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Multi-server queues

server 1

server 2

server n

G/GI/n + GI queues, FIFO queue, a classical model

iid service times and iid patience times

The number of servers n is large: call centers, web server farms,
hospital beds
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Performance processes

At time t,

System size X (t) — the total number of customers in system

X̂ (t) = X (t)− n

Queue size Q(t) = (X̂ (t))+

The number of idle servers I (t) = (X̂ (t))−

Offered waiting time at time t: W (t)

Examples of performance measures:

abandonment probability P{Ab.}
average queue size E(Q)

average waiting time among those who are served E(W |S)
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Time-varying arrival rates: Brown et al (05)

38 Journal of the American Statistical Association, March 2005

center. We have performed similar analyses for other parts of
the data, and in most respects the November–December results
do not differ noticeably from those based on data from other
months of the year.

3. THE ARRIVAL PROCESS

Figure 1 shows, as a function of time of day, the average
rate per hour at which calls come out of the VRU. These are
composite plots for weekday calls in November and Decem-
ber. The plots show calls according to the major call types.
The volume of regular (PS) calls is much greater than that of
the other three types; hence those calls are shown on a sepa-
rate plot. [These plots were fit using the root–unroot method
described by Brown, Zhang, and Zhao (2001), along with the
adaptive free knot spline methodology of Mao and Zhao (2003).
For a more precise study of these arrival rates, including confi-
dence and prediction intervals, see our Sec. 6 and also Brown
et al. 2001, 2002a,b.]

Note the bimodal pattern of PS call-arrival times in Figure 1.
It is especially interesting that IN calls do not show a similar
bimodal pattern and in fact have a peak volume after 10 PM.
(This peak can be partially explained by the fact that Internet
customers are sensitive to telephone rates, which significantly
decrease in Israel after 10 PM, and that they also tend to be
people who stay late.)

3.1 Arrivals Are Inhomogeneous Poisson

Common call center models and practice assume that the
arrival process is Poisson with a rate that remains constant
for blocks of time (e.g., half-hours), with a separate queueing
model fitted for each block of time. A more natural model for
capturing changes in the arrival rate is a time-inhomogeneous
Poisson process. Following common practice, we assume that
the arrival rate function can be well approximated as being
piecewise constant.

We now construct a test of the null hypothesis that arrivals of
given types of calls form an inhomogeneous Poisson process
with piecewise constant rates. The first step in constructing
our test involves breaking up the duration of a day into rela-
tively short blocks of time, short enough so that the arrival rate

does not change significantly within a block. For convenience,
we used blocks of equal time length, L, although this equal-
ity assumption could be relaxed. One can then consider the
arrivals within a subset of blocks—for example, blocks at the
same time on various days or successive blocks on a given day.
The former case would, for example, test whether the process is
homogeneous within blocks for calls arriving within the given
time span.

Let Tij denote the jth ordered arrival time in the ith block,
i = 1, . . . , I. Thus Ti1 ≤ · · · ≤ TiJ(i), where J(i) denotes the total
number of arrivals in the ith block. Then define Ti0 = 0 and

Rij = (J(i) + 1 − j)
(

− log
(

L − Tij

L − Ti,j−1

))
, j = 1, . . . , J(i).

Under the formal null hypothesis that the arrival rate is constant
within each given time interval, the {Rij} will be independent
standard exponential variables, as we now discuss.

Let Uij denote the jth (unordered) arrival time in the ith block.
Then the assumed constant Poisson arrival rate within this
block implies that, conditionally on J(i), the unordered ar-
rival times are independent and uniformly distributed, that is,

Uij
iid∼ U(0,L). Note that Tij = Ui( j). It follows that L−Tij

L−Ti,j−1

are independent beta(J(i) + 1 − j,1) variables [see, e.g., prob-
lem 6.14.33(iii) in Lehmann 1986]. A standard change of
variables then yields the conditional exponentiality of the Rij
given the value of J(i). [One may alternatively base the test
on the variables R∗

ij = j(− log Tij
Ti,j+1

), where j = 1, . . . , J(i) and
Ti,J(i)+1 = L. Under the null hypothesis, these will also be in-
dependent standard exponential variables.]

