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We consider a class of queueing systems that consist of server pools in parallel and multiple customer classes. Customer
service times are assumed to be exponentially distributed. We study the asymptotic behavior of these queueing systems in a
heavy traffic regime that is known as the Halfin-Whitt many-server asymptotic regime. Our main contribution is a general
framework for establishing state space collapse results in this regime for parallel server systems. In our work, state space
collapse refers to a decrease in the dimension of the processes tracking the number of customers in each class waiting for
service and the number of customers in each class being served by various server pools. We define and introduce a “state
space collapse” function, which governs the exact details of the state space collapse. We show that a state space collapse
result holds in many-server heavy traffic if a corresponding deterministic hydrodynamic model satisfies a similar state space
collapse condition. Unlike the single-server heavy traffic setting for multiclass queueing network, our hydrodynamic model
is different from the standard fluid model for many-server queues. Our methodology is similar in spirit to that in Bramson
[Bramson, M. 1998. State space collapse with application to heavy traffic limits for multiclass queueing networks. Queueing
Systems 30 89–148.], which focuses on the single-server heavy traffic regime. We illustrate the applications of our results
by establishing state space collapse results in many-server diffusion limits for V-model systems under static-buffer-priority
policy and the threshold policy proposed in the literature.
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1. Introduction and literature review. Multiclass queueing networks have been extensively used to model
queueing systems arising in manufacturing and service industries (Harrison [28]). A special class of these
networks, parallel server systems, are of current interest. They are commonly used to model service systems
with many servers; see Gans et al. [21], Maglaras and Zeevi [33, 34, 35], and Randhawa and Kumar [41] for
different applications. In a parallel server system, customers are handled by a set of server pools and leave
the system after service. We also restrict our attention to systems with exponential service times. Similar to
multiclass queueing networks, exact analysis of parallel server systems is limited to a few special cases. Even
when available, the results from exact analysis provide limited insight on the general properties of performances
of these systems and rarely can be used for optimization purposes.

As an alternative, parallel server systems have been analyzed by using diffusion approximations under two
different heavy traffic regimes; see Chen and Yao [12], Whitt [48], Gans et al. [21], among others. In this paper
we focus on the many-server heavy traffic regime that is similar to that proposed in Halfin and Whitt [26]. Under
the many-server heavy traffic regime, arrival rates and number of servers in each pool grow to infinity in such
a way that the nominal load converges to one at a certain rate. As stated in §4 of Gans et al. [21], many-server
asymptotic analysis is one of the most promising research directions in the analysis of parallel server systems
with many servers, particularly for the analysis and control of call centers.

Central to any heavy traffic analysis, either for performance analysis or optimal control, is some heavy traffic
limit theorem that states that a certain diffusion-scaled performance process converges to a diffusion process in
heavy traffic. Often, the key to the proof of such a limit theorem is a state space collapse (SSC) result. In two
companion papers, Bramson [10] and Williams [51], sufficient conditions are given under which a conventional
heavy traffic limit theorem holds for a general class of multiclass queueing networks. Unlike the many-server
heavy traffic regime, in the conventional heavy traffic regime, an increase in the arrival rate is matched by an
increase in the service rate while keeping the number of servers in each server pool fixed. (Equivalently, the
conventional heavy traffic can be achieved by employing diffusion-scaling in time and space while keeping the
arrival and service rate fixed; see, for example, Williams [51].)

It is shown in Bramson [10] that to prove an SSC result in conventional heavy traffic limit it is enough to show
that a similar SSC result holds for the hydrodynamic model. His framework has been used to show SSC results
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in conventional heavy traffic limits for multiclass queueing networks and, more generally, stochastic processing
networks; see Bramson and Dai [11], Mandelbaum and Stolyar [37], Dai and Lin [15]. These SSC results are
then used to establish the heavy traffic diffusion limits of the systems under consideration.

It is apparent from the current literature that SSC results in many-server heavy traffic are also crucial for
establishing diffusion limits; see Armony [1], Armony and Maglaras [2, 3], Tezcan and Dai [46], Gurvich
et al. [25], and Tezcan [45]. However, results similar to those in Bramson [10] and Williams [51] have not been
established in the many-server heavy traffic regime yet. Due to conspicuous differences between the conventional
and many-server heavy traffic regimes (see Gans et al. [21, §4] for more details), the results of Williams and
Bramson cannot be readily extended to the many-server asymptotic analysis.

In this paper we present a general framework for establishing SSC results in the many-server regime for
parallel server systems. Specifically, we extend the framework in Bramson [10] to show that multiplicative SSC
results in many-server diffusion limits can be established by verifying that the associated hydrodynamic model
satisfies certain conditions. The hydrodynamic model is defined by a set of deterministic equations that are
similar to, but different from, the standard set of fluid model equations; see the last four paragraphs of §4.1 for
a detailed discussion on the differences of these two models. We illustrate our main result by establishing SSC
results for V-parallel server systems under two different policies. Our results have also been instrumental in the
analysis of distributed systems in Tezcan [45] and general parallel server systems in Dai and Tezcan [16].

Our approach to establishing the framework to prove SSC results in many-server heavy traffic is similar to
that of Bramson [10]. We use the hydrodynamic scaling that is obtained by slowing down the time in the many-
server diffusion scaling. Using this scaling, the events that happen instantaneously in the diffusion limits can be
observed in more detail. By utilizing the connection between the hydrodynamic limits and the diffusion limits,
we show that for a SSC result to hold for diffusion limits it must hold eventually for the hydrodynamic limits.
The general structure and definition of hydrodynamic limits are complicated. It is not clear as to how one can
check the required condition on hydrodynamic limits by using the definition directly. We overcome this hurdle
by showing that the hydrodynamic limits of a general parallel server system must satisfy a set of deterministic
equations that we call the hydrodynamic model equations. These equations possess some of the nice properties
of the standard fluid model equations, but they are different. We illustrate how fluid model tools can be used to
show the SSC results for the hydrodynamic limits in the V-systems in §7.

Our results differ from Bramson’s in the following aspects. As described above, we focus on the many-server
heavy traffic regime whereas Bramson focuses on systems under conventional heavy-traffic. The hydrodynamic
model in conventional heavy traffic coincides with the standard fluid model that is obtained from the diffusion
scaling by further scaling the space to obtain a strong-law-of-large-numbers scaling. However, we show that in
the many-server heavy traffic, hydrodynamic limits satisfy a set of deterministic equations that are similar to but
different from the fluid model equations. In addition, we introduce the notion of an SSC function to formulate
our SSC results. Bramson, on the other hand, focused on establishing a relationship between a low-dimensional
workload process and a high-dimensional queue length process.

We illustrate our approach by establishing SSC results for two systems. The first system we focus on is a
static buffer priority (SBP) V-parallel server system. In a V-parallel server system, there is only one server pool
handling several customer classes. Under an SBP policy, the classes are assigned fixed priorities. When a server
switches from one customer to another, the new customer will be taken from the highest priority nonempty class.
We show, using our framework, that under an SBP scheduling policy, the system achieves the following SSC:
all of the buffers, except the one with the lowest priority, are always empty in the many-server diffusion limit.
A special case of our SSC result for the V-model has appeared in Gurvich et al. [25], and a slightly different
model has been analyzed in Puhalskii and Reiman [40].

