Jim Dai

off Technologyy

The H. Milton Stewart School of Industrial and Systems Engineering

&Georgiaﬂtm@ﬁﬁﬁuﬂﬁ@

July 14, 2009

Joint work with Shuangchi He and Tolga Tezcan (UIUC)






 JDa (Gromeia Tecr)  MANv-SERVER QUEUES YT



Multi-server queues
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e G/Gl/n+ Gl queues, FIFO queue, a classical model
@ iid service times and iid patience times

@ The number of servers n is large: call centers, web server farms,
hospital beds
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Performance processes

At time t,

e System size X(t) — the total number of customers in system

o Queue size Q(t) = (X(1))T

o The number of idle servers /(t) = (X(t))~

o Offered waiting time at time t: W/(t)
Examples of performance measures:

e abandonment probability P{Ab.}

@ average queue size E(Q)

@ average waiting time among those who are served E(W|S)
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Time-varying arrival rates: Brown et al (05)

120,

Operating regimes

@ overloaded;

w efficiency-driven (ED)

o critically loaded; quality-
and efficiency-driven

Galls/Hr (Reg)
3

. (QED); Halfin-Whitt

“ regime

® @ underloaded;

R quality-driven (QD)
e ED: : QED: diffusion model

@ Focus on QED regime
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Customer abandonment

Garnett-Mandelbaum-Reiman (02)

“.... There is a significant

difference in the distributions of af
waiting time and queue length—in

particular, the average waiting
time and queue length are both
strikingly shorter when
abandonment is taken into
account.”

@ one must model
abandonment

@ possibly non-exponential
patience time distribution
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Fluid and diffusion limits for performance processes

These limits help
@ understand the sensitivity of service and patience distributions on
system performance
e make staffing decisions to meet certain performance targets
@ predict system performance

@ design near-optimal routing policies for systems with multiple server
pools that serve multiple customer classes
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@ Asymptotic framework and phase-type distributions
e Critically loaded G/Ph/n+ Gl queues

e Overloaded G/Ph/n+ M queues

@ Proof sketches

e Comments on G/Gl/n+ Gl queues



Many-server asymptotic framework

Number of servers n goes to infinity.
Consider a sequence of G/GI//n+ Gl queues indexed by n.

The arrival process E” has arrival rate A" that depends on n:

A~ n)\ for some A > 0;

E"(t) is the cumulative number of arrivals in (0, ¢].

The patience time distribution F is independent of n; F(0) = 0 and
a = F’(0) exists.

The service time distribution G is independent of n; it has finite mean
1/p.
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Assumptions on the arrival process

("]
1
=—E" > 0.
p (t) t>
° : Assume that
= E, (1)
and that = At for some A > 0. Let p = \/u be the traffic
intensity.
e Diffusion-scaling
~ 1 -~ ~
E”(t):ﬁE”(t) and E"(t)=E"(t)—n for t > 0.

e Functional Central Limit Theorem (FCLT): Assume that
En=E as n — oo. (2)

Here, we assume E is a (—3, Ac?)-Brownian motion.
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Phase-type service time distributions

DEFINITION (NEUTS 1981)

A phase-type random variable is defined to be the time until absorption of
a transient continuous time Markov chain.

e transient states K = {1,..., K}, K + 1 absorbing state
@ initial distribution p on IC
@ vy the rate at state (phase) k € K

P = (Py¢) the transition probabilities on transient states K; | — P is
assumed to be invertible

Let m be the mean service time, and

o diag(1/v)(I + P'+ (P2 +...)p

(3)
Then ~y, is interpreted as the fraction of load from phase k customers.
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An example of phase-type distributions

e Two-stage hyperexponential distribution Ha(v1, 12, p1, p2)

_ Jexp(v1)  with probability p;
B exp(r2)  with probability py ’

i a- () () -0

@ Mean service time m = p1/v1 + p2/v2; mean service rate = 1/m.

e Fraction of phase k load

Pk/Vk
7":,{7’ 7+ =1 VkVk = IPk-
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Scaling for G/Ph/n+ Gl queues: p =1

p:1 ) @ server 1

// @ server 2
the queue size is O(\/ﬁ) S

>— 0OOOLOF

7

.
.
\ .
\
\
AN @ server n
—

the number in service is around n

o Let Z](t) be the number of phase k customers in service at time t.
o Centering

X0(8) = X"(8) = n,  Z0(t) = ZP(t) — .
e Diffusion-scaling

Sr(e) = K00, 200 = Z-20).
&"(t) = \%Q”(t), Wr(t) = /aWn().
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Critically loaded G/Ph/n + Gl queues: p =1

