Fluid and Diffusion Limits for Many-Server Queues

Jim Dai

July 14, 2009

Joint work with Shuangchi He and Tolga Tezcan (UIUC)

- G/GI/n + GI queues, FIFO queue, a classical model
- iid service times and iid patience times
- The number of servers *n* is large: call centers, web server farms, hospital beds

At time t,

• System size X(t) — the total number of customers in system

$$\hat{X}(t) = X(t) - n$$

- Queue size $Q(t) = (\hat{X}(t))^+$
- The number of idle servers $I(t) = (\hat{X}(t))^{-1}$
- Offered waiting time at time t: W(t)

Examples of performance measures:

- abandonment probability $\mathbb{P}{Ab.}$
- average queue size $\mathbb{E}(Q)$
- average waiting time among those who are served $\mathbb{E}(W|S)$

Operating regimes

- overloaded; efficiency-driven (ED)
- critically loaded; qualityand efficiency-driven (QED); Halfin-Whitt regime
- underloaded;
 quality-driven (QD)

• ED: fluid model; QED: diffusion model

• Focus on QED regime

Customer abandonment

Garnett-Mandelbaum-Reiman (02)

".... There is a significant difference in the distributions of waiting time and queue length—in particular, the average waiting time and queue length are both strikingly shorter when abandonment is taken into account."

- one must model abandonment
- possibly non-exponential patience time distribution

M-Zeltyn (04)

Non-exponential service time distribution

Brown et al (2005)

These limits help

- understand the sensitivity of service and patience distributions on system performance
- make staffing decisions to meet certain performance targets
- predict system performance
- design near-optimal routing policies for systems with multiple server pools that serve multiple customer classes

- Asymptotic framework and phase-type distributions
- Critically loaded G/Ph/n + GI queues
- Overloaded G/Ph/n + M queues
- Proof sketches
- Comments on G/GI/n + GI queues

- Number of servers *n* goes to infinity.
- Consider a sequence of G/GI/n + GI queues indexed by n.
- The arrival process E^n has arrival rate λ^n that depends on n:

 $\lambda^n \approx n\lambda$ for some $\lambda > 0$;

 $E^{n}(t)$ is the cumulative number of arrivals in (0, t].

- The patience time distribution F is independent of n; F(0) = 0 and $\alpha = F'(0)$ exists.
- The service time distribution G is independent of n; it has finite mean $1/\mu$.

Assumptions on the arrival process

• Fluid-scaling

$$\overline{E}^n(t) = \frac{1}{n}E^n(t) \quad t \ge 0.$$

• Functional weak law of large numbers (FWLLN): Assume that

$$\overline{E}^n \Rightarrow \overline{E},\tag{1}$$

and that $\overline{E}(t) = \lambda t$ for some $\lambda > 0$. Let $\rho = \lambda/\mu$ be the traffic intensity.

• Diffusion-scaling

$$ilde{E}^n(t)=rac{1}{\sqrt{n}}\hat{E}^n(t) \quad ext{and} \quad \hat{E}^n(t)=E^n(t)-n\overline{E}(t) \quad ext{ for } t\geq 0.$$

• Functional Central Limit Theorem (FCLT): Assume that

$$ilde{E}^n \Rightarrow ilde{E}$$
 as $n \to \infty$. (2)

Here, we assume \tilde{E} is a $(-\beta, \lambda c^2)$ -Brownian motion.

DEFINITION (NEUTS 1981)

A phase-type random variable is defined to be the time until absorption of a transient continuous time Markov chain.

- \bullet transient states $\mathcal{K} = \{1, \dots, K\}$, K+1 absorbing state
- initial distribution p on \mathcal{K}
- ν_k the rate at state (phase) $k \in \mathcal{K}$
- P = (P_{kℓ}) the transition probabilities on transient states K; I − P is assumed to be invertible
- Let *m* be the mean service time, and

$$\gamma = \frac{\operatorname{diag}(1/\nu)(I + P' + (P')^2 + \ldots)p}{m}.$$
(3)

Then γ_k is interpreted as the fraction of load from phase k customers.

