal to arrival rate.
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Main Results – Illustrated by Examples Throughput Optimality

Traffic Intensity

0.6

0.6

0.1

0.1

0.1

release rate 1

b_1 b_2

b_3 b_4

b_5

Station A Station B

ρ1 = λ(1/µ1 + 1/µ3 + 1/µ5), ρ2 = λ(1/µ2 + 1/µ4)
ρ = max{ρ1, ρ2}: traffic intensity of the network

Theorem

The network is rate stabilizable only if ρ ≤ 1.
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Main Results – Illustrated by Examples Throughput Optimality

Stability Result

Theorem (Dai-Lin 05)

The network is rate stable under maximum pressure policies if it is
stabilizable (i.e. ρ ≤ 1).
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Main Results – Illustrated by Examples Throughput Optimality

Proof: Fluid Model Approach

Theorem (Dai-Lin 05)

A stochastic processing network is rate stable if the corresponding
continuous, deterministic fluid model is weakly stable.
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Main Results – Illustrated by Examples Throughput Optimality

Fluid Model Equations

0.6

0.6

0.1

0.1

0.1

release rate 1

b_1 b_2

b_3 b_4

b_5

Station A Station B

Let Tk(t) be the cumulative time that class k jobs have received in [0, t].

Z1(t) = Z1(0) + λt− µ1T1(t),
Zk(t) = Zk(0) + µk−1Tk−1(t)− µkTk(t),
Tk(0) = 0 and Tk(·) is nondecreasing,

(T1(t) + T3(t) + T5(t))− (T1(s) + T3(s) + T5(s)) ≤ (t− s)
(T2(t) + T4(t))− (T2(s) + T4(s)) ≤ (t− s)
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Main Results – Illustrated by Examples Throughput Optimality

Fluid Model under MPP

∑
i

˙̄Ti(t)pi = max
{∑

i

aipi : a1 + a3 + a5 ≤ 1, a2 + a4 ≤ 1.
}

(1)

The pressure pi = µi(Z̄i(t)− Z̄i+1(t)).

The drift of the quadratic function f(t) =
∑

i Z̄
2
i (t)/2 is given by

ḟ(t) = λZ1(t)−
∑

i
˙̄Ti(t)pi.

Under a maximum pressure policy, ḟ(t) is minimized among all
policies.

Jim Dai (Georgia Tech) MPPs July 28, 2009 27 / 47



Main Results – Illustrated by Examples Throughput Optimality

Weak Stability of Fluid Model

Definition (Weak Stability)

A fluid model is said to be weakly stable if for every fluid model solution
with Z̄(0) = 0, Z̄(t) = 0 for t ≥ 0.

Consider the quadratic function f(t) =
∑

i Z̄
2
i (t)/2.

Under a maximum pressure policy, ḟ(t) ≤ 0. Therefore, Z̄(t) = 0 for
all t if Z̄(0) = 0; the fluid model is weakly stable.

Weak stability of the fluid model implies the rate stability of the
stochastic network.
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Main Results – Illustrated by Examples Throughput Optimality

Fluid Limits

Fluid model equations are justified through a fluid limit procedure.

A function (Z̄, T̄ ) is said to be a fluid limit if

1
rn

(Z(rnt, ω), T (rnt, ω))→ (Z̄(t), T̄ (t))

as rn →∞ for some sample path ω
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Main Results – Illustrated by Examples Asymptotic Optimality in Heavy Traffic

Holding Cost

21 1 2

3

µ1 µ2

µ3

Assume i.i.d. interarrival
times and service times.
(variance: σ2

a and
σ2
j , j = 1, 2, 3)

Objective function: the expected cumulative discounted holding cost:

J ≡ E
(∫ ∞

0
e−γth

(
Z(t)

)
dt

)
.