The second system we study is also a V-model with two customer classes but under a different policy; we
focus on the threshold policy proposed in Armony and Maglaras [3]. Under this policy, customers in class 1
have (nonpreemptive) priority over customers in class 2 unless the number of customers in the second queue
exceeds a threshold value. When this occurs, second customer class is given (nonpreemptive) priority. Under
this policy, we show that one can obtain the number of customers in either queue, given the total number of
customers in the system in the diffusion limit. More specifically, we show that the number of customers in the
second class will never exceed the threshold value in the limit. If, in the limit, the total number of customers
in the queue is less than the threshold, there are no customers in the first queue. When the total number of
customers exceeds the threshold, the number of customers in the second queue is equal to the threshold, and
the rest will be in the first queue. This SSC result is instrumental in proving that this policy is asymptotically
optimal in minimizing the wait time of the customers in the first class subject to a waiting time constraint for
the second class.
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The remainder of this paper is organized as follows. In the rest of this section, we review the related literature
and present the notation and terminology used. In §2, we first give the technical details of the systems that are
considered. We present a set of equations that these systems must satisfy, and we define the primitive processes.
In §3, we formulate a static planning problem that is similar to that in Harrison [29]. Using this formulation
we characterize a general many-server heavy traffic condition. Then we define the diffusion-scaling that will
be studied in the subsequent sections. In §4, we present the general framework to prove a SSC result in the
diffusion limits. Section 5 is devoted to the proof of our main results presented in §4. We present extensions to
our main results in §6. We establish an SSC result under the static priority system for V-models in §7. In §8 we
establish the SSC result for the V-model under the policy proposed in Armony and Maglaras [3].

1.1. Literature review. Standard references on conventional heavy traffic analysis include Harrison [28],
Chen and Yao [12], and Whitt [48]. Results from classical queueing theory for the analysis of parallel server
systems can be found in several textbooks; see, for example, Ross [43] and Gross and Harris [23]. Early
many-server diffusion approximations for GI/G/n systems have appeared in Borovkov [9], Iglehart [31], and
Whitt [47], with the limiting traffic intensity of the system converging to a value less than one. Halfin and
Whitt [26] studied the GI/M/n system in the many-server heavy traffic regime that is the focus of this paper.
We restrict the rest of our review to the literature on the Halfin-Whitt many-server asymptotic analysis.

The analysis of Halfin and Whitt has been extended in several directions. Garnett et al. [22] studied the
asymptotic analysis of an M/M/n system with impatient customers, and they established results similar to those
in Halfin and Whitt. Puhalskii and Reiman [40] established the diffusion limit of a G/Ph/n system, where
Ph stands for a phase-type service time distribution. They also established the many-server diffusion limits of
a V-model parallel server system under a static priority policy. To the best of our knowledge, the first SSC
result in the Halfin-Whitt regime appeared in Puhalskii and Reiman [40]. Whitt [50] studied the many-server
diffusion limit of a G/H∗

2 /n/m system, where H∗
2 indicates that the service time distribution is an extremal

distribution among the class of hyperexponential distributions. He later used this analysis in Whitt [49] to
approximate G/GI/n/m systems. In Dai et al. [17], many-server diffusion limits are established for critically
loaded G/Ph/n+GI systems and for overloaded G/Ph/n+M systems. Reed [42] established one-dimensional
limits for the number of customers in G/G/n systems, and Mandelbaum and Momčilović [36] extended this
result to G/G/n+G systems.

After the initial version of this paper was completed, Gurvich and Whitt [24] used an approach similar to
ours to study the diffusion limits of queue-and-idleness-ratio (QIR) controls in many-server systems. There is a
subtle difference between our approach and theirs. We provide a general framework to prove multiplicative SSC
results. Once a multiplicative SSC result is proved, there is an extra step needed to prove an SSC result. The
extra step is to prove a stochastic bound for the diffusion-scaled processes. An application of our framework for
a general parallel server system under static priority policies can be found in Dai and Tezcan [16]. In Gurvich
and Whitt [24], instead of trying to establish a multiplicative SSC result, by using a stopping time argument
and hydrodynamic scaling, they prove an SSC result for QIR policies directly. The SSC function under their
policies does not satisfy Assumption 4.1 in our paper, except when the holding cost is linear. Therefore, our
framework cannot be used to obtain their SSC result for queues operating under QIR policies and incurring a
general holding cost. It is an interesting research direction to identify whether their approach can be generalized
to a general class of control policies.

Armony and Maglaras [2, 3] studied an M/M/n system with two customer classes. The hydrodynamic
scaling we introduce in this study is based on the hydrodynamic scaling in Bramson [10] and is similar to the
scaling that is used in Armony and Maglaras [3]. The scaling in Armony and Maglaras [3] has also been used
earlier in conventional heavy traffic in Maglaras [32] and in many-server heavy traffic in Fleming et al. [20].
Gurvich et al. [25] studied a V-parallel server system with impatient customers; they show that a static buffer
priority policy with a threshold policy is asymptotically optimal. Armony [1] studied an inverted-V-parallel
server system and shows that the faster-server-first (FSF) policy is asymptotically optimal. The SSC results
established in Gurvich et al. [25] and Armony [1] can easily be proved by using our framework. In Tezcan and
Dai [46] and Dai and Tezcan [16], we showed that a greedy policy is asymptotically optimal for N-systems and
parallel serve systems, respectively. In our proofs, the framework established in this paper plays a pivotal role.

In conventional heavy traffic, Brownian control problems have been formulated to devise good policies (see
Harrison [27]). Extending this idea, Harrison and Zeevi [30] and Atar et al. [7] formulated a diffusion control
problem to study a V-parallel server system with impatient customers in many-server heavy traffic. Atar et al. [7]
proved that the policies obtained from this approach are asymptotically optimal. Atar [5, 6] followed an approach
similar to that in Atar et al. [7] to find asymptotically optimal policies for tree-like systems. In Mandelbaum
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et al. [38], they used a uniform acceleration technique to obtain the fluid and diffusion limit of a Markovian
service network. Included in their modeling framework are networks of Mt/Mt/nt queues with abandonment
and retrials in many-server heavy traffic.

1.2. Notation. The set of nonnegative integers is denoted by �. For an integer d ≥ 1, the d-dimensional
Euclidean space is denoted by �d, and �+ denotes 601�5. Unless stated otherwise, for x = 4x11 : : : 1 xn5 ∈�n, we
will use the norm �x� = max8i=11 : : : 1n9 �xi�. For the norm of an n×m matrix A, we will use �A� = max8i=11 : : : 1n9 �Ai�,
where Ai is the ith row of A. We use 8xr9 to denote a sequence whose r th term is xr . For x ∈�, x− = 4−x5∨0
and x+ = x∨ 0. For a function f 2 �→�d with d being some positive integer, we say that t is a regular point
of f if f is differentiable at t and use ḟ 4t5 to denote its derivative at t.

