Maximum pressure policies for
stochastic processing networks: throughput optimality

Jim Dai

H. Milton Stewart School of Industrial
and Systems Engineering
Georgia Institute of Technology

Joint work with Wuqin Lin at Kellogg
1. Stochastic Processing Networks

2. Maximum Pressure Policies

3. Main Results – Illustrated by Examples
 - Throughput Optimality
 - Asymptotic Optimality in Heavy Traffic

4. Main Results for General Stochastic Processing Networks

5. Conclusions
An activity

- uses certain resources to
- process certain classes and
- produce certain (possibly different) classes.
Activities are very general

Simultaneous Resource Possession
Assembly
Parallel Servers
Dynamic Routing
Multiclass Station
Multiclass queueing networks
Call Centers

- picture from Larréché et al. 1997
In each time slot, at most one packet is sent from each input port.

In each time slot, at most one packet is sent to each output port.

Multiple packets can be transferred in a single time slot.

A high speed switch needs to maintain thousands of flows.
Networks with Alternate Routes

- Allow dynamic routing decision.
- Model applications in communication networks, supply chains, and road traffic.

Laws and Louth (1990)
Kelly and Laws (1993)
Performance Measures

First order ones:
- Throughput: rate at which entities leave a system
- Utilization

Second order ones:
- Cycle time: processing time plus waiting time of an entity; average and variance of cycle time
- Holding cost.

Control decisions can have dramatic impact on key performance measures.
Kumar-Seidman Network

- Traffic intensity:

\[\rho_1 = \lambda_1 m_1 + \lambda_2 m_4 = 0.8 \text{ and } \rho_2 = \lambda_1 m_2 + \lambda_2 m_3 = 0.8. \]
Kumar-Seidman Network

\[\lambda_1 = 1 \]
\[m_1 = 0.1 \]
\[m_4 = 0.7 \]
\[\lambda_2 = 1 \]
\[m_2 = 0.7 \]
\[m_3 = 0.1 \]

- **Traffic intensity:**

 \[\rho_1 = \lambda_1 m_1 + \lambda_2 m_4 = 0.8 \text{ and } \rho_2 = \lambda_1 m_2 + \lambda_2 m_3 = 0.8. \]

- **Pull policy** – give priority to products closer to completion
Utilization and Cycle Time

\[
\begin{align*}
\lambda_1 &= 1 \\
\lambda_2 &= 1 \\
m_1 &= 0.1 \\
m_2 &= 0.7 \\
m_3 &= 0.1 \\
m_4 &= 0.7 \\
A &
\end{align*}
\]

<table>
<thead>
<tr>
<th># departed</th>
<th>100</th>
<th>1,000</th>
<th>10,000</th>
<th>100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average cycle time</td>
<td>13.68</td>
<td>99.87</td>
<td>927.96</td>
<td>7277.62</td>
</tr>
<tr>
<td>Utilization A</td>
<td>0.65</td>
<td>0.48</td>
<td>0.46</td>
<td>0.71</td>
</tr>
<tr>
<td>Utilization B</td>
<td>0.49</td>
<td>0.67</td>
<td>0.73</td>
<td>0.44</td>
</tr>
<tr>
<td>Overall Utilization</td>
<td>0.57</td>
<td>0.58</td>
<td>0.60</td>
<td>0.58</td>
</tr>
</tbody>
</table>

the throughput is about 0.7.
Stochastic Processing Networks

Inefficient Sequencing Policies

- First-in-first-out (FIFO) (Bramson 1994, Seidman 1994)
- $c\mu$ rule (Harrison 99)
- Shortest processing time first
- Shortest remaining processing time first
- Exhaustive service (Kumar-Seidman 1990)
- ...

Symptoms:
- WIP is high, and
- bottleneck machines are underutilized
Server k chooses to work on a buffer that has the highest pressure. The pressure at buffer i is

$$p_i = \mu_i(Z_i(t) - Z_{i+1}(t)).$$

Generalization: $\alpha_i Z_i^\beta(t)$
For example, processor 1 chooses to work on buffer i that attains

$$\max\{\mu_1 Z_1(t), \mu_2 Z_2(t), \mu_4 Z_3(t)\}.$$
An MPP translates into: **Join-the-shortest-queue and server 1 idles when** \(Z_3(t) > Z_1(t) \).
An MPP translates into: Join-the-shortest-queue and server 1 idles when $Z_3(t) > Z_1(t)$.