• Two-stage hyperexponential distribution $H_2(\nu_1, \nu_2, p_1, p_2)$

$$\xi = \begin{cases} \exp(\nu_1) & \text{ with probability } p_1 \\ \exp(\nu_2) & \text{ with probability } p_2 \end{cases},$$

$$\mathcal{K} = \{1, 2\}, \quad p = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}, \quad \nu = \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}, \quad P = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

• Mean service time $m = p_1/\nu_1 + p_2/\nu_2$; mean service rate $\mu = 1/m$.

• Fraction of phase k load

$$\gamma_k = \frac{p_k/\nu_k}{m}, \quad \gamma_1 + \gamma_2 = 1, \qquad \gamma_k \nu_k = \mu p_k.$$

Scaling for G/Ph/n + Gl queues: $\rho = 1$

Let Zⁿ_k(t) be the number of phase k customers in service at time t.
Centering

$$\hat{X}^n(t) = X^n(t) - n, \quad \hat{Z}^n_k(t) = Z^n_k(t) - \gamma_k n.$$

• Diffusion-scaling

$$egin{aligned} & ilde{X}^n(t) = rac{1}{\sqrt{n}} \hat{X}^n(t), \quad ilde{Z}^n_k(t) = rac{1}{\sqrt{n}} \hat{Z}^n_k(t). \ & ilde{Q}^n(t) = rac{1}{\sqrt{n}} Q^n(t), \quad ilde{W}^n(t) = \sqrt{n} W^n(t). \end{aligned}$$

JIM DAI (GEORGIA TECH)

Critically loaded G/Ph/n + GI queues: $\rho = 1$

THEOREM (DAI-HE-TEZCAN 09)

Assume that F(0) = 0 and that $\alpha = F'(0)$ exists. Suppose that $(\tilde{X}^n(0), \tilde{Z}^n(0)) \Rightarrow (\xi, \eta)$. Then

$$(\tilde{Q}^n, \tilde{W}^n, \tilde{X}^n, \tilde{Z}^n) \Rightarrow (\tilde{Q}, \tilde{W}, \tilde{X}, \tilde{Z}),$$

where (\tilde{X}, \tilde{Z}) is a (K + 1)-dimensional (degenerate) continuous Markov process, and

$$ilde{Q}(t)=(ilde{X}(t))^+$$
 and $ilde{W}(t)=rac{1}{\mu} ilde{Q}(t)$ (state space collapse).

Furthermore, letting

$$ilde{Y}(t) = p ilde{Q}(t) + ilde{Z}(t),$$

 $ilde{Y}$ is a K-dimensional piecewise Ornstein-Uhlenbeck (OU) process.

Puhalskii-Reiman (00) for G/Ph/n, Garnett-M-Reiman (02) for M/M/n + MJIM DAL (Georgia Tech) MANY-SERVER QUEUES

The piecewise OU process \tilde{Y}

• Let $R = (I - P') \operatorname{diag}(\nu)$. Recall that $\alpha = F'(0)$. The map $\Phi : x \in \mathbb{D}^K \to y \in \mathbb{D}^K$ is well defined via

$$y(t) = x(t) - R \int_0^t y(s) \, ds + (R - \alpha I) p \int_0^t (e'y(s))^+ \, ds.$$

Massey-M-Reiman (98)

- $\tilde{Y} = \Phi(B)$, where B is some K-dimensional Brownian motion.
- When K = 1,

$$y(t) = x(t) - \mu \int_0^t y(s) \, ds + (\mu - \alpha) \int y(s)^+ \, ds$$

= $x(t) + \mu \int_0^t y(s)^- \, ds - \alpha \int y(s)^+ \, ds$

• One can recover (\tilde{X}, \tilde{Z}) via

$$ilde{X}(t)=e' ilde{Y}(t) \quad ext{and} \quad ilde{Z}(t)= ilde{Y}(t)-p(ilde{X}(t))^+, \quad t\geq 0.$$

Two-dimensional piecewise OU process

- Assume service time distribution is $H_2(\nu_1, \nu_2, p_1, p_2)$.
- For each $(x_1, x_2) \in \mathbb{D}^2$, there is a unique $(y_1, y_2) \in \mathbb{D}^2$ such that for k = 1, 2,

$$y_k(t) = x_k(t) - \nu_k \int_0^t y_k(s) ds + (\nu_k - \alpha) p_k \int_0^t (y_1(s) + y_2(s))^+ ds.$$

- The map $\Phi: x \in \mathbb{D}^2 \to y \in \mathbb{D}^2$ is well defined.
- When B is a 2-d Brownian motion with drift -βp and covariance matrix

$$\mu \begin{bmatrix} p_1 (p_1 c^2 - p_1 + 2) & p_1 p_2 (c^2 - 1) \\ p_1 p_2 (c^2 - 1) & p_2 (p_2 c^2 - p_2 + 2) \end{bmatrix}.$$

 $\tilde{Y} = \Phi(B)$ is the 2-*d* piecewise OU process that serves as the diffusion limit.