The null hypothesis does not involve an assumption that
the arrival rates of different intervals are equal or have any
other prespecified relationship. Any customary test for the ex-
ponential distribution can be applied to test the null hypothe-
sis. For convenience, we use the familiar Kolmogorov–Smirnov
test, even though this may not have the greatest possible power
against the alternatives of most interest. In addition, exponen-
tial Q–Q plots can be very useful in ascertaining goodness of fit
to the exponential distribution.

(a) (b)

Figure 1. Arrivals in Calls/Hour by Time of Day, Weekdays in November–December. (a) PS calls; (b) IN, NW, and NE calls.

Operating regimes

overloaded;
efficiency-driven (ED)

critically loaded; quality-
and efficiency-driven
(QED); Halfin-Whitt
regime

underloaded;
quality-driven (QD)

ED: fluid model; QED: diffusion model

Focus on QED regime
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Customer abandonment

Garnett-Mandelbaum-Reiman (02)

“.... There is a significant
difference in the distributions of
waiting time and queue length—in
particular, the average waiting
time and queue length are both
strikingly shorter when
abandonment is taken into
account.”

one must model
abandonment

possibly non-exponential
patience time distribution

380 A. Mandelbaum and S. Zeltyn
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Fig. 2. Hazard rate for patience of regular customers

averaged): this forms the 104 points of the second plot in Figure 1. (The last point
of the aggregated plot is an average of only 38 hour intervals.) We checked that, in
fact, the regression lines for the two plots in Figure 1 are nearly identical.

The linear fit that emerges from the graphs is remarkable. And indeed, if W
denotes waiting time and R patience time, the law

% Abandonment =
E[W ]
E[R]

(1.1)

is provable for models with exponential patience (as in [1] or [30], for example).
But, as will now be recalled from [6], this obviously is not our case: the hazard rate
of patience is far from being constant, as it should have been if R was exponential.

Figure 2 shows the estimate of the hazard rate for patience of regular customers
(approximately 70% of all customers; other types of customers exhibit similar
patterns). The Kaplan-Meier estimate (for example, see [8] or Appendix of [30])
and a smoothing algorithm [10] were performed in order to produce that curve. The
hazard pattern is clearly nonlinear, hence the patience distribution pattern is far from
exponential. Note the two peaks of the hazard rate: the first peak approximately
at 15 seconds and the second peak approximately at 60 seconds. (It turns out that
these two surges of abandonment take place after two recorded messages to which
customers are exposed: the first one when they enter the queue and the second one
after approximately 1 minute.)

Two other examples of a linear relation between the probability to abandon
and average wait are presented in Figure 3. Both are based on the same yearly call
center data, referred to above. The first plot takes into account all customers. It
differs from Figure 1 by its definition of waiting time: here it includes also the time
spent by customers in the VRU (Voice Response Unit). The second plot is for a
specific type of customer: potential customers asking for information on available

M-Zeltyn (04)
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Non-exponential service time distribution

40 Journal of the American Statistical Association, March 2005

(a) (b)

Figure 2. Distribution of Service Time. (a) January–October (mean, 185; SD, 238); (b) November–December (mean, 200; SD, 249).

and Schwartz (2002). Thus average wait with general service
times is multiplied by a factor of (1 + C2

s )/2 relative to the wait
under exponential service times. For example, if service times
are in fact exponential, then the factor is 1. Deterministic ser-
vice times halve the average wait of exponential. In our data,
the observed factor is (1 + C2

s )/2 = 1.26.

4.3 Service Times Are Lognormal

Looking at Figure 2, we see that the distribution of service
times is clearly not exponential, as is assumed by standard
queueing theory. In fact, after separating the calls with very
short service times, our analysis reveals a remarkable fit to the
lognormal distribution.