MPPs can be idling policies.
Number of jobs in queue 3
Features of Maximum Pressure Policies

- They are simple.
- They are semi-local.
- They are throughput optimal.
- They are asymptotically optimal in workload and certain holding cost structure.
Outline of Rest of Talk

3 Main Results – Illustrated by Examples
 - Throughput Optimality
 - Asymptotic Optimality in Heavy Traffic

4 Main Results for General Stochastic Processing Networks

5 Conclusions
Rate Stability

With probability one,

$$\lim_{t \to \infty} \frac{Z_i(t)}{t} = 0, \text{ for each buffer } i$$

which is equivalent to that departure rate is equal to arrival rate.
Main Results – Illustrated by Examples

Throughput Optimality

Traffic Intensity

\[\rho_1 = \lambda \left(\frac{1}{\mu_1} + \frac{1}{\mu_3} + \frac{1}{\mu_5} \right), \quad \rho_2 = \lambda \left(\frac{1}{\mu_2} + \frac{1}{\mu_4} \right) \]

\[\rho = \max \{ \rho_1, \rho_2 \} : \text{traffic intensity of the network} \]

Theorem

The network is rate stabilizable only if \(\rho \leq 1 \).
The network is rate stable under maximum pressure policies if it is stabilizable (i.e. $\rho \leq 1$).
Proof: Fluid Model Approach

Theorem (Dai-Lin 05)

A stochastic processing network is rate stable if the corresponding continuous, deterministic fluid model is weakly stable.
Let $T_k(t)$ be the cumulative time that class k jobs have received in $[0, t]$.

\[Z_1(t) = Z_1(0) + \lambda t - \mu_1 T_1(t), \]
\[Z_k(t) = Z_k(0) + \mu_{k-1} T_{k-1}(t) - \mu_k T_k(t), \]
\[T_k(0) = 0 \text{ and } T_k(\cdot) \text{ is nondecreasing}, \]
\[(T_1(t) + T_3(t) + T_5(t)) - (T_1(s) + T_3(s) + T_5(s)) \leq (t - s) \]
\[(T_2(t) + T_4(t)) - (T_2(s) + T_4(s)) \leq (t - s) \]
Fluid Model under MPP

\[\sum_i \dot{T}_i(t)p_i = \max \left\{ \sum_i a_ip_i : a_1 + a_3 + a_5 \leq 1, a_2 + a_4 \leq 1 \right\} \] (1)

- The pressure \(p_i = \mu_i(\bar{Z}_i(t) - \bar{Z}_{i+1}(t)) \).
- The drift of the quadratic function \(f(t) = \sum_i \bar{Z}_i^2(t)/2 \) is given by \(\dot{f}(t) = \lambda Z_1(t) - \sum_i \dot{T}_i(t)p_i \).
- Under a maximum pressure policy, \(\dot{f}(t) \) is minimized among all policies.
Weak Stability of Fluid Model

Definition (Weak Stability)

A fluid model is said to be weakly stable if for every fluid model solution with $\bar{Z}(0) = 0$, $\bar{Z}(t) = 0$ for $t \geq 0$.

- Consider the quadratic function $f(t) = \sum_i \bar{Z}_i^2(t)/2$.
- Under a maximum pressure policy, $\dot{f}(t) \leq 0$. Therefore, $\bar{Z}(t) = 0$ for all t if $\bar{Z}(0) = 0$; the fluid model is weakly stable.
- Weak stability of the fluid model implies the rate stability of the stochastic network.
• Fluid model equations are justified through a fluid limit procedure.