JIM DAI (GEORGIA TECH)

MANY-SERVER QUEUES

Diffusion approximation: $M/H_2/200 + M$

- $H_2(1/2.2, 1/.2, .4)$ service time distribution and $\alpha = F'(0) = 2/3$.
- Finite element method to solve the stationary distribution of Υ̃;
 Dai-Harrison (92), Shen-Chen-Dai-Dai (02); reference density

$$f(x_1, x_2) = \frac{1}{4}e^{-(x_1^2 + x_2^2)/4};$$

truncate the area $(-8,14)\times(-8,14);$ the grid consists of 1×1 squares.

Performance measures

	$\mathbb{E}(0)$	२)	$\mathbb{P}\{Ab.\}$		
λ^n	Numerical	Diffusion	Simulation	Diffusion	
200	8.72	8.85	0.0290	0.0295	
220	31.05	30.64	0.0940	0.0928	

Steady-state density for \hat{X}^n and $\sqrt{n}\tilde{X}$: $\lambda^n = 200$

Steady-state density for $(\tilde{Y}_1, \tilde{Y}_2)$: $\lambda^n = 200$

Only $\alpha = F'(0)$ is used in the diffusion limits for G/Ph/n/+GI queues.

LEMMA (DAI-HE 09, G/Gl/n + Gl QUEUES)

Assume that diffusion-scaled queue size is stochastically bounded: for each T > 0,

$$\lim_{M\to\infty}\limsup_{n\to\infty}\mathbb{P}\left\{\frac{1}{\sqrt{n}}\sup_{0\leq t\leq T}Q^n(t)>M\right\}=0.$$

Then for any T > 0,

$$\frac{1}{\sqrt{n}}\sup_{0\leq t\leq T}\left|C^{n}(t)-\alpha\int_{0}^{t}Q^{n}(s)ds\right|\Rightarrow 0 \quad as \ n\to\infty,$$

where $C^{n}(t)$ is cumulative number of abandonments in (0, t].

	Patience distribution						
	uniform((), 4), $F'(0) = .25$	$H_2(1, 3, 0)$	0.5), $F'(0) = 2/3$			
Service dist.	$\mathbb{P}\{A\}$	$\mathbb{E}(Q)$	$\mathbb{P}\{A\}$	$\mathbb{E}(Q)$			
H_2	.0530	42.69	.0584	18.66			
	$\pm.000$	± 0.46	$\pm.001$	$\pm .146$			
$+M(\alpha)$.0528	44.43	.0584	18.43			
+M(.5)	.0569	23.87	.0569	23.87			
LN	.0523	42.13	.0571	18.24			
+M(lpha)	.0519	43.69	.0570	17.95			
+M(.5)	.0555	23.31	.0555	23.31			

...

- In QED regime, performance is very sensitive to patience time distribution via F'(0)
- Appears not sensitive to service time distribution with $\mu = 1$; Gamarnik-Momcilovic (08) for lattice service time distribution
- Mean patience time can be misleading
- The lemma suggests a linear relationship for G/GI/n + GI queues in QED:

$$\lambda^n \times \mathbb{P}{Ab.} \approx F'(0)\mathbb{E}(Q).$$
 (4)

M-Zeltyn (04): empirical observations; Zeltyn-M (05) proved it for M/M/n + GI queues using Baccelli-Hebuterne (81)

Overloaded G/Ph/n + M queues: $\rho > 1$

$$\tilde{X}^n(t) = \frac{1}{\sqrt{n}} \Big(X^n(t) - n(1+q) \Big), \qquad q = (\lambda - \mu)/\alpha$$

THEOREM (DAI-HE-TEZCAN 09)