Figure 3(a) shows the histogram of log(service time) for No-
vember and December, in which the short service phenomenon
was absent or minimal. Superimposed is the best fitted normal

density as provided by Brown and Hwang (1993). Figure 3(b)
shows the lognormal Q–Q plot of service time. This does an
amazingly good imitation of a straight line. Nevertheless, the
Kolmogorov–Smirnovtest decisively rejects the null hypothesis
of exact lognormality. (The Kolmogorov–Smirnov statistic here
is K = .020. This is quite small, but still much larger than the
value of K = .009 that was attained for a similarly large sam-
ple size in the inhomogeneous Poisson test of Sec. 4.) We only
provide the graphs to qualitatively support our claim of lognor-
mality. Thus the true distribution is very close to lognormal, but
is not exactly lognormal. (The most evident deviation is in the
left tail of the histogram, where both a small excess of observa-
tions is evident and the effect of rounding to the nearest second
further interferes with a perfect fit.) This is a situation where
a very large sample size yields a statistically significant result,
even though there is no “practical significance.”

(a) (b)

Figure 3. Histogram (a) and Q–Q Plot (b) of log(service time), November–December.
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under exponential service times. For example, if service times
are in fact exponential, then the factor is 1. Deterministic ser-
vice times halve the average wait of exponential. In our data,
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lognormal distribution.
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is K = .020. This is quite small, but still much larger than the
value of K = .009 that was attained for a similarly large sam-
ple size in the inhomogeneous Poisson test of Sec. 4.) We only
provide the graphs to qualitatively support our claim of lognor-
mality. Thus the true distribution is very close to lognormal, but
is not exactly lognormal. (The most evident deviation is in the
left tail of the histogram, where both a small excess of observa-
tions is evident and the effect of rounding to the nearest second
further interferes with a perfect fit.) This is a situation where
a very large sample size yields a statistically significant result,
even though there is no “practical significance.”

(a) (b)

Figure 3. Histogram (a) and Q–Q Plot (b) of log(service time), November–December.Brown et al (2005)
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Fluid and diffusion limits for performance processes

These limits help

understand the sensitivity of service and patience distributions on
system performance

make staffing decisions to meet certain performance targets

predict system performance

design near-optimal routing policies for systems with multiple server
pools that serve multiple customer classes
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An outline

Asymptotic framework and phase-type distributions

Critically loaded G/Ph/n + GI queues

Overloaded G/Ph/n + M queues

Proof sketches

Comments on G/GI/n + GI queues
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Many-server asymptotic framework

Number of servers n goes to infinity.

Consider a sequence of G/GI/n + GI queues indexed by n.

The arrival process En has arrival rate λn that depends on n:

λn ≈ nλ for some λ > 0;

En(t) is the cumulative number of arrivals in (0, t].

The patience time distribution F is independent of n; F (0) = 0 and
α = F ′(0) exists.

The service time distribution G is independent of n; it has finite mean
1/µ.
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Assumptions on the arrival process

Fluid-scaling

Ēn(t) =
1

n
En(t) t ≥ 0.

Functional weak law of large numbers (FWLLN): Assume that

Ēn ⇒ Ē , (1)

and that Ē (t) = λt for some λ > 0. Let ρ = λ/µ be the traffic
intensity.

Diffusion-scaling

Ẽn(t) =
1√
n

Ên(t) and Ên(t) = En(t)− nĒ (t) for t ≥ 0.

Functional Central Limit Theorem (FCLT): Assume that

Ẽn ⇒ Ẽ as n→∞. (2)

Here, we assume Ẽ is a (−β, λc2)-Brownian motion.
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Phase-type service time distributions

Definition (Neuts 1981)

A phase-type random variable is defined to be the time until absorption of
a transient continuous time Markov chain.

transient states K = {1, . . . ,K}, K + 1 absorbing state

initial distribution p on K
νk the rate at state (phase) k ∈ K
P = (Pk`) the transition probabilities on transient states K; I − P is
assumed to be invertible

Let m be the mean service time, and

γ =
diag(1/ν)

(
I + P ′ + (P ′)2 + . . .

)
p

m
. (3)

Then γk is interpreted as the fraction of load from phase k customers.