For each positive integer d, �d601�5 denotes the d-dimensional Skorohod path space (see Ethier and
Kurtz [19]). All of the processes considered in this paper have sample paths in this space. For x1 y ∈�d601�5
and T > 0 we set

�x4t5− y4t5�T = sup
0≤t≤T

�x4t5− y4t5�0

The space �d601�5 is endowed with the J1 topology, and the weak convergence in this space is considered
with respect to this topology. For a sequence of functions 8xr9 in �d601�5, the sequence is said to converge
uniformly on compact (u.o.c.) sets to x ∈�d601�5 as r → �, denoted by xr → x u.o.c., if for each T > 0

�xr4t5− x4t5�T → 0 as n→ �0

The term FSLLN stands for functional strong law of large numbers, and FCLT stands for functional central limit
theorem (see Chen and Yao [12] for details).

A sequence of random variables 8xr9 is said to satisfy the compact containment condition if

lim
C→�

lim sup
r→�

P8�xr
�>C9= 00 (1)

A sequence of stochastic processes 8Xr4 · 59 is said to satisfy the compact containment condition if �Xr4t5�T

satisfies the compact containment condition for every T > 0.

2. Parallel server systems and the asymptotic framework. We consider a system with parallel server
pools and several customer classes. A server pool consists of several servers whose service capacities and
capabilities are the same. Customers arrive at the system exogenously, and upon arrival they are routed to one
of the buffers (or queues). Two customers that are routed to the same buffer are said to be in the same class.
Each customer is served by one of the servers. Once the service of a customer is completed by one of the
servers, the customer leaves the system. We assume that with each customer there is an associated patience
time. A customer abandons the system without getting any service if the waiting time in the queue exceeds the
customer’s patience. Once a customer joins a queue, he cannot swap to other queues, and once his service starts,
he cannot abandon the system. We refer to these systems as parallel server systems.

We use I to denote the number of arrival streams, J to denote the number of server pools, and K to denote the
number of customer classes. For notational convenience, we define I= 811 : : : 1 I9 as the set of arrival streams,
J= 811 : : : 1 J 9 as the set of server pools, and K= 811 : : : 1K9 as the set of customer classes.

The customers arriving in the ith stream are called type i customers. The arrivals of type i customers follow
a delayed renewal process with rate �i; see (18) below. Upon arrival, each arriving customer is assigned to one
of the buffers according to a routing policy (more details are provided below). Customers that are routed to
buffer k are said to be class k customers. We assume that the set of pools that can handle class k customers is
fixed and denote it by J4k5. Similarly, we assume that the set of queues that servers in pool j can handle is
fixed and denote it by K4j5.

After a customer is routed to a queue, say, queue k, he proceeds directly to service if there is an available
server in one of the pools in J4k5. Otherwise, the customer joins the queue, waiting to be served later. We
assume that the service time of a class k customer by a server in pool j is exponentially distributed with rate
�jk > 0 for all k ∈K4j5 and that customers in class k have exponentially distributed patience with rate �k. We
denote the number of servers in pool j by Nj for j ∈J and set N = 4N11 : : : 1Nj5. The total number of servers
in the system is denoted by �N �.

To operate a multiclass parallel server system, control policies must also be given. A control policy must
specify a routing policy that can be used to route an arriving customer to one of the buffers and a scheduling
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policy that can be used to dispatch a server to serve a customer. Such dispatching is needed in two circumstances:
first, whenever a server completes the service of a customer and there exist multiple customers in different
classes that the server can handle and, second, whenever a customer arrives and there exist one or more idle
servers who can handle that customer class. We restrict our attention to control policies that are head-of-the-line
and nonidling. A scheduling policy is said to be nonidling if a server never idles when there is a customer
waiting in one of the queues that can be served by that server and head-of-the-line (HL) if each server can only
serve one customer at any given time and the customers in the same queue proceed to service on a FIFO basis.
We assume that our control policies are nonpreemptive; under such a policy once the service of a customer
starts, it can not be interrupted before it is finished. Although our results still hold in some special cases when
preemptions are allowed, in general they cannot be used with preemptions (see Remark 5.1 for more details).

We assume also that rerouting of customers is not allowed. We call a control policy nonidling and HL if the
associated scheduling policy is nonidling and HL. The nonidling assumption can be relaxed. Our asymptotic
results also hold when the nonidling condition is only assumed to hold in the limit (see §2.2 for more details).

We also focus on control policies that are Markovian in the sense that they only use information on the
queue length and number of customers in service to make routing decisions at the time of an arrival or to
allocate servers to customer classes at the time of an arrival or a departure (note that Markovian policies are
nonanticipative). We define a strictly increasing sequence 8�l9

�
l=0 that specifies the successive times at which an

arrival occurs to, or a departure occurs from, some class in the network. These time points depend, of course, on
the policy that the system operates under and can be constructed as described below. We assume that the policy
takes actions only when the state of the system is changed via an arrival or a departure and, hence, the server
allocations remain constant between 6�n1�n+15 for n≥ 1. The new allocations for the next interval 6�n+11�n+25
are assigned based on the state of the system during the previous interval 6�n1�n+15 and the events that happen
at time �n+1.

Let Q4t5= 4Qk4t53 k ∈K5 and Z4t5= 4Zjk4t53 j ∈J1 k ∈K4j55, where Qk4t5 denotes the number of class k
customers in queue (not including those in service) at time t; and Zjk4t5 denotes the number of class k customers
served by a server in server pool j at time t. To specify the allocation scheme we assume that associated with
each policy � there exists a function f� 2 �

I ×�J×K ×%→�I ×�J×K such that

f�4Q4�n−51Z4�n−51 en5= 4Q4�n51Z4�n55 (2)

gives the new allocations, where % is the set of possible events, and en is an event at time �n. When more than
one event occurs at time �n (which we show can only happen with probability zero), these events are ordered
arbitrarily, and the policy � makes successive allocations via (2) for each event en. The function f� must satisfy
a set of constraints, such as nonidling and the capacity constraint. For example, the latter constraint says that the
system cannot allocate more servers from a server pool than the number of servers available. Rather than spelling
out all constraints explicitly, these constraints will be formulated implicitly through a set of system equations in
the next section. We call f� the transition function for policy �, and we say that a policy is admissible if it is
nonidling, HL, nonpreemptive, and has the Markovian structure described in (2).

2.1. The dynamics of parallel server systems. In this section we describe the dynamics of a parallel server
system. Actually, we will describe in detail the dynamics of a “perturbed” system. The perturbed system is
closely related to the parallel server system, and it allows us to write down queueing network equations that are
similar to the ones in the standard multiclass queueing networks. The equivalence of these two systems, under
the exponential service and patience time assumption, will be discussed at the end of this section; note that a
control policy for routing and server scheduling is needed to operate the perturbed system. Like the parallel
server system, we assume that each control policy for the perturbed system is admissible. We denote a generic
admissible control policy by �.