• A function \((\bar{Z}, \bar{T})\) is said to be a fluid limit if

\[
\frac{1}{r_n}(Z(r_n t, \omega), T(r_n t, \omega)) \rightarrow (\bar{Z}(t), \bar{T}(t))
\]

as \(r_n \rightarrow \infty\) for some sample path \(\omega\)
Holding Cost

Assume i.i.d. interarrival times and service times. (variance: σ^2_a and $\sigma^2_j, j = 1, 2, 3$)

- Objective function: the expected cumulative discounted holding cost:

$$J \equiv \mathbb{E} \left(\int_{0}^{\infty} e^{-\gamma t} h(Z(t)) \, dt \right).$$

- For example, linear holding cost:

$$h(Z(t)) = h_1 Z_1(t) + h_2 Z_2(t) + h_3 Z_3(t).$$
Consider networks in heavy traffic.

Diffusion Scaling: \(\hat{Z}^r(t) = Z(rt)/\sqrt{r} \).

\[\hat{J}_\pi^r \equiv \mathbb{E} \left(\int_0^\infty e^{-\gamma t} h(\hat{Z}^r(t)) dt \right). \]
Heavy Traffic Condition and Bottlenecks

\[\rho_1 = \frac{\lambda}{\mu_1} + \frac{\lambda}{\mu_3} \]
\[\rho_2 = \frac{\lambda}{\mu_2} \]
Heavy Traffic Condition and Bottlenecks

Heavy traffic condition

At least one server is critically loaded; allow some servers to be under-utilized (can be unbalanced).

\[\rho_1 = \frac{\lambda}{\mu_1} + \frac{\lambda}{\mu_3} \]

\[\rho_2 = \frac{\lambda}{\mu_2} \]
Heavy Traffic Condition and Bottlenecks

Heavy traffic condition
At least one server is critically loaded; allow some servers to be under-utilized (can be unbalanced).

\[\rho_1 = \frac{\lambda}{\mu_1} + \frac{\lambda}{\mu_3} \]
\[\rho_2 = \frac{\lambda}{\mu_2} \]
\[\lambda = 2 \]
\[\mu_1 = 3, \mu_3 = 6, \mu_2 = 4 \]
Heavy Traffic Condition and Bottlenecks

Heavy traffic condition
At least one server is critically loaded; allow some servers to be under-utilized (can be unbalanced).

\[
\rho_1 = \frac{\lambda}{\mu_1} + \frac{\lambda}{\mu_3} \\
\rho_2 = \frac{\lambda}{\mu_2} \\
\lambda = 2 \\
\mu_1 = 3, \mu_3 = 6, \mu_2 = 4 \\
\rho_1 = 1, \rho_2 = 0.5
\]
Heavy Traffic Condition and Bottlenecks

Heavy traffic condition

At least one server is critically loaded; allow some servers to be under-utilized (can be unbalanced).

- Bottlenecks: servers that are critically loaded.

\[\rho_1 = \frac{\lambda}{\mu_1} + \frac{\lambda}{\mu_3} \]
\[\rho_2 = \frac{\lambda}{\mu_2} \]
\[\lambda = 2 \]
\[\mu_1 = 3, \mu_3 = 6, \mu_2 = 4 \]
\[\rho_1 = 1, \rho_2 = 0.5 \]
Heavy Traffic Condition and Bottlenecks

Heavy traffic condition
At least one server is critically loaded; allow some servers to be under-utilized (can be unbalanced).

- Bottlenecks: servers that are critically loaded.

\[\rho_1 = \frac{\lambda}{\mu_1} + \frac{\lambda}{\mu_3} \]
\[\rho_2 = \frac{\lambda}{\mu_2} \]
\[\lambda = 2 \]
\[\mu_1 = 3, \mu_3 = 6, \mu_2 = 2 \]
\[\rho_1 = 1, \rho_2 = 1 \]
Asymptotic Optimality on Quadratic Holding Cost

Theorem (Asymptotic Optimality (Dai-Lin 07))