Suppose that $(\tilde{X}^n(0), \tilde{Z}^n(0)) \Rightarrow (\xi, \eta)$. Then

 $(\tilde{X}^n, \tilde{Z}^n) \Rightarrow (\tilde{X}, \tilde{Z}),$

where $(\tilde{X}, \tilde{Z}) = \Psi(\tilde{U}, \tilde{V})$ is a (K + 1)-dimensional degenerate OU process; the map $\Psi : (u, v) \in \mathbb{D} \times \mathbb{D}^K \to (x, z) \in \mathbb{D} \times \mathbb{D}^K$ is well defined via

$$x(t) = u(t) - \alpha \int_0^t x(s) \, ds - e'R \int_0^t z(s) \, ds$$
$$z(t) = v(t) - (I - pe')R \int_0^t z(s) \, ds.$$

Whitt (04) for overloaded M/M/n + M queues

JIM DAI (GEORGIA TECH)

MANY-SERVER QUEUES

- The lemma reduces +GI to +M
- Perturbed systems
- System representations
- Centering, scaling, applying standard tools: Donsker's theorem, continuous-mapping theorem, random-time-change theorem
- Conventional heavy traffic limits for generalized Jackson networks: Reiman (84), Johnson (83)
- Stone's theorem: Halfin-Whitt (81), Garnett-M-Reiman (02), Whitt (04), Armony-Maglaras (04)

Step 1: Perturbed systems

- Each phase has at most one customer in service, with additive service rate
- Only the leading customer in queue can abandon with additive abandonment rate

The two systems are equal in distribution

• state $(U(t), Q(t), Z_1(t), Z_2(t))$, where, for example,

U(t) = 3.5, $Q(t) = \{2, 1, 2, 1, 1, 2\}$, $Z_1(t) = 1$, $Z_2(t) = 3$.

• Two Markov processes have the same generators.

Donsker's theorem for primitives

Primitive processes: in addition to E^n ,

- service: S_k Poisson process with rate ν_k ; $\hat{S}(t) = S(t) \nu t$,
- abandonment: G Poisson process with rate α ; $\hat{G}(t) = G(t) \alpha t$,
- routing: for each $N \geq 1$ and $k = 0, 1, \dots, K$,

$$\Phi^k(N) = \sum_{j=1}^N \phi^k(j); \qquad \hat{\Phi}^k(N) = \sum_{j=1}^N \left(\phi^k(j) - p^k \right),$$

where $p^0 = p$ and p^k is the *k*th column of *P'*.

Define diffusion-scaled processes

$$\begin{split} \tilde{S}^{n}(t) &= \frac{1}{\sqrt{n}} \hat{S}(nt), \quad G^{n}(t) = \frac{1}{\sqrt{n}} \hat{G}(nt), \quad \tilde{\Phi}^{n,k}(t) = \frac{1}{\sqrt{n}} \hat{\Phi}^{k}(\lfloor nt \rfloor). \\ (\tilde{E}^{n}, \tilde{G}^{n}, \tilde{S}^{n}, \tilde{\Phi}^{0,n}, \dots, \tilde{\Phi}^{K,n}) \Rightarrow (\tilde{E}, \tilde{G}, \tilde{S}, \tilde{\Phi}^{0}, \dots, \tilde{\Phi}^{K}) \quad \text{as } n \to \infty. \end{split}$$

System representations

$$\begin{aligned} X^{n}(t) &= X^{n}(0) + E^{n}(t) - D^{n}(t) - G\left(\int_{0}^{t} Q^{n}(s) \, ds\right), \\ Z^{n}(t) &= Z^{n}(0) + \Phi^{0}(B^{n}(t)) + \sum_{k=1}^{K} \Phi^{k}(S_{k}(T^{n}_{k}(t))) - S(T^{n}(t)), \\ T^{n}_{k}(t) &= \int_{0}^{t} Z^{n}_{k}(s) \, ds, \quad S(T^{n}(t)) = (S_{1}(T^{n}_{1}(t)), \dots, S_{K}(T^{n}_{K}(t)))'. \end{aligned}$$

where

$$D^{n}(t) = -e'M^{n}(t) + e'R \int_{0}^{t} Z^{n}(s) ds,$$

$$e'Z^{n}(t) = e'Z^{n}(0) + B^{n}(t) - D^{n}(t),$$

$$M^{n}(t) = \sum_{k=1}^{K} \hat{\Phi}^{k} \left(S_{k}(T^{n}_{k}(t))\right) - (I - P')\hat{S}(T^{n}(t)).$$