The perturbed system is identical to the parallel server system, except that its service and abandonment
mechanisms are modified as follows. At any given time, when n≥ 1 servers in pool j serve n class k customers,
the n servers work on a single class k customer. Note that in the original system a server can only serve one
customer at a time. The remaining n− 1 customers are said to be locked for service; they do not receive any
service, even though they have left queue k. The single customer in service, called the active customer, can be
chosen arbitrarily among the n customers. We assume that the service efforts from the n servers are additive in
that service of the active customer is completed when the total time spent by all servers on the customer reaches
the service requirement of the customer. When the service of the active customer is completed, the customer
departs the system, and one of the servers working on that customer is freed. At this point, the remaining n− 1
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servers choose a new active customer from one of the n− 1 locked customers in an arbitrary fashion, and the
freed server is either assigned to a class, say k′, or stays idle following a nonidling scheduling policy. In the
former case, the server locks a class k′ customer, with a given service requirement, for service. If there is an
active customer that is currently being served by n′ servers in pool j that are working on class k′ customers,
the new server joins the service efforts of these n′ servers on the active customer. Otherwise, the locked class k′

becomes an active customer, served by the new server.
The abandonment mechanism is modified similarly to the service mechanism. The mathematical characteri-

zation is given below by (4) and (5). We assume that whenever there are customers waiting in a queue, only
the first customer in that queue may abandon. We assume that with each customer class, there is an associated
remaining patience time. The remaining patience time associated with class k is set equal to the value of a new
exponential random variable with rate �k at time 0 and at each time point a customer abandons from that class.
Also, at time t the remaining patience time decreases with rate qk, where qk is the number of class k customers
waiting in the queue at time t.

The object of study in this paper is a stochastic process � = 4A1Aq1As1Q1Z1R1G1T 1B1D5, where � is
defined via the perturbed system, and each of its components is explained in the next few paragraphs. The
notation used in this section is inspired by that used in Puhalskii and Reiman [40] and Armony [1]. The first
component is A= 4Ai2 i ∈I5, where Ai4t5 denotes the total number of arrivals by time t for type i customers.
We give more details about the structure of the arrival process in the next section. Here, we just mention that it
is a delayed renewal process (see Ross [43]). The second component is Aq = 4Aik3 i ∈I1 k ∈K5, where Aik4t5
denotes the total number of type i arrivals by time t who are routed to queue k at the time of their arrival and who
had to wait in the queue before their service started. The third component is As = 4Aijk3 i ∈I1 k ∈K1 j ∈J4k55,
where Aijk4t5 denotes the total number of type i customers who have been routed to queue k and locked for
service immediately after their arrival at server pool j by time t. The component B is 4Bjk2 j ∈ J1 k ∈ J4k55,
where Bjk4t5 denotes the total number of class k customers who are delayed in the queue and whose service
started in pool j before time t. The components Z and Q are 4Zjk2 j ∈ J1 k ∈ K4j55 and Q = 4Qk2 k ∈ K5,
respectively, where we use Zjk4t5 to denote the total number of servers in pool j that serve class k customers
and Qk4t5 to denote the total number of customers in queue k at time t. The components T and D are 4Tjk:
j ∈I, k ∈J4j55 and 4Djk: j ∈J, k ∈K4j55, respectively, where Tjk4t5 denotes the total time spent serving class
k customers by all Nj servers of pool j , and Djk4t5 denotes the total number of class k customers whose service
is completed by a server in pool j by time t. The component R is 4Rk2 k ∈K5, where Rk4t5 denotes the number
of customers who have abandoned queue k by time t.

Let 8Sjk, j ∈J1 k ∈K9 be a set of independent Poisson processes with each process Sjk having rate �jk > 0.
We set S = 4Sjk5 and � = 4�jk5. For the perturbed system, we model the total number of class k customers
whose service is completed by servers in pool j via

Djk4t5= Sjk4Tjk4t551 t ≥ 00 (3)

Similarly, let Fk = 8Fk4t52 t ≥ 09 be a Poisson processes with rate �k for k ∈K. We define

Gk4t5=

∫ t

0
Qk4s5ds t ≥ 0 (4)

for all k ∈K. For the perturbed system

Rk4t5= Fk4Gk4t551 t ≥ 01 (5)

for all k ∈K.
The process � depends on the control policy used in the perturbed system. To emphasize the dependence

on the control policy � used, we use �� to denote the process. Clearly, each component of A, Aq , As , B, T ,
and D is a nondecreasing process, and each component of Q and Z is nonnegative. Furthermore, the process ��

satisfies the following equations in addition to (3)–(5) for all t ≥ 0.

Ai4t5=
∑

k∈K

Aik4t5+
∑

k∈K

∑

j∈J4k5

Aijk4t51 for all i ∈I1 (6)

Qk4t5=Qk405+
∑

i∈I

Aik4t5−
∑

j∈J4k5

Bjk4t5−Rk4t51 for all k ∈K1 (7)

Zjk4t5=Zjk405+
∑

i∈I

Aijk4t5+Bjk4t5−Djk4t51 for all j ∈J and k ∈K4j51 (8)
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∑

k∈K4j5

Zjk4t5≤Nj1 for all j ∈J1 (9)

Tjk4t5=

∫ t

0
Zjk4s5ds1 for all j ∈J and k ∈K4j51 (10)

Qk4t5

(

∑

j∈J4k5

(

Nj −
∑

l∈K4j5

Zjl4t5

))

= 01 for all k ∈K1 (11)

∫ t

0

∑

j∈J4k5

(

Nj −
∑

l∈K4j5

Zjl4s−5

)

dAik4s5= 01 for all i ∈I and k ∈K1 (12)

Equations associated with the control policy �0 (13)

The interpretation of (10) is that the busy time for server pool j working on class k at time t accumulates with
rate equal to the total number of servers from pool j working on class k customers at time t. Equations (11)
and (12) are based on the assumed nonidling property of a control policy. Equation (11) implies that there
can be customers in the queue only when all the servers that can serve that queue are busy. Equation (12) implies
that an arriving customer is delayed in the queue only if there is no idle server that can serve to that customer
at the time of his arrival. Equation (13) forces the routing and scheduling decisions to be made according to the
selected routing and scheduling policies. Other conditions are self-explanatory.

We call �� the �-parallel server system process (or just �-parallel server system), although �� is a process
defined through the perturbed system. We note that each component of �� is an element of the Skorohod space
with the appropriate dimension, and so is �� .

Note that for a given admissible control policy �, it can be applied to both the parallel server system and the
perturbed system. For the parallel system, one can define the corresponding process

�′

� = 4A′1A′

q1A
′

s1Q
′1Z′1R′1G′1 T ′1B′1D′5 (14)

with each component having the same interpretation as in the perturbed system. Clearly, A′ = A. Yet, careful
readers have noticed that the corresponding Equations (5) and (3) for the abandonment and departure processes,
respectively, do not hold. Indeed, �′

� is sample pathwise different from the corresponding process �� , although
�′

� satisfies all Equations (6)–(13), except for (3) and (5). For the admissible policies described in the previous
section, under the assumptions that our service times and patience times are exponentially distributed, �� is
equal to �′

� in distribution when they are given the same initial condition.