For networks that satisfy the heavy traffic condition and have a single bottleneck, the maximum pressure policy is asymptotically optimal for the quadratic holding cost in that

$$\lim_{r \to \infty} \hat{J}^r_{\text{MPP}} \leq \liminf_{r \to \infty} \hat{J}^r_\pi,$$

where

$$\hat{J}^r_\pi = \mathbb{E} \left(\int_0^\infty e^{-\gamma t} \left(\hat{Z}_1^r(t)^2 + \hat{Z}_2^r(t)^2 + \hat{Z}_3^r(t)^2 \right) dt \right).$$
Workload Process

\[W(t) = \frac{1}{2} Z_1(t) + \frac{1}{6} Z_2(t) + \frac{1}{6} Z_3(t) \]

\[\hat{W}_r(t) = W(\sqrt{r}t) \]

\[y = (\frac{1}{2}, \frac{1}{6}, \frac{1}{6})' \]
Main Results – Illustrated by Examples
Asymptotic Optimality in Heavy Traffic

Workload Process

\(\lambda = 2 \quad \mu_1 = 3 \quad \mu_2 = 4 \quad \mu_3 = 6 \)

\[W(t) = \frac{1}{2} Z_1(t) + \frac{1}{6} Z_2(t) + \frac{1}{6} Z_3(t); \]
\[\hat{W}^r(t) = W(rt)/\sqrt{r} = y \cdot \hat{Z}^r(t). \]

\[y = \left(\frac{1}{2}, \frac{1}{6}, \frac{1}{6} \right) \]

\[W(t) = y \cdot Z(t) \]
Theorem (Workload Optimality (Dai-Lin 07))

For networks that satisfy the heavy traffic condition and have a single bottleneck, the maximum pressure policy is asymptotically optimal for workload in that for each $t \geq 0$ and $w > 0$,

$$
\mathbb{P}
\left(
\lim_{r \to \infty} \hat{W}_M(t) > w
\right)
\leq
\mathbb{P}
\left(
\liminf_{r \to \infty} \hat{W}_\pi(t) > w
\right).
$$
We can write $\hat{W}^r(t)$ as

$$\hat{W}^r(t) = \hat{X}^r(t) + \hat{Y}^r(t),$$

where $\hat{Y}^r(t) \geq 0$ and nondecreasing. This implies

$$\hat{W}^r(t) \geq \hat{W}^{*,r}(t) \equiv \hat{X}^r(t) - \inf_{0 \leq s \leq t} \hat{X}^r(s).$$

Letting $\hat{W}^*(t) \equiv \hat{X}^*(t) - \inf_{0 \leq s \leq t} \hat{X}^*(s)$,

$$\mathbb{P} \left(\liminf_{r \to \infty} \hat{W}^r(t) > w \right) \geq \mathbb{P} \left(\hat{W}^*(t) > w \right).$$
Main Results – Illustrated by Examples

A Heavy Traffic Limit Theorem

Theorem

For networks that satisfy the heavy traffic condition and have a single bottleneck, under the maximum pressure policy,

\[(\hat{W}^r, \hat{Z}^r) \Rightarrow (\hat{W}^*, \hat{Z}^*),\]

where \(\hat{Z}^* = y\hat{W}^*/\|y\|^2\).

A key to the proof of this theorem is to show a state space collapse result:

\[\|\hat{Z}^r(\cdot) - \frac{y\hat{W}^r(\cdot)}{\|y\|^2}\|_T \rightarrow 0 \text{ in probability as } r \rightarrow \infty.\]
Consider the optimization problem

\[
\min \sum_{i=1}^{3} q_i^2 \\
\text{s.t. } y \cdot q = w \\
q \geq 0.
\]

- The optimal solution is given by \(q^* = yw/\|y\|^2 \).
- For any given \(w \), it is optimal to distribute the workload to the buffers in proportion to \(y \).
- MPP not only minimizes the workload process \(W(t) \), but also distributes it in the optimal way.
A Stochastic Processing Network Model

Basic elements:
- \(I + 1 \) buffers
- \(K \) processors
- \(J \) activities

Indexes:
- \(i \in I \cup \{0\} \)
- \(k \in K \)
- \(j \in J \)

Material consumption:
- \(\mu_j \): service rate for activity \(j \);
- \(B_{ij} = 1 \) if activity \(j \) processes jobs in buffer \(i \) and \(B_{ij} = 0 \) otherwise;
- \(P_{i_ii'}^j \) is a fraction of buffer \(i \) jobs served by activity \(j \) that go next to buffer \(i' \);
Resource Allocation

- $A_{k,j} = 1$ if activity j requires processor k and 0 otherwise; multiple processors may be needed to activate an activity.