For example, linear holding cost:

h(Z(t)) = h1Z1(t) + h2Z2(t) + h3Z3(t).
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Main Results – Illustrated by Examples Asymptotic Optimality in Heavy Traffic

Heavy Traffic Regime and Diffusion Approximation

Consider networks in heavy traffic.

Diffusion Scaling: Ẑr(t) = Z(rt)/
√
r.

Ĵrπ ≡ E
(∫ ∞

0
e−γth(Ẑr(t))dt

)
.
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Main Results – Illustrated by Examples Asymptotic Optimality in Heavy Traffic

Heavy Traffic Condition and Bottlenecks

21 1 2

3

λ
µ1 µ2

µ3

ρ1 = λ/µ1 + λ/µ3

ρ2 = λ/µ2

λ = 2
µ1 = 3, µ3 = 6,
ρ1 = 1,

Heavy traffic condition

At least one server is critically loaded; allow some servers to be
under-utilized (can be unbalanced).

Bottlenecks: servers that are critically loaded.

Jim Dai (Georgia Tech) MPPs July 28, 2009 32 / 47



Main Results – Illustrated by Examples Asymptotic Optimality in Heavy Traffic

Heavy Traffic Condition and Bottlenecks

21 1 2

3

λ
µ1 µ2

µ3

ρ1 = λ/µ1 + λ/µ3

ρ2 = λ/µ2

λ = 2
µ1 = 3, µ3 = 6,
ρ1 = 1,

Heavy traffic condition

At least one server is critically loaded; allow some servers to be
under-utilized (can be unbalanced).

Bottlenecks: servers that are critically loaded.

Jim Dai (Georgia Tech) MPPs July 28, 2009 32 / 47



Main Results – Illustrated by Examples Asymptotic Optimality in Heavy Traffic

Heavy Traffic Condition and Bottlenecks

21 1 2

3

λ
µ1 µ2

µ3

ρ1 = λ/µ1 + λ/µ3

ρ2 = λ/µ2

λ = 2
µ1 = 3, µ3 = 6, µ2 = 4

ρ1 = 1,

Heavy traffic condition

At least one server is critically loaded; allow some servers to be
under-utilized (can be unbalanced).

Bottlenecks: servers that are critically loaded.

Jim Dai (Georgia Tech) MPPs July 28, 2009 32 / 47



Main Results – Illustrated by Examples Asymptotic Optimality in Heavy Traffic

Heavy Traffic Condition and Bottlenecks

21 1 2

3

λ
µ1 µ2

µ3

ρ1 = λ/µ1 + λ/µ3

ρ2 = λ/µ2

λ = 2
µ1 = 3, µ3 = 6, µ2 = 4
ρ1 = 1, ρ2 = 0.5

Heavy traffic condition

At least one server is critically loaded; allow some servers to be
under-utilized (can be unbalanced).

Bottlenecks: servers that are critically loaded.

Jim Dai (Georgia Tech) MPPs July 28, 2009 32 / 47



Main Results – Illustrated by Examples Asymptotic Optimality in Heavy Traffic

Heavy Traffic Condition and Bottlenecks

21 1 2

3

λ
µ1 µ2

µ3

ρ1 = λ/µ1 + λ/µ3

ρ2 = λ/µ2

λ = 2
µ1 = 3, µ3 = 6, µ2 = 4
ρ1 = 1, ρ2 = 0.5

Heavy traffic condition

At least one server is critically loaded; allow some servers to be
under-utilized (can be unbalanced).

Bottlenecks: servers that are critically loaded.

Jim Dai (Georgia Tech) MPPs July 28, 2009 32 / 47



Main Results – Illustrated by Examples Asymptotic Optimality in Heavy Traffic

Heavy Traffic Condition and Bottlenecks

21 1 2

3

λ
µ1 µ2

µ3

ρ1 = λ/µ1 + λ/µ3

ρ2 = λ/µ2

λ = 2
µ1 = 3, µ3 = 6, µ2 = 2
ρ1 = 1, ρ2 = 1

Heavy traffic condition

At least one server is critically loaded; allow some servers to be
under-utilized (can be unbalanced).