Theorem 2.1. Under an admissible policy �, �� is equal to �′
� in distribution when they are given the

same initial condition.

The proof is presented in Appendix A.

2.2. Primitive processes. The main goal of this paper is to study the SSC results in many-server diffusion
limits. Therefore, we analyze a sequence of systems indexed by r such that the arrival rates grow to infinity
as r → �. The number of servers also grows to infinity to meet the growing demand. We append “r” to the
processes that are associated with the r th system, e.g., Qr

k4t5 is used to denote the number of class k customers
in the queue in the r th system at time t. The arrival rate for the ith arrival stream in the r th system is given
by �r

i , and we set �r = 4�r
11 : : : 1 �

r
I 5. We assume that

�r
i → �1 i ∈I1 (15)

as r → �.
Let 8Sjk1 j ∈J1 k ∈K9 be the Poisson process defined as in the previous section and 8vjk4l52 l = 1121 : : : 9

be the corresponding sequence of independent and identically distributed (iid) exponential random variables.
Because Sjk is a Poisson process, vjk4l5 has exponential distribution with rate �jk. We define Vjk2 �→� by

Vjk4m5=

m
∑

l=1

vjk4l51 m ∈�1

where, by convention, empty sums are set to be zero. The term Vjk4m5 is the total service requirement of the
first m class k customers that are served by pool j servers, and Vjk is known as the cumulative service time
process. By the duality of Sjk and Vjk, one has

Sjk4t5= max8m2 Vjk4m5≤ t91 t ≥ 00
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It follows from (3) that

Vjk4D
r
jk4t55≤ T r

jk4t5≤ Vjk4D
r
jk4t5+ 151 for all j ∈J and k ∈K4j50 (16)

This condition is identical to the HL condition in a standard multiclass queueing network, where each station
has a single server (see, for example, Dai [13]).

Let 8Fk, k ∈K9 be the Poisson process defined as in the previous section and 8�k4l52 l = 1121 : : : 9 be the
corresponding sequence of iid random variables. Each random variable has an exponential distribution with
rate �k. We define ék2 �→� by

ék4m5=

m
∑

l=1

�k4l51 m ∈�0

The process ék4m5 gives the total waiting time needed for m customers from class k to abandon. Similar to the
discussion for the service times, by the duality of Fk and ék, one has

Fk4t5= max8m2 ék4m5≤ t91 t ≥ 00

It follows from (5) that
ék4R

r
k4t55≤Gr

k4t5≤ék4R
r
k4t5+ 151 for all k ∈K0 (17)

Next, we give the details of the arrival processes. Let �i = 8Ei4t52 t ≥ 09 be a delayed renewal process with
rate 1 and � = 8�i2 i ∈I9. We assume that �i’s are independent. Let

Ar
i 4t5= �i4�

r
i t50 (18)

Let 8ui4l52 l = 1121 : : : 9 be the sequence of interarrival times that are associated with the process �i. Note that
they are independent and that 8ui4l52 l = 2131 : : : 9 are identically distributed. We define Ui2 �→� by

Ui4m5=

m
∑

l=1

ui4l51 m ∈�1

and so
�i4t5= max8m2 Ui4m5≤ t90

We require that the interarrival times of the arrival processes satisfy the following condition, which is similar
to condition (3.4) in Bramson [10]:

Ɛ6ui425
2+�7 <�1 for all i ∈I and for some � > 00 (19)

Condition (19) is automatically satisfied by the service times because they are assumed be exponentially dis-
tributed. This condition is needed in Lemma C.2, which is an integral part of our analysis. For the rest of the
paper, we assume that the primitive processes of a parallel server system satisfy (19). We also assume that
Qr405, Zr405, E, F , and S are independent.

We require that the number of servers in the r th system in each pool is selected so that

lim
r→�

N r
j

�N r �
= �j1 for all j ∈J and for some �j > 0 and (20)

lim
r→�

�r
i

�N r �
= �i1 for all i ∈I and for some 0 <�i <�0 (21)

We set �= 4�11 : : : 1 �I5 and assume that 8�N r �9 is strictly increasing in r . Conditions (15) and (21) imply that
�N r � → � as r → �.

A policy is said to be asymptotically nonidling if there exists a sequence 8�r9⊂�+ such that

Qr
k4t5 > 0 only when

(

∑

j∈J4k5

(

Nj −
∑

l∈K4j5

Zjl4t5

))

< �r 1 (22)

Aik4t25−Aik4t15= 0 if
∑

j∈J4k5

(

Nj −
∑

l∈K4j5

Zjl4s5

)

> �r 1 (23)
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for all i ∈I and k ∈K1 and s ∈ 6t11 t27, and

�r
√

�N r �
→ 0 (24)

as r → �. It can be shown that hydrodynamic and fluid limits of nonidling policies and asymptotically nonidling
policies satisfy the same nonidling conditions. Hence, our framework can also be used to study SSC results
under an asymptotically nonidling policy. Hydrodynamic and fluid limits are introduced in §4 and Appendix B,
respectively.

3. The static planning problem and asymptotic framework. The static planning problem (SPP) has been
used in the literature to determine the optimal nominal allocations of servers’ capacities for the service of
customer classes (see Harrison [29], Dai and Lin [14], among others). Nominal allocations determine the long-
run proportion of servers’ effort allocated to each class. We take a similar approach to determine the nominal
proportion of servers in a server pool that will be allocated to serve each class.

The static planning problem is defined as

min �

s.t.
∑

k∈K

�ik = �i1 for all i ∈I1

∑

j∈J4k5

�j�jkxjk =
∑

i∈I

�ik1 for all k ∈K1

∑

k∈K4j5

xjk ≤ �1 for all j ∈J1

xjk1�ik ≥ 01 for all j ∈J1 k ∈K1 and i ∈I0

(25)

The quantity �ik/�i can be thought of as the long-run proportion of type i customers that are routed to queue k
and xjk as the average long-run fraction of time for pool j servers working on class k customers. We set
�= 8�ik2 i ∈I1 j ∈K9 and x = 8xjk2 j ∈J1 k ∈K9.

The objective of the SPP is to minimize the average utilization of the “busiest” server pool. From this
formulation it is clear that referring to x as the “fraction of time” is a misnomer because

∑

k∈K4j5 xjk may be
greater than 1. We use the term “fraction of time” because of Assumption 3.1 below.

The main difference between our formulation of the SPP and the one in Harrison [29] is that we model
routing of customers to queues explicitly, as in Stolyar [44]. We pay the price by having one more constraint
than Harrison’s formulation. The main constraint is to be able to serve all of the incoming customers. This is
formulated in the first and the second constraints. The first constraint ensures that all the arriving customers are
routed to one of the queues, and the second constraint is needed to guarantee that enough service capacity is
allocated to all customer classes.

Let 4�∗1 x∗1 �∗5 be an optimal solution to the SPP. If �∗ > 1, it can be easily shown that the queue length
process is not bounded under the fluid limit for r large enough (fluid limits are defined in Appendix B). We
will assume for the rest of this paper that �∗ ≤ 1.