THEOREM (DAI-HE-TEZCAN 09)

Assume that F(0) = 0 and that o = F'(0) exists. Suppose that
(X7(0), 27(0)) = (£, m). Then

QW X" 2" = (Q,W,X, 2),

where (X, Z) is a (K + 1)-dimensional (degenerate) continuous Markov
process, and

Q(t) = (X(t))" and W(t) = =Q(t) (state space collapse).

=l

Furthermore, letting y : y

Y(t) = pQ(t) + £(1),
Y is a K-dimensional piecewise Ornstein-Uhlenbeck (OU) process.
Puhalskii-Reiman (00) for G/Ph/n, Garnett-M-Reiman (02) for
M/M/n+ M
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The piecewise OU process Y

o Let R = (/ — P')diag(v). Recall that v = F’(0). The map
¢ :x e DK — y € DX is well defined via

y(t) = x(t) - R /0 y(s)ds-+ (R—alp [ (¢y(s))" o

0
Massey-M-Reiman (98)
o Y = ®(B), where B is some K-dimensional Brownian motion.
o When K =1,

W0 = x0-n [ y(s)ds + (1 — o) [ s

_ x(t)+,u/oty(s)_ ds—a/y(s)+ ds

e One can recover (X, Z) via
X(t)=¢V(t

JmM Da1 (GEORGIA TECH) MANY-SERVER QUEUES

) and Z(t) = Y(t) — p(X(t))*, t>0.
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Two-dimensional piecewise OU process

e Assume service time distribution is Ha(v1, 12, p1, p2).
e For each (x1,x2) € D?, there is a unique (y1,y2) € D? such that for
k=1,2,

t

yi(t) = xk(t) — v /Otyk(s)ds + (vk — oz)pk/ (y1(s) + y2(s)) " ds.

0

e The map & : x € D? — y € D? is well defined.

@ When B is a 2-d Brownian motion with drift —3p and covariance
matrix

[Pl (p1c? —p1+2) p1p2 (2 — 1) ]
pip2 (2 —1)  p2(p2c® —p2+2)]

Y = ®(B) is the 2-d piecewise OU process that serves as the
diffusion limit.
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Diffusion approximation: M/H,/200 + M

e Hp(1/2.2,1/.2,.4) service time distribution and a = F'(0) = 2/3.
@ Finite element method to solve the stationary distribution of Y;
Dai-Harrison (92), Shen-Chen-Dai-Dai (02); reference density

L e-(dd)/a,

f(X]_,X2) = 2
truncate the area (—8,14) x (—8,14); the grid consists of 1 x 1
squares.
@ Performance measures
E(Q) P{Ab.}
A" Numerical Diffusion Simulation Diffusion
200 8.72 8.85 0.0290 0.0295
220 31.05 30.64 0.0940 0.0928
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Steady-state density for (Y1, Y5): A" = 200

0.6
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Sensitivity of abandonment distribution: p =1

Only a = F'(0) is used in the diffusion limits for G/Ph/n/ 4+ Gl queues.
LeEMMA (DAI-HE 09, G/GI/n+ Gl QUEUES)

Assume that diffusion-scaled queue size is stochastically bounded: for each
T >0,

1
lim IimsupIP’{ sup Q"(t) > I\/I} =0.

—00 n—oo no<t<T

Then for any T > 0,

1
— sup

=0 asn— oo,
no<t<T

c(t) — a/o Q"(s)ds

where C"(t) is cumulative number of abandonments in (0, t].
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Sensitivity of distributions on M(210)/G/ /200 + G/ queues

Patience distribution

uniform(0, 4), F'(0) = .25 H»(1,3,0.5), F(0) =2/3

Service dist.  P{A} E(Q) P{A} E(Q)
H, 0530 42.69 0584 18.66

+.000 +0.46 +.001 +.146
+M(a) 0528 44.43 0584 18.43
+M(.5) 0569 23.87 0569 23.87
LN 0523 4213 0571 18.24
+M(a) 0519 43.69 0570 17.95
+M(.5) 0555 2331 0555 2331
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Sensitivity of distributions

o In QED regime, performance is very sensitive to patience time
distribution via F’(0)