Bottlenecks: servers that are critically loaded.

Jim Dai (Georgia Tech) MPPs July 28, 2009 32 / 47



Main Results – Illustrated by Examples Asymptotic Optimality in Heavy Traffic

Asymptotic Optimality on Quadratic Holding Cost

Theorem (Asymptotic Optimality (Dai-Lin 07))

For networks that satisfy the heavy traffic condition and have a single
bottleneck, the maximum pressure policy is asymptotically optimal for the
quadratic holding cost in that

lim
r→∞

ĴrMPP ≤ lim inf
r→∞

Ĵrπ,

where Ĵrπ = E
(∫∞

0 e−γt
(
Ẑr1(t)2 + Ẑr2(t)2 + Ẑr3(t)2

)
dt
)

.
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Main Results – Illustrated by Examples Asymptotic Optimality in Heavy Traffic

Workload Process

21 1 2

3

λ = 2
µ1 = 3 µ2 = 4

µ3 = 6

W (t) = 1
2Z1(t) + 1

6Z2(t) + 1
6Z3(t);

Ŵ r(t) = W (rt)/
√
r = y · Ẑr(t).

y =
(

1
2
,
1
6
,
1
6

)′
W (t) = y · Z(t)
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Main Results – Illustrated by Examples Asymptotic Optimality in Heavy Traffic

Asymptotic Optimality on Workload Process

Theorem (Workload Optimality (Dai-Lin 07))

For networks that satisfy the heavy traffic condition and have a single
bottleneck, the maximum pressure policy is asymptotically optimal for
workload in that for each t ≥ 0 and w > 0,

P
(

lim
r→∞

Ŵ r
MPP(t) > w

)
≤ P

(
lim inf
r→∞

Ŵ r
π(t) > w

)
.
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Main Results – Illustrated by Examples Asymptotic Optimality in Heavy Traffic

A Lower Bound on Workload Process

We can write Ŵ r(t) as

Ŵ r(t) = X̂r(t) + Ŷ r(t),

where Ŷ r(t) ≥ 0 and nondecreasing. This implies

Ŵ r(t) ≥ Ŵ ∗,r(t) ≡ X̂r(t)− inf
0≤s≤t

X̂r(s).

Letting Ŵ ∗(t) ≡ X̂∗(t)− inf0≤s≤t X̂∗(s),

P
(

lim inf
r→∞

Ŵ r(t) > w
)
≥ P

(
Ŵ ∗(t) > w

)
.
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Main Results – Illustrated by Examples Asymptotic Optimality in Heavy Traffic

A Heavy Traffic Limit Theorem

Theorem

For networks that satisfy the heavy traffic condition and have a single
bottleneck, under the maximum pressure policy,

(Ŵ r, Ẑr)⇒ (Ŵ ∗, Ẑ∗),

where Ẑ∗ = yŴ ∗/‖y‖2.

A key to the proof of this theorem is to show a state space collapse result:

‖Ẑr(·)− yŴ r(·)
‖y‖2

‖T → 0 in probability as r →∞.
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Main Results – Illustrated by Examples Asymptotic Optimality in Heavy Traffic

Asymptotic Optimality Proof

Consider the optimization problem

min
3∑
i=1

q2i

s.t. y · q = w

q ≥ 0.

The optimal solution is given by q∗ = yw/‖y‖2.

For any given w, it is optimal to distribute the workload to the buffers
in proportion to y.

MPP not only minimizes the workload process W (t), but also
distributes it in the optimal way.
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Main Results for General Stochastic Processing Networks

A Stochastic Processing Network Model

Basic elements:

I + 1 buffers

K processors

J activities

Indexes:

i ∈ I ∪ {0}
input and service processors k ∈ K
input and service activities j ∈ J

Material consumption:

µj : service rate for activity j;

Bij = 1 if activity j processes jobs in in buffer i and Bij = 0
otherwise;

P jii′ is a fraction of buffer i jobs served by activity j that go next to
buffer i′;
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Main Results for General Stochastic Processing Networks

Resource Allocation

Akj = 1 if activity j requires processor k and 0 otherwise; multiple
processors may be needed to activate an activity.