Now, consider the sequence of parallel server systems described in the previous section and the associated
SPP with the r th system:

min �r

s.t.
∑

k∈K

�r
ik = �r

i 1 for all i ∈I1

∑

j∈J4k5

N r
j �jkx

r
jk =

∑

i∈I

�r
ik1 for all k ∈K1

∑

k∈K4j5

xr
jk ≤ �r 1 for all j ∈J1

xr
jk1�

r
ik ≥ 01 for all j ∈J1 k ∈K1 and i ∈I0

(26)

Let 4�r1∗1 xr1∗1 �r1∗5 be an optimal solution to (26). Note that the SPP (25) has at least one solution because the
objective function is continuous, and the constraints define a compact set. Next, we formulate the many-server
heavy traffic condition.
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Assumption 3.1. For each optimal solution 4�∗1 x∗1 �∗5 of the SPP (25) with � given by (21) and � given
by (20), we have �∗ = 1 and

∑

k∈K4j5 x
∗
jk = 1 for all j ∈ J. Moreover, for any sequence of optimal solutions

8xr1∗9 of (26) we have
xr1∗

→ x∗1

as r → � for some optimal solution x∗ of (25).

Even when the SPP (25) has an optimal solution with �∗ ≤ 1, it is not a trivial task to come up with a
control policy that will achieve the optimal allocations in the long run. If �∗ is close to one, small deviations
from the optimal allocations may again cause the queue length to grow without a bound. This phenomenon is
closely related to the stability of a control policy in a multiclass queueing network setting. In this paper we only
consider control policies that satisfy the following assumption.

Assumption 3.2. For a control policy �,

Qr4 · 5/�N r
� → 0 and Zr4 · 5/�N r

� → z u.o.c. a.s., (27)

as r → �, if 4Qr405/�N r �1 Zr405/�N r �5 → 401 z5 a.s., as r → �, where z = 4zjk1 j ∈ J1 k ∈ K4j55; and zjk =

�jx
∗
jk for an optimal solution 4�∗1 x∗1 �∗5 of (25).

We provide a fluid model framework that can be used to ensure that a control policy satisfies Assumption 3.2
in Appendix B. Assumption 3.1 is fairly standard in heavy-traffic analysis (usually, uniqueness of x∗ is also
assumed). Assumption 3.2 is on a control policy �. Under a control policy, when Assumption 3.2 is satisfied,
the fluid limits exist and do not blow up, even though they are critically loaded. Clearly, this condition must be
satisfied by any policy that has a “reasonable” performance (see also the discussion at the end of §4.1 for the
importance of this assumption). We assume that

Qr405/�N r
� → 0 and Zr405/�N r

� → z a.s.1 (28)

as r → �, where z is given as in Assumption 3.2. Under Assumption 3.2, condition (28) implies that

Qr4 · 5/�N r
� → 0 and Zr4 · 5/�N r

� → z4 · 5 u.o.c. a.s.,

as r → �, where z4t5 = z, for t ≥ 0. In general, diffusion limits are introduced as a refinement of the fluid
limits. Under condition (28) and Assumption 3.2, we define the diffusive scaling as follows:

Q̂r4t5=
Qr4t5
√

�N r �
and Ẑr

jk4t5=
Zr
jk4t5− x∗

jkN
r
j

√

�N r �
1 for t ≥ 00 (29)

4. Main results. In this section, we present a general framework to prove a SSC result in the many-server
diffusion limit of a �-parallel server system process. We first introduce the hydrodynamic model equations. The
solutions of these equations play an important role in the general SSC framework. We present our main results
in §4.2. Naturally, some of the hydrodynamic equations depend on the policy used. Examples of SSC results and
hydrodynamic equations will be discussed in §§7 and 8. The proofs of the results in this section are presented
in §5.

4.1. Hydrodynamic model equations. Consider the process �̃� = 4Ã1 Ãq1 Ãs1 Q̃1 Z̃1 B̃5 and the following
set of equations:

�it =
∑

k∈K

Ãik4t5+
∑

k∈K

∑

j∈J4k5

Ãijk4t51 for all i ∈I1 (30)

Q̃k4t5= Q̃k405+
∑

i∈I

Ãik4t5−
∑

j∈J4k5

B̃jk4t51 for all k ∈K1 (31)

Ãik1 Ãijk1 B̃jk are nondecreasing for all i ∈I1 j ∈J1 and k ∈K1 (32)

Z̃jk4t5= Z̃jk405+
∑

i∈I

Ãijk4t5+ B̃jk4t5−�jkT̃jk4t51 for all j ∈J and k ∈J4k51 (33)

T̃jk4t5=

∫ t

0
zjkds = zjkt1 for all j ∈J and k ∈J4k51 (34)
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Q̃k4t5≥ 01 for all k ∈K and
∑

k∈K4j5

Z̃jk4t5≤ 01 for all j ∈J1 (35)

Q̃k4t5

(

∑

j∈J4k5

∑

l∈K4j5

Z̃jl4t5

)

= 01 for all k ∈K1 (36)

∫ t

0

∑

j∈J4k5

(

∑

l∈K4j5

Z̃jl4s5

)

dÃik4s5= 01 for all i ∈I and k ∈K1 (37)

Additional equations associated with the control policy�1 (38)

where �i is defined as in (21) and zij as in Assumption 3.2. Equations (30)–(38) are called the hydrodynamic
model equations, and they define the hydrodynamic model of the �-parallel server system. Any process �̃�

satisfying (30)–(38) for all t ≥ 0 is called a hydrodynamic model solution. The differences between the fluid
and hydrodynamic models are discussed at the end of this section.

Hydrodynamic model solutions are similar to the fluid model solutions; they are deterministic and absolutely
continuous, hence, almost everywhere differentiable. Absolute continuity follows from the following result.

Proposition 4.1. Any process �̃� satisfying (30)–(38) for all t ≥ 0 is Lipschitz continuous.

Proof. Assume that �̃� satisfies (30)–(38) for all t ≥ 0. First note that Ãik, and Ãijk are Lipschitz for all
i ∈I, j ∈J and k ∈K by (30) and (32). Next, we show that B̃jk is Lipschitz continuous.