Jim Dai (Georgia Tech) Many-server queues 12 / 37



An example of phase-type distributions

Two-stage hyperexponential distribution H2(ν1, ν2, p1, p2)

ξ =

{
exp(ν1) with probability p1

exp(ν2) with probability p2

,

K = {1, 2}, p =

(
p1

p2

)
, ν =

(
ν1

ν2

)
, P =

(
0 0
0 0

)
.

Mean service time m = p1/ν1 + p2/ν2; mean service rate µ = 1/m.

Fraction of phase k load

γk =
pk/νk

m
, γ1 + γ2 = 1, γkνk = µpk .
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Scaling for G/Ph/n + GI queues: ρ = 1

server 1

server 2

server n

2 2 2 2

2

2

1 1 1

1the queue size is 

the number in service is around n

)( nO

1=ρ

Let Zn
k (t) be the number of phase k customers in service at time t.

Centering

X̂ n(t) = X n(t)− n, Ẑn
k (t) = Zn

k (t)− γkn.

Diffusion-scaling

X̃ n(t) =
1√
n

X̂ n(t), Z̃n
k (t) =

1√
n

Ẑn
k (t).

Q̃n(t) =
1√
n

Qn(t), W̃ n(t) =
√

nW n(t).
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Critically loaded G/Ph/n + GI queues: ρ = 1

Theorem (Dai-He-Tezcan 09)

Assume that F (0) = 0 and that α = F ′(0) exists. Suppose that
(X̃ n(0), Z̃n(0))⇒ (ξ, η). Then

(Q̃n, W̃ n, X̃ n, Z̃n)⇒ (Q̃, W̃ , X̃ , Z̃ ),

where (X̃ , Z̃ ) is a (K + 1)-dimensional (degenerate) continuous Markov
process, and

Q̃(t) = (X̃ (t))+ and W̃ (t) =
1

µ
Q̃(t) (state space collapse).

Furthermore, letting
Ỹ (t) = pQ̃(t) + Z̃ (t),

Ỹ is a K-dimensional piecewise Ornstein-Uhlenbeck (OU) process.

Puhalskii-Reiman (00) for G/Ph/n, Garnett-M-Reiman (02) for
M/M/n + M
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The piecewise OU process Ỹ

Let R = (I − P ′)diag(ν). Recall that α = F ′(0). The map
Φ : x ∈ DK → y ∈ DK is well defined via

y(t) = x(t)− R

∫ t

0
y(s) ds + (R − αI )p

∫ t

0
(e ′y(s))+ ds.

Massey-M-Reiman (98)

Ỹ = Φ(B), where B is some K -dimensional Brownian motion.

When K = 1,

y(t) = x(t)− µ
∫ t

0
y(s) ds + (µ− α)

∫
y(s)+ ds

= x(t) + µ

∫ t

0
y(s)− ds − α

∫
y(s)+ ds

One can recover (X̃ , Z̃ ) via

X̃ (t) = e ′Ỹ (t) and Z̃ (t) = Ỹ (t)− p(X̃ (t))+, t ≥ 0.
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Two-dimensional piecewise OU process

Assume service time distribution is H2(ν1, ν2, p1, p2).

For each (x1, x2) ∈ D2, there is a unique (y1, y2) ∈ D2 such that for
k = 1, 2,

yk(t) = xk(t)− νk

∫ t

0
yk(s)ds + (νk − α)pk

∫ t

0
(y1(s) + y2(s))+ ds.

The map Φ : x ∈ D2 → y ∈ D2 is well defined.

When B is a 2-d Brownian motion with drift −βp and covariance
matrix

µ

[
p1

(
p1c2 − p1 + 2

)
p1p2

(
c2 − 1

)
p1p2

(
c2 − 1

)
p2

(
p2c2 − p2 + 2

)] .
Ỹ = Φ(B) is the 2-d piecewise OU process that serves as the
diffusion limit.
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Diffusion approximation: M/H2/200 + M

H2(1/2.2, 1/.2, .4) service time distribution and α = F ′(0) = 2/3.

Finite element method to solve the stationary distribution of Ỹ ;
Dai-Harrison (92), Shen-Chen-Dai-Dai (02); reference density

f (x1, x2) =
1

4
e−(x2

1+x2
2 )/4;

truncate the area (−8, 14)× (−8, 14); the grid consists of 1× 1
squares.