@ Appears not sensitive to service time distribution with p = 1;
Gamarnik-Momcilovic (08) for lattice service time distribution

@ Mean patience time can be misleading

@ The lemma suggests a linear relationship for G/Gl/n+ Gl queues in
QED:
A" x P{Ab.} ~ F'(0)E(Q). (4)

M-Zeltyn (04): empirical observations; Zeltyn-M (05) proved it for
M/M/n+ Gl queues using Baccelli-Hebuterne (81)
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Overloaded G/Ph/n+ M queues: p > 1

Xn(t) = %(x"(r) “n1+q).  g=(-m)a

THEOREM (DAI-HE-TEZCAN 09)
Suppose that (X"(0), Z"(0)) = (¢£,n). Then

(X", Z2") = (X, Z),

where (X, Z) = W(U, V) is a (K + 1)-dimensional degenerate OU process;
the map W : (u,v) € D x DX — (x,z) € D x DX is well defined via

x(t) = u(t)—a/o ) ds—e’R/o A6 5

2(8) = v(t) = (I - pe’)R/Otz(s) %

Whitt (04) for overloaded M /M /n+ M queues
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Proof sketches: critically loaded G/Ph/n+ Gl queues

o The lemma reduces +G/ to +M

@ Perturbed systems

System representations

Centering, scaling, applying standard tools: Donsker's theorem,
continuous-mapping theorem, random-time-change theorem

e Conventional heavy traffic limits for generalized Jackson networks:
Reiman (84), Johnson (83)

e Stone's theorem: Halfin-Whitt (81), Garnett-M-Reiman (02), Whitt
(04), Armony-Maglaras (04)
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Step 1: Perturbed systems

O— OO0

e Each phase has at most one customer in service, with additive service
rate

@ Only the leading customer in queue can abandon with additive
abandonment rate
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The two systems are equal in distribution

O— COOOORK o

Yol

e state (U(t), Q(t), Z1(t), Z2(t)), where, for example,
U(t) = 35’ Q(t) = {27 1727 ]-7 1,2}, Z]_(t) = ]_, ZQ(t) = 3.

@ Two Markov processes have the same generators.

JmM Da1 (GEORGIA TECH) MANY-SERVER QUEUES 27 / 37



Donsker’s theorem for primitives

Primitive processes: in addition to E”,
e service: S; Poisson process with rate v; 5(t) = S(t) — vt,
e abandonment: G Poisson process with rate «; G(t) = G(t) — at,
@ routing: foreach N >1and k=0,1,...,K,

N N
W) =Yook ) =Y (640 - p¥).
j=1 j=1

where p® = p and p¥ is the kth column of P’.

Define diffusion-scaled processes

\}BS(nt), G"(t) =

(E",G", 57,907 . dKnm) = (E G,5,8°,...,0K)  asn— .

§n(t) = - 6(nm), &"vk(t)=$&>k(tnm.
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System representations

X"(t) = X"(0) + E"(t) — D"(t) — G < [ as) ds>
K
Z"(t) = Z7(0) + O(B"(t)) + Y _ OK(S(T{(1))) — S(T"(¢))
k=1

Ti(t) = /OtZk”(S) ds,  S(T"(t)) = (Suy(T{(t)).- - Sk(Tk (1)) -

where
D"(t) = —e'M"(t) + e’R/t Z"(s) ds,
0
e'Z"(t) = €Z"(0) + B"(t) — D"(t),
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Continuous-mapping theorem

After some centering,

K7(¢) = Un(¢) - /O(X +ds—e'R/0 o

27(t) = v7(8) — p(X"(£))” — (I - pe')R

%

A

Thus, (X7, Z") = ©(U", V"), where

n

Un(t) = X"(0) + E(t) + & M"(t) — & (/Ot(x"(s)ﬁ ds) ,

V() = (I — pe')Z"(0) + °(B"(t)) + (I

(0", 0"y = (D7), On(e) = %

JmM Da1 (GEORGIA TECH) MANY-SERVER QUEUES
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— pe YM"(t).
Because, (X", Z") = ©(U", V"), the theorem follows from
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Random-time-change and fluid limits

(1) = SB"(nt), ()= 1 S(nt), T(e) = T"(nt)
()= TX7(e), 7'(8) =~ 2°(2)
Because (X", 7") = ©(U)", /") = 0, one has
(5,77, B") = (5, 7,B), where

k(t) = vty Ti(t) =yt, B(t) = pt.
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Proof for overloaded case: G/Ph/n+ M