- Allocation space \mathcal{A} is the set of $a \in \mathbb{R}_+^J$ satisfying

\[
\sum_j A_{k,j} a_j \leq 1 \quad \text{for each service processor},
\]

\[
\sum_j A_{k,j} a_j = 1 \quad \text{for each input processor};
\]

- a_j is the level at which activity j is undertaken;

- more constraints on a can be added to suit modeling need.
\[\mathcal{E} = \{a_1, ..., a_u\} \] – the extreme points of \(\mathcal{A} \).

\(\mathcal{A}(t) \) - the set of feasible allocations at time \(t \).

\(\mathcal{E}(t) = \mathcal{A}(t) \cap \mathcal{E} \) - the set of feasible extreme allocations at time \(t \).

At any time \(t \), choose an allocation

\[
a \in \arg \max_{a \in \mathcal{E}(t)} \sum_j a_j p_j,
\]

where

\[
p_j = \mu_j \left(\sum_{i \in \mathcal{T} \cup \{0\}} B_{ij} \left(Z_i(t) - \sum_{i'} P_{ii'}^j Z_{i'}(t) \right) \right)
\]

is the pressure under activity \(j \).
Main Results for General Stochastic Processing Networks

Static Planning Problem

The static planning problem (Harrison 00):

\[
\begin{align*}
\text{minimize} & \quad \rho \\
\text{subject to} & \quad Rx = 0 \\
& \quad \sum_j A_{kj} x_j = 1 \text{ for each input processor } k \\
& \quad \sum_j A_{kj} x_j \leq \rho \text{ for each service processor } k \\
& \quad x \geq 0
\end{align*}
\]

- \(R_{ij} = \mu_j (B_{ij} - \sum_i' B_{i'j} P_{i' i}) \)
- \(A \): capacity consumption matrix
- \(x_j \): fraction of time for activity \(j \);
- \(\rho \): utilization of bottleneck servers.
Main Results for General Stochastic Processing Networks

Stability Result

Theorem

If the stochastic processing network operating under any operational policy is rate stable or pathwise stable, the static planning LP has a feasible solution with $\rho \leq 1$. Conversely, suppose that Assumption 1 is satisfied. If the static planning LP has a feasible solution with $\rho \leq 1$, the stochastic processing network operating under a maximum pressure policy is rate stable.
Assumption 1

For any vector $z \in \mathbb{R}_{+}^{I}$, there exists an $a \in \arg \max_{a \in E} \sum_{i} v(a, i)z_{i}$ such that $v(a, i) = 0$ if $z_{i} = 0$, where $v(a, i) = \sum_{j} a_{j}R_{ij}$ is the consumption rate of buffer i under allocation a.

The assumption holds when each activity is associated with one buffer (in Leontief networks).
Asymptotic Optimality

Theorem

For networks that satisfy Assumption 1 and the heavy traffic condition, and have a single bottleneck, the maximum pressure policy is asymptotically optimal for both workload and quadratic holding cost.

- **HT condition**: The static planning problem has a unique optimal solution \((x^*, \rho^*)\) with \(\rho^* = 1\).
- **CRP condition (single bottleneck)**: The dual of the static planning problem has a unique optimal solution \((y^*, z^*)\).
Extensions

- When the networks have more than one bottlenecks, the asymptotic optimality do not hold in general. Ata-Lin (07) proves a heavy traffic limit theorem for maximum pressure policies.
- Lin is generalizing the results to a richer family of maximum pressure policies called β-maximum pressure policies.
Conclusions

- Stochastic processing networks are general.
- Maximum pressure policies are semi-local and do not use arrival rate information.
- Maximum pressure policies are throughput optimal.
- Maximum pressure policies are asymptotic optimal for workload and certain quadratic holding cost.