Performance measures
E(Q) P{Ab.}

λn Numerical Diffusion Simulation Diffusion

200 8.72 8.85 0.0290 0.0295
220 31.05 30.64 0.0940 0.0928
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Steady-state density for X̂ n and
√

nX̃ : λn = 200

-100 -80 -60 -40 -20 0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

number of customers in system after centering

 

 

matrix analytic
diffusion approximation
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Steady-state density for (Ỹ1, Ỹ2): λn = 200
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Sensitivity of abandonment distribution: ρ = 1

Only α = F ′(0) is used in the diffusion limits for G/Ph/n/+ GI queues.

Lemma (Dai-He 09, G/GI/n + GI queues)

Assume that diffusion-scaled queue size is stochastically bounded: for each
T > 0,

lim
M→∞

lim sup
n→∞

P

{
1√
n

sup
0≤t≤T

Qn(t) > M

}
= 0.

Then for any T > 0,

1√
n

sup
0≤t≤T

∣∣∣∣Cn(t)− α
∫ t

0
Qn(s)ds

∣∣∣∣⇒ 0 as n→∞,

where C n(t) is cumulative number of abandonments in (0, t].
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Sensitivity of distributions on M(210)/GI/200 + GI queues

Patience distribution
uniform(0, 4), F ′(0) = .25 H2(1, 3, 0.5), F ′(0) = 2/3

Service dist. P{A} E(Q) P{A} E(Q)

H2 .0530 42.69 .0584 18.66
±.000 ±0.46 ±.001 ±.146

+M(α) .0528 44.43 .0584 18.43
+M(.5) .0569 23.87 .0569 23.87

LN .0523 42.13 .0571 18.24
+M(α) .0519 43.69 .0570 17.95
+M(.5) .0555 23.31 .0555 23.31
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Sensitivity of distributions

In QED regime, performance is very sensitive to patience time
distribution via F ′(0)

Appears not sensitive to service time distribution with µ = 1;
Gamarnik-Momcilovic (08) for lattice service time distribution

Mean patience time can be misleading

The lemma suggests a linear relationship for G/GI/n + GI queues in
QED:

λn × P{Ab.} ≈ F ′(0)E(Q). (4)

M-Zeltyn (04): empirical observations; Zeltyn-M (05) proved it for
M/M/n + GI queues using Baccelli-Hebuterne (81)
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Overloaded G/Ph/n + M queues: ρ > 1

X̃ n(t) =
1√
n

(
X n(t)− n(1 + q)

)
, q = (λ− µ)/α

Theorem (Dai-He-Tezcan 09)

Suppose that (X̃ n(0), Z̃n(0))⇒ (ξ, η). Then

(X̃ n, Z̃n)⇒ (X̃ , Z̃ ),

where (X̃ , Z̃ ) = Ψ(Ũ, Ṽ ) is a (K + 1)-dimensional degenerate OU process;
the map Ψ : (u, v) ∈ D× DK → (x , z) ∈ D× DK is well defined via

x(t) = u(t)− α
∫ t

0
x(s) ds − e ′R

∫ t

0
z(s) ds,

z(t) = v(t)− (I − pe ′)R

∫ t

0
z(s) ds.

Whitt (04) for overloaded M/M/n + M queues
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Proof sketches: critically loaded G/Ph/n + GI queues

The lemma reduces +GI to +M

Perturbed systems

System representations

Centering, scaling, applying standard tools: Donsker’s theorem,
continuous-mapping theorem, random-time-change theorem

Conventional heavy traffic limits for generalized Jackson networks:
Reiman (84), Johnson (83)

Stone’s theorem: Halfin-Whitt (81), Garnett-M-Reiman (02), Whitt
(04), Armony-Maglaras (04)
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Step 1: Perturbed systems

2 1 21122

2

1

2

2

Each phase has at most one customer in service, with additive service
rate

Only the leading customer in queue can abandon with additive
abandonment rate

Jim Dai (Georgia Tech) Many-server queues 26 / 37



The two systems are equal in distribution

2 1 21122

2

1

2

2

state (U(t),Q(t),Z1(t),Z2(t)), where, for example,

U(t) = 3.5, Q(t) = {2, 1, 2, 1, 1, 2}, Z1(t) = 1, Z2(t) = 3.