LEMMA

Let I"(t) be the number of idle servers at time t. Assume p > 1. Then for
eacht >0,

— sup I"(s)ds=0 asn— oc.
N o<s<t

Setting U(t) = g + (A — p)t, one has
(X", Z") = ©(U" +/nU, V"),
For any t > 0, there exists C > 0 such that

1©(0" +val, ™) — (/a0 0)] < € (107l + 1771

I 1~ .
i f 7Xﬂ — n Vn
0<s<t (S) > ﬁq C (ﬁHU H + ” Ht) )

n

S

1
oglfgt WX”(S) — 00, which implies Ozlizt—nl”(s) — 0.
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G/Gl/n+ Gl queues

Whitt (06) proposed a fluid model and the following approximation when
p > 1: the offered waiting time w satisfies

Examples: M(120)/Gl/100 + G/

E> service distribution

ATE(n A w).

LN service distribution

Patience P{A} E(Q) P{A} E(Q)
H,(2,2/3,5) .168 15.58 1689 15.70
Fluid 167 15.35 1667 15.35
Exp(4/3) 168 15.08 1695 15.26
Uniform(0,2) 167 36.34 1665 35.97
Fluid 168 36.67 1667 36.67
Exp(.5) 166 39.01 1673 40.15
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Limits for G/G//n+ Gl queues

e Reed (07) proved the convergence of X" for critically loaded G/Gl/n
queues; uses Krichagina-Puhalskii (97) for G/Gl /oo queues.

e M-Momcilovic (09) generalizes Reed (07) to G/Gl/n+ Gl queues.

e Haspi-Ramanan (07) measure-valued fluid limits for G/Gl/n queues;
Kang-Ramanan (08) for G/GI/n+ Gl queues.

e Zhang (09): measure-valued fluid limits for G/Gl/n + Gl queues;
“residual” processes.

e Bassamboo-Randhawa (09) justified (5) for M/M/n + Gl queues
e Kang-Ramanan (09) justified (5) for G/GIl/n+ Gl queues
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More on continuous-mapping approach

o Reed (07), Kaspi-Ramanan (07), Kang-Ramanan (08) and Zhang
(09) all involve a complicated tightness argument.

@ There is a need to extend the continuous-mapping approach to the
measure-valued setting; the key is to find a map on some infinitely
dimensional space; diffusion limit is a piecewise-OU process.

e Decreusefond-Moyal (2008), Talreja-Reed (2009) for G/Gl /oo
queues.
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More on continuous-mapping approach

o Reed (07), Kaspi-Ramanan (07), Kang-Ramanan (08) and Zhang
(09) all involve a complicated tightness argument.

@ There is a need to extend the continuous-mapping approach to the
measure-valued setting; the key is to find a map on some infinitely
dimensional space; diffusion limit is a piecewise-OU process.

e Decreusefond-Moyal (2008), Talreja-Reed (2009) for G/Gl /oo
queues.

e Kaspi-Ramanan (09) distribution-valued diffusion limits for G/GI/n
queues.
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Fluid and diffusion limits for staffing and skill-based routing

o Fluid limits:
Bassamboo-Harrison-Zeevi (06a,b, 08), Bassamboo-Zeevi (08),
Perry-Whitt (09a,b), Bassamboo-Randhawa (09), ...

e Diffusion limits:
Armony-Maglaras (04a, b), Atar-M-Reiman (04), Borst-M-Reiman
(04), Armony (05), Atar (05), Gurvich-Armony-M (05), Tezcan (07),
Gurvich-Whitt (06, 07), Dai-Tezcan (08), Tezcan-Dai (09),
Armony-Ward (09), Koscaga-Ward (09), Stolyar-Tezcan (09), ...
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Surveys and references

e Gans-Koole-M (03), Telephone call centers: Tutorial, review, and
research prospects, M&SOM, 5, 79-141.

e Mandelbaum (06), Call centers: research bibliography with abstracts;
http:
//iew3.technion.ac.il/serveng/References/US7_CC_avi.pdf

e Dai, He and Tezcan, Many-server diffusion limits for G/Ph/n + Gl
queues, December 2008.

@ Dai and He, Customer abandonment in many-server queues, April
2009.
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