Allocation space A is the set of a ∈ RJ
+ satisfying∑

j

Akjaj ≤ 1 for each service processor,

∑
j

Akjaj = 1 for each input processor;

aj the level at which activity j is undertaken;

more constraints on a can be added to suit modeling need.
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Main Results for General Stochastic Processing Networks

Maximum Pressure Policies: SPNs

E = {a1, ..., au} – the extreme points of A.
A(t) - the set of feasible allocations at time t.
E(t) = A(t) ∩ E - the set of feasible extreme allocations at time t.
At any time t, choose an allocation

a ∈ arg max
a∈E(t)

∑
j

ajpj ,

where

pj = µj

 ∑
i∈I∪{0}

Bij

(
Zi(t)−

∑
i′

P jii′Zi′(t)

)
is the pressure under activity j.
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Main Results for General Stochastic Processing Networks

Static Plannning Problem

The static planning problem (Harrison 00):

minimize ρ

subject to Rx = 0∑
j

Akjxj = 1 for each input processor k

∑
j

Akjxj ≤ ρ for each service processor k

x ≥ 0

- Rij = µj(Bij −
∑

i′ Bi′jP
j
i′i)

- A: capacity consumption matrix

- xj : fraction of time for activity j;

- ρ: utilization of bottleneck servers.
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Main Results for General Stochastic Processing Networks

Stability Result

Theorem

If the stochastic processing network operating under any operational policy
is rate stable or pathwise stable, the static planning LP has a feasible
solution with ρ ≤ 1. Conversely, suppose that Assumption 1 is satisfied. If
the static planning LP has a feasible solution with ρ ≤ 1, the stochastic
processing network operating under a maximum pressure policy is rate
stable.
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Main Results for General Stochastic Processing Networks

Assumption 1

Assumption

For any vector z ∈ RI
+, there exists an a ∈ arg maxa∈E

∑
i v(a, i)zi such

that v(a, i) = 0 if zi = 0, where v(a, i) =
∑

j ajRij is the consumption
rate of buffer i under allocation a.

The assumption holds when each activity is associated with one buffer (in
Leontief networks).
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Main Results for General Stochastic Processing Networks

Asymptotic Optimality

Theorem

For networks that satisfy Assumption 1 and the heavy traffic condition,
and have a single bottleneck, the maximum pressure policy is
asymptotically optimal for both workload and quadratic holding cost.

HT condition: The static planning problem has a unique optimal
solution (x∗, ρ∗) with ρ∗ = 1.

CRP condition (single bottleneck): The dual of the static planning
problem has a unique optimal solution (y∗, z∗).
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Main Results for General Stochastic Processing Networks

Extensions

When the networks have more than one bottlenecks, the asymptotic
optimality do not hold in general. Ata-Lin (07) proves a heavy traffic
limit theorem for maximum pressure policies.

Lin is generalizing the results to a richer family of maximum pressure
policies called β-maximum pressure policies.
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Conclusions

Conclusions

Stochastic processing networks are general.

Maximum pressure policies are semi-local and do not use arrival rate
information.

Maximum pressure policies are throughput optimal.

Maximum pressure policies are asymptotic optimal for workload and
certain quadratic holding cost.

Jim Dai (Georgia Tech) MPPs July 28, 2009 47 / 47


	Stochastic Processing Networks
	Maximum Pressure Policies
	Main Results – Illustrated by Examples
	Throughput Optimality
	Asymptotic Optimality in Heavy Traffic

	Main Results for General Stochastic Processing Networks
	Conclusions