JIM DAI (GEORGIA TECH)

Continuous-mapping theorem

After some centering,

$$\hat{X}^{n}(t) = U^{n}(t) - \alpha \int_{0}^{t} (\hat{X}^{n}(s))^{+} ds - e'R \int_{0}^{t} \hat{Z}^{n}(s) ds,$$
$$\hat{Z}^{n}(t) = V^{n}(t) - p(\hat{X}^{n}(t))^{-} - (I - pe')R \int_{0}^{t} \hat{Z}^{n}(s) ds,$$

Thus, $(\hat{X}^n, \hat{Z}^n) = \Theta(U^n, V^n)$, where

$$U^{n}(t) = \hat{X}^{n}(0) + \hat{E}^{n}(t) + e'M^{n}(t) - \hat{G}\left(\int_{0}^{t} (\hat{X}^{n}(s))^{+} ds\right),$$

$$V^{n}(t) = (I - pe')\hat{Z}^{n}(0) + \hat{\Phi}^{0}(B^{n}(t)) + (I - pe')M^{n}(t).$$

Because, $(\tilde{X}^n, \tilde{Z}^n) = \Theta(\tilde{U}^n, \tilde{V}^n)$, the theorem follows from

$$(\tilde{U}^n, \tilde{V}^n) \Rightarrow (\tilde{U}, \tilde{V}), \qquad \tilde{U}^n(t) = \frac{1}{\sqrt{n}} U^n(t).$$

-

Random-time-change and fluid limits

$$\tilde{U}^{n}(t) = \tilde{X}^{n}(0) + \tilde{E}^{n}(t) + e'\tilde{M}^{n}(t) - \tilde{G}^{n}\left(\int_{0}^{t} (\bar{X}^{n}(s))^{+} ds\right),$$

$$\tilde{M}^{n}(t) = \frac{1}{\sqrt{n}}M^{n}(t) = \sum_{k=1}^{K} \tilde{\Phi}^{k,n}(\bar{S}^{n}_{k}(\bar{T}^{n}_{k}(t))) - (I - P')\tilde{S}^{n}(\bar{T}^{n}(t))$$

1 ot

`

where, for $t \ge 0$,

$$\bar{B}^{n}(t) = \frac{1}{n}B^{n}(nt), \quad \bar{S}^{n}(t) = \frac{1}{n}S(nt), \quad \bar{T}^{n}(t) = \frac{1}{n}T^{n}(nt), \\
\bar{X}^{n}(t) = \frac{1}{n}\hat{X}^{n}(t), \quad \bar{Z}^{n}(t) = \frac{1}{n}\hat{Z}^{n}(t).$$

Because $(\bar{X}^n, \bar{Z}^n) = \Theta(\bar{U}^n, \bar{V}^n) \Rightarrow 0$, one has fluid limits

$$(\overline{S}^n, \overline{T}^n, \overline{B}^n) \Rightarrow (\overline{S}, \overline{T}, \overline{B}), \text{ where}$$

 $\overline{S}_k(t) = \nu_k t, \quad \overline{T}_k(t) = \gamma_k t, \quad \overline{B}(t) = \mu t.$

JIM DAI (GEORGIA TECH)

Proof for overloaded case: G/Ph/n + M

LEMMA

Let $I^n(t)$ be the number of idle servers at time t. Assume $\rho > 1$. Then for each t > 0,

$$\frac{1}{\sqrt{n}}\sup_{0\leq s\leq t}I^n(s)\,ds\Rightarrow 0\quad \text{ as }n\to\infty.$$

Setting $\overline{U}(t) = q + (\lambda - \mu)t$, one has $(\tilde{X}^n, \tilde{Z}^n) = \Theta(\tilde{U}^n + \sqrt{n}\overline{U}, \tilde{V}^n),$