Let t1 < t2. If Q̃k4t5 > 0 for all t ∈ 6t11 t27, then by (33), (36), and the fact that Ãijk is nondecreasing,
∑

k′∈K4j5

4B̃jk′4t25− B̃jk′4t155≤
∑

k′∈K4j5

�jk′zjk′4t2 − t15 (39)

for all j ∈J4k5. Because B̃jks are nondecreasing, this implies

B̃jk4t25− B̃jk4t15≤
∑

k′∈K4j5

�jk′zjk′4t2 − t15 (40)

for all j ∈J4k5.
Now assume that Q̃k4t5 = 0 for some t ∈ 6t11 t27 and let t0 = inf8t ∈ 6t11 t272 Q̃k4t5 = 09. We assume that

t0 > t1, because otherwise the proof follows from (44) below by replacing t0 with t1. We prove below that

lim
t↑t0

Q̃k4t5= Q̃k4t05= 00 (41)

The continuity of Ãik, Equation (31), condition (41), and the fact that B̃jks are nondecreasing implies that

lim
t↑t0

B̃jk4t5= B̃jk4t05 (42)

for all j ∈J4k5.
By definition of t0, we have that Q̃k4t5 > 0 for all t ∈ 6t11 t05. Hence, similar to (40),

B̃jk4t5− B̃jk4t15≤
∑

k′∈K4j5

�jk′zjk′4t − t15

for all j ∈J4k5 and t ∈ 6t11 t05. By taking limit t ↑ t0 and using (42), we have

B̃jk4t05− B̃jk4t15≤
∑

k′∈K4j5

�jk′zjk′4t0 − t150 (43)

Also, by (31) and the fact that Q̃k4t05= 0,
∑

i∈I

(

Ãik4t25− Ãik4t05
)

≥
∑

j∈J4k5

(

B̃jk4t25− B̃jk4t05
)

0 (44)

Then, it follows from (42), (43), (44) and the fact that B̃jks are nondecreasing that

B̃jk4t25− B̃jk4t15≤
∑

i∈I

4Ãik4t25− Ãik4t155+
∑

k′∈K4j5

�jk′zjk′4t2 − t150 (45)
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Hence, B̃ is Lipschitz. The Lipschitz continuity of Z̃jk and Q̃k now follow from this, (31), and (33).
To complete the proof of the lemma, it remains to prove (41). We now prove

lim
t↑t0

Q̃k4t5= 00 (46)

The result

Q̃k4t05= 0 (47)

is proved similarly by considering t0, instead of tn in the proof below.
Assume on the contrary that (46) does not hold. Then there exists an increasing sequence 8tn9 such that tn ↑ t0

and limn→� Q̃k4tn5 > � for some � > 0. By the definition of t0, for any � > 0 there exist t̃0 and n large enough
such that Q̃k4tn5 > �, Q̃k4t̃05= 0 and t̃0 − tn < �. By (31), this implies that, for � > 0 small enough,

B̃j ′k4t̃05− B̃j ′k4tn5≥ a�/2 (48)

for a= 1/�J4k5� and for some j ′ ∈J4k5.
Because Q̃k4tn5 > 0, by (36),

∑

k′∈K4j5 Z̃jk′4tn5= 0 for all j ∈J4k5. Hence, by (35)

∑

k′∈K4j ′5

Z̃j ′k′4t̃05−
∑

k′∈K4j ′5

Z̃j ′k′4tn5≤ 00 (49)

This inequality and (33) imply that
∑

i∈I

∑

k′∈K4j ′5

4Ãij ′k′4t̃05− Ãij ′k′4tn55+
∑

k′∈K4j ′5

4B̃j ′k′4t̃05− B̃j ′k′4tn55≤
∑

k′∈K4j ′5

�jkzjk4t̃0 − tn50

Because Ãijk is nondecreasing, by selecting � small and n large enough, we have

∑

k′∈K4j ′5

4B̃j ′k′4t̃05− B̃j ′k′4tn55≤ a�/40 (50)

Inequalities (48) and (50), and the fact that Bjks are nondecreasing imply that

B̃j ′k′′4t̃05− B̃j ′k′′4tn5≤ −a�/44�K4j ′5�50 (51)

for some k′′ ∈K4j ′5, which contradicts with the fact that B̃jks are nondecreasing. Therefore, (46) is proved. �
It will be proved in Proposition 5.4 in §5 that the hydrodynamic model equations are satisfied by hydrodynamic

limits under certain general assumptions; these limits are obtained from the hydrodynamically scaled sequences
such as

{(

1
√

�N r �
Qr

k4t/
√

�N r �51
1

√

�N r �
4Zr

jk4t/
√

�N r �5− x∗

jkN
r
j 5

)

1 t ≥ 0
}

r = 1121 : : : 3 (52)

see §5 for details. Equation (38) is obtained from the policy �. It has to be justified mathematically that the
hydrodynamic limits satisfy this equation. We demonstrate this for two systems in §§7 and 8.

Differences between fluid and hydrodynamic models. A fluid model is introduced in Appendix B. It is
defined by fluid model Equations (B3)–(B10). Unlike hydrodynamic model equations, fluid model equations are
satisfied by fluid limits obtained from fluid-scaled sequences

{(

1
�N r �

Qr
k4t51

1
�N r �

Zr
jk4t5

)

1 t ≥ 0
}

1 r = 1121 : : : 0

The fluid model and fluid limits developed in Appendix B provide a practical tool for one to verify Assump-
tion 3.2. The fluid-scaling keeps the diffusion time scale but reduces the space resolution by a factor of 1/

√

�N r �,
whereas the hydrodynamic scaling slows down the diffusion scaling in (29) by a factor of 1/

√

�N r � (see (52)).
A comparison of hydrodynamic model Equations (30)–(38) with fluid model Equations (B3)–(B10) reveals

major differences. The most important difference is between hydrodynamic model Equation (34) and fluid model
Equation (B6). The fluid model Equation (B6) is intuitive and is a direct consequence of system dynamic
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Equation (10). The hydrodynamic model Equation (34) is subtle. It holds under Assumption 3.2 and is justified
through a hydrodynamic limit procedure (see (71) and the derivation of (C27) in Appendix C.3.1). Even under
Assumption 3.2, when the initial condition Z̄jk405 6= zjk, it will take some time for Z̄jk4t5 to converge to zjk in
the fluid model. Therefore, when Z̄jk405= Z̃jk405 6= zjk, the fluid model dynamics and the hydrodynamic model
dynamics are different.

Without Assumption 3.2, one may still attempt to develop a hydrodynamic model. In this case, (34) is false
in general, and we do not know what dynamic equation can be used to replace (34). Without an additional
dynamic equation on T̃jk such as (34), the hydrodynamic model can hardly be analyzed, and thus the entire
hydrodynamic framework is likely useless.

In the single-server multiclass queueing network setting, Bramson [10] uses Equations (2.15)–(2.20) in his
paper to define a deterministic model. Using his Equations (5.10)–(5.15) for hydrodynamically scaled processes,
he shows that each hydrodynamic limit is a solution to (2.15)–(2.20). Therefore, following the terminology
of this paper, Bramson’s deterministic model should be a hydrodynamic model, although he calls it a fluid
model. The confusion is partly justified because his deterministic model (2.15)–(2.20) is also identical to the
(nondelayed) fluid model studied in Dai [13] for multiclass queueing networks. Because both scalings and both
models are simultaneously used in this paper, to avoid possible confusion, we purposely choose two different
labels for these two scalings and two models. The term hydrodynamic scaling is consistent with the usage in
Bramson [10] (see §5.1 for more details).

4.2. SSC in the diffusion limits. We need a machinery to define a state space collapse in mathematical
terms, for this we use a function with the following properties. Let g2 �K+dz → �+, where dz =

∑

j∈J �K4j5�,
be a nonnegative function that satisfies the following homogeneity condition:

g4�x5= �cg4x51 (53)

for some c > 0, for all x ∈�K+dz , and for all 0 ≤ �≤ 1. Recall that dz is the dimension of the process Z. We call
g an SSC-function. Nonnegativity assumption is made for notational convenience, and one can always consider
�g� in order to have a nonnegative function if g can take negative values. We make the following assumption
about the SSC function.