Two Markov processes have the same generators.
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Donsker’s theorem for primitives

Primitive processes: in addition to En,

service: Sk Poisson process with rate νk ; Ŝ(t) = S(t)− νt,

abandonment: G Poisson process with rate α; Ĝ (t) = G (t)− αt,

routing: for each N ≥ 1 and k = 0, 1, . . . ,K ,

Φk(N) =
N∑

j=1

φk(j); Φ̂k(N) =
N∑

j=1

(
φk(j)− pk

)
,

where p0 = p and pk is the kth column of P ′.

Define diffusion-scaled processes

S̃n(t) =
1√
n

Ŝ(nt), Gn(t) =
1√
n

Ĝ (nt), Φ̃n,k(t) =
1√
n

Φ̂k(bntc).

(Ẽn, G̃n, S̃n, Φ̃0,n, . . . , Φ̃K ,n)⇒ (Ẽ , G̃ , S̃ , Φ̃0, . . . , Φ̃K ) as n→∞.
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System representations

X n(t) = X n(0) + En(t)− Dn(t)− G

(∫ t

0
Qn(s) ds

)
,

Zn(t) = Zn(0) + Φ0(Bn(t)) +
K∑

k=1

Φk(Sk(T n
k (t)))− S(T n(t)),

T n
k (t) =

∫ t

0
Zn

k (s) ds, S(T n(t)) = (S1(T n
1 (t)), . . . ,SK (T n

K (t)))′ .

where

Dn(t) = −e ′Mn(t) + e ′R

∫ t

0
Zn(s) ds,

e ′Zn(t) = e ′Zn(0) + Bn(t)− Dn(t),

Mn(t) =
K∑

k=1

Φ̂k (Sk(T n
k (t)))− (I − P ′)Ŝ (T n(t)) .
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Continuous-mapping theorem

After some centering,

X̂ n(t) = Un(t)− α
∫ t

0
(X̂ n(s))+ ds − e ′R

∫ t

0
Ẑn(s) ds,

Ẑn(t) = V n(t)− p(X̂ n(t))− − (I − pe ′)R

∫ t

0
Ẑn(s) ds,

Thus, (X̂ n, Ẑn) = Θ(Un,V n), where

Un(t) = X̂ n(0) + Ên(t) + e ′Mn(t)− Ĝ

(∫ t

0
(X̂ n(s))+ ds

)
,

V n(t) = (I − pe ′)Ẑn(0) + Φ̂0(Bn(t)) + (I − pe ′)Mn(t).

Because, (X̃ n, Z̃n) = Θ(Ũn, Ṽ n), the theorem follows from

(Ũn, Ṽ n)⇒ (Ũ, Ṽ ), Ũn(t) =
1√
n

Un(t).
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Random-time-change and fluid limits

Ũn(t) = X̃ n(0) + Ẽn(t) + e ′M̃n(t)− G̃n

(∫ t

0
(X̄ n(s))+ ds

)
,

M̃n(t) =
1√
n

Mn(t) =
K∑

k=1

Φ̃k,n(S̄n
k (T̄ n

k (t)))− (I − P ′)S̃n(T̄ n(t))

where, for t ≥ 0,

B̄n(t) =
1

n
Bn(nt), S̄n(t) =

1

n
S(nt), T̄ n(t) =

1

n
T n(nt),

X̄ n(t) =
1

n
X̂ n(t), Z̄n(t) =

1

n
Ẑn(t).

Because (X̄ n, Z̄n) = Θ(Ūn, V̄ n)⇒ 0, one has fluid limits

(S̄n, T̄ n, B̄n)⇒ (S̄ , T̄ , B̄), where

S̄k(t) = νkt, T̄ k(t) = γkt, B̄(t) = µt.
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Proof for overloaded case: G/Ph/n + M

Lemma

Let I n(t) be the number of idle servers at time t. Assume ρ > 1. Then for
each t > 0,

1√
n

sup
0≤s≤t

I n(s) ds ⇒ 0 as n→∞.