For any t > 0, there exists C > 0 such that

$$|\Theta(\tilde{U}^n + \sqrt{n}\bar{U}, \tilde{V}^n)) - \Theta(\sqrt{n}\bar{U}, 0)||_t \le C\left(\|\tilde{U}^n\|_t + \|\tilde{V}^n\|_t\right).$$

$$\inf_{\substack{0 \le s \le t \\ 0 \le s \le t }} \frac{1}{\sqrt{n}} \hat{X}^n(s) > \sqrt{n}q - C\left(\frac{1}{\sqrt{n}} \|\tilde{U}^n\| + \|\tilde{V}^n\|_t\right),$$

$$\inf_{\substack{0 \le s \le t }} \frac{1}{\sqrt{n}} \hat{X}^n(s) \to \infty, \quad \text{which implies } \sup_{\substack{0 \le s \le t }} \frac{1}{\sqrt{n}} I^n(s) \to 0.$$

G/GI/n + GI queues

Whitt (06) proposed a fluid model and the following approximation when $\rho > 1$: the offered waiting time w satisfies

$${\mathcal F}(w)=rac{\lambda-\mu}{\lambda},\quad {\mathbb E}(Q^n)pprox\lambda^n\,{\mathbb E}(\eta\wedge w).$$
 (5)

Examples: M(120)/GI/100 + GI

	E_2 service distribution		LN service distribution	
Patience	$\mathbb{P}\{A\}$	$\mathbb{E}(Q)$	$\mathbb{P}\{A\}$	$\mathbb{E}(Q)$
$H_2(2,2/3,.5)$.168	15.58	.1689	15.70
Fluid	.167	15.35	.1667	15.35
Exp(4/3)	.168	15.08	.1695	15.26
Uniform(0,2)	.167	36.34	.1665	35.97
Fluid	.168	36.67	.1667	36.67
Exp(.5)	.166	39.91	.1673	40.15

- Reed (07) proved the convergence of \tilde{X}^n for critically loaded G/GI/n queues; uses Krichagina-Puhalskii (97) for $G/GI/\infty$ queues.
- M-Momcilovic (09) generalizes Reed (07) to G/GI/n + GI queues.
- Haspi-Ramanan (07) measure-valued fluid limits for G/GI/n queues; Kang-Ramanan (08) for G/GI/n + GI queues.
- Zhang (09): measure-valued fluid limits for G/GI/n + GI queues; "residual" processes.
- Bassamboo-Randhawa (09) justified (5) for M/M/n + GI queues
- Kang-Ramanan (09) justified (5) for G/GI/n + GI queues

- Reed (07), Kaspi-Ramanan (07), Kang-Ramanan (08) and Zhang (09) all involve a complicated tightness argument.
- There is a need to extend the continuous-mapping approach to the measure-valued setting; the key is to find a map on some infinitely dimensional space; diffusion limit is a piecewise-OU process.
- Decreusefond-Moyal (2008), Talreja-Reed (2009) for $G/GI/\infty$ queues.

- Reed (07), Kaspi-Ramanan (07), Kang-Ramanan (08) and Zhang (09) all involve a complicated tightness argument.
- There is a need to extend the continuous-mapping approach to the measure-valued setting; the key is to find a map on some infinitely dimensional space; diffusion limit is a piecewise-OU process.
- Decreusefond-Moyal (2008), Talreja-Reed (2009) for $G/GI/\infty$ queues.
- Kaspi-Ramanan (09) distribution-valued diffusion limits for G/GI/n queues.

• Fluid limits:

Bassamboo-Harrison-Zeevi (06a,b, 08), Bassamboo-Zeevi (08), Perry-Whitt (09a,b), Bassamboo-Randhawa (09), ...

• Diffusion limits:

Armony-Maglaras (04a, b), Atar-M-Reiman (04), Borst-M-Reiman (04), Armony (05), Atar (05), Gurvich-Armony-M (05), Tezcan (07), Gurvich-Whitt (06, 07), Dai-Tezcan (08), Tezcan-Dai (09), Armony-Ward (09), Koscaga-Ward (09), Stolyar-Tezcan (09), ...

- Gans-Koole-M (03), Telephone call centers: Tutorial, review, and research prospects, *M&SOM*, **5**, 79-141.
- Mandelbaum (06), Call centers: research bibliography with abstracts; http:

//iew3.technion.ac.il/serveng/References/US7_CC_avi.pdf

- Dai, He and Tezcan, Many-server diffusion limits for G/Ph/n + GI queues, December 2008.
- Dai and He, Customer abandonment in many-server queues, April 2009.