Setting Ū(t) = q + (λ− µ)t, one has

(X̃ n, Z̃n) = Θ(Ũn +
√

nŪ, Ṽ n),

For any t > 0, there exists C > 0 such that

‖Θ
(
Ũn +

√
nŪ, Ṽ n)

)
−Θ(

√
nŪ, 0)‖t ≤ C

(
‖Ũn‖t + ‖Ṽ n‖t

)
.

inf
0≤s≤t

1√
n

X̂ n(s) >
√

nq − C

(
1√
n
‖Ũn‖+ ‖Ṽ n‖t

)
,

inf
0≤s≤t

1√
n

X̂ n(s)→∞, which implies sup
0≤s≤t

1√
n

I n(s)→ 0.
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G/GI/n + GI queues

Whitt (06) proposed a fluid model and the following approximation when
ρ > 1: the offered waiting time w satisfies

F (w) =
λ− µ
λ

, E(Qn) ≈ λn E(η ∧ w). (5)

Examples: M(120)/GI/100 + GI

E2 service distribution LN service distribution
Patience P{A} E(Q) P{A} E(Q)

H2(2, 2/3, .5) .168 15.58 .1689 15.70
Fluid .167 15.35 .1667 15.35
Exp(4/3) .168 15.08 .1695 15.26

Uniform(0,2) .167 36.34 .1665 35.97
Fluid .168 36.67 .1667 36.67
Exp(.5) .166 39.91 .1673 40.15
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Limits for G/GI/n + GI queues

Reed (07) proved the convergence of X̃ n for critically loaded G/GI/n
queues; uses Krichagina-Puhalskii (97) for G/GI/∞ queues.

M-Momcilovic (09) generalizes Reed (07) to G/GI/n + GI queues.

Haspi-Ramanan (07) measure-valued fluid limits for G/GI/n queues;
Kang-Ramanan (08) for G/GI/n + GI queues.

Zhang (09): measure-valued fluid limits for G/GI/n + GI queues;
“residual” processes.

Bassamboo-Randhawa (09) justified (5) for M/M/n + GI queues

Kang-Ramanan (09) justified (5) for G/GI/n + GI queues
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More on continuous-mapping approach

Reed (07), Kaspi-Ramanan (07), Kang-Ramanan (08) and Zhang
(09) all involve a complicated tightness argument.

There is a need to extend the continuous-mapping approach to the
measure-valued setting; the key is to find a map on some infinitely
dimensional space; diffusion limit is a piecewise-OU process.

Decreusefond-Moyal (2008), Talreja-Reed (2009) for G/GI/∞
queues.

Kaspi-Ramanan (09) distribution-valued diffusion limits for G/GI/n
queues.
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Fluid and diffusion limits for staffing and skill-based routing

Fluid limits:
Bassamboo-Harrison-Zeevi (06a,b, 08), Bassamboo-Zeevi (08),
Perry-Whitt (09a,b), Bassamboo-Randhawa (09), ...

Diffusion limits:
Armony-Maglaras (04a, b), Atar-M-Reiman (04), Borst-M-Reiman
(04), Armony (05), Atar (05), Gurvich-Armony-M (05), Tezcan (07),
Gurvich-Whitt (06, 07), Dai-Tezcan (08), Tezcan-Dai (09),
Armony-Ward (09), Koscaga-Ward (09), Stolyar-Tezcan (09), ...
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Surveys and references

Gans-Koole-M (03), Telephone call centers: Tutorial, review, and
research prospects, M&SOM, 5, 79-141.

Mandelbaum (06), Call centers: research bibliography with abstracts;
http:
//iew3.technion.ac.il/serveng/References/US7_CC_avi.pdf

Dai, He and Tezcan, Many-server diffusion limits for G/Ph/n + GI
queues, December 2008.

Dai and He, Customer abandonment in many-server queues, April
2009.
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