Assumption 4.1. The function g2 �K+dz →�+ satisfies (53) and is continuous on �K+dz .

Assumption 4.1 is needed for a simple reason; we will consider a sequence of stochastic processes that
converges to another one, and we would like to show that the sequence that consists of the values of g evaluated
for each process converges to the value of g evaluated at the limiting process. Assumption 4.1 makes this possible
by virtue of the continuous mapping theorem (see Chen and Yao [12]). Condition (53) will be needed when
we translate the results from hydrodynamic scaled processes to diffusion-scaled processes (see Proposition 5.6).
The class of functions that satisfy Assumption 4.1 is large enough for most purposes; however, this class can
be extended as discussed in §6. Examples of SSC functions are presented in §§7 and 8.

As the machinery to state an SSC result has been set, we are ready to state the conditions on the hydrodynamic
model solutions that imply that an SSC result holds in the diffusion limit. The following assumption is analogous
to Bramson [10, Assumption 3.2].

Assumption 4.2. Let g be a function that satisfies Assumption 4.1. There exists a function H4t5 with
H4t5→ 0 as t → � such that

g4Q̃4t51 Z̃4t55≤H4t5 for all t ≥ 0 (54)

for each hydrodynamic model solution �̃� satisfying �4Q̃4051 Z̃4055� ≤ 1. Furthermore, for each hydrodynamic
model solution �̃� with g4Q̃4051 Z̃4055= 0 and �4Q̃4051 Z̃4055� ≤ 1, g4Q̃4t51 Z̃4t55= 0 for t ≥ 0.

We are ready to state the main result of this paper.

Theorem 4.1. Let 8�r
�9 be a sequence of �-parallel server system processes. Suppose that Assumption 3.1

holds, � satisfies Assumption 3.2, g satisfies Assumption 4.1, the hydrodynamic model of �-parallel server
system satisfies Assumption 4.2, and

g4Q̂r4051 Ẑr4055→ 0 in probability (55)

as r → �. Then, for each T > 0,

�g4Q̂r4t51 Ẑr4t55�T

4�Q̂r4t5�T ∨ �Ẑr4t5�T ∨ 15c
→ 0 in probability1 (56)

as r → �, where c > 0 is given as in (53).
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Remark 4.1. The result of Theorem 4.1 is still valid if it is only assumed that hydrodynamic limits, not the
hydrodynamic model, satisfy Assumption 4.2. This relaxes the assumption because it will be shown that every
hydrodynamic limit over a finite time interval 601L7, for some L > 0, is a hydrodynamic model solution on
601L7. The set of hydrodynamic model solutions may contain processes that are not hydrodynamic limits.

Remark 4.2. The SSC result, as stated in Theorem 4.1, is called the multiplicative SSC. If 4Q̂r 1 Ẑr5 also
satisfies the compact containment condition, then one can use this property to remove the denominator from
(56) and obtain a (strong) SSC that is more suitable for applications.

The condition (55) can be relaxed as in Bramson [10, Theorem 3] to only require that Q̂r405 and Ẑr405 satisfy
the compact containment condition. The SSC result in this case, however, does not hold initially at time 0.

Theorem 4.2. Let 8�r
�9 be a sequence of �-parallel server system processes. Suppose that Assumption 3.1

holds, � satisfies Assumption 3.2, g satisfies Assumption 4.1, the hydrodynamic model of �-parallel server
system satisfies Assumption 4.2, and �Q̂r405� ∨ �Ẑr405� satisfies the compact containment condition. Then, for
some Lr = o4

√

�N r �5 with Lr → � as r → �, and for every T > 0 and � > 0,

P

{ sup
Lr /

√
�N r �≤t≤T

�g4Q̂r4t51 Ẑr4t55�

sup
Lr /

√
�N r �≤t≤T

4�Q̂r4t5� ∨ �Ẑr4t5� ∨ 15c
> �

}

→ 01 (57)

as r → �, where c > 0 is given as in (53).

Remark 4.3. Let 8�r
�9 be a sequence of �-parallel server system processes that satisfy the conditions of

Theorem 4.2. If in addition H , given as in Assumption 4.2, is bounded, then

lim
C→�

lim sup
r→�

P
{

�g4Q̂r4t51 Ẑr4t55�
Lr /

√
�N r �

>C
}

= 00 (58)

The result (58) may be used to verify that

lim
C→�

lim sup
r→�

P

{

sup
Lr /

√
�N r �≤t≤T

(

�Q̂r4t5� ∨ �Ẑr4t5�
)

>C

}

= 00 (59)

Then, similar to Remark 4.2, one can deduce a strong state space collapse result from Theorem 4.2 using (59).

5. SSC framework. In this section we prove Theorem 4.1. We begin with introducing the hydrodynamic
scaling that will be used to define the hydrodynamic limits. Once we establish the relationship between the
hydrodynamic scaled processes and the hydrodynamic limits, we translate condition (54) to a condition on
the diffusion-scaled processes. We finally show that this latter condition implies the desired SSC result in the
diffusion limit.

5.1. Hydrodynamic scaling and bounds. The hydrodynamic scaling is used by Bramson [10] to establish a
relationship between the hydrodynamic and the diffusion limits in conventional heavy traffic asymptotic analysis.
We consider a similar time scaling that slows the process down. This allows us to analyze the events that happen
instantaneously in the diffusive scale in more detail. This can be achieved by using a scaling similar to the
diffusion scaling as given in (29) but also scaling the time by 1/

√

�N r �. However, this scaling is not suitable for
our purposes.

We need the more refined scaling, which we call the hydrodynamic scaling. We divide the interval 601 T 7 into
T
√

�N r � intervals of length 1/
√

�N r � and analyze the processes in each intervals. We index the intervals by m.
For a nonnegative integer m, let

xr1m =

∣

∣

∣

∣

Qr

(

m
√

�N r �

)

∣

∣

∣

∣

2

∨

∣

∣

∣

∣

Zr

(

m
√

�N r �

)

− EN rx∗

∣

∣

∣

∣

2

∨ �N r
�1 (60)

where EN r is a diagonal matrix with EN r
jj ′ =N r

j if j = j ′ and 0 otherwise for j ∈J and x∗ = 4xjk1 j ∈J1 k ∈K5 is
given as in Assumption 3.2. Hence, Zr4t5− EN rx∗ is a J ×K matrix with its 4j1 k5th entry equal to Zr

jk4t5−x∗
jkN

r
j

if k ∈K4j5 and zero otherwise. Note that the square root of the first two terms of xr1m gives the deviations of
these processes from their fluid limits.
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We define the hydrodynamic scaling by shifting and scaling the processes of �r as follows. For a process
Xr associated with the r th process, we denote the hydrodynamic scaled version by Xr1m. For Ar , Ar

s , A
r
q , Br ,

Dr , T r , and Rr , the hydrodynamic scaling is defined for t ∈ 601L7 for some L> 0 by

Xr1m4t5=
1

√
xr1m

(

Xr

(√
xr1mt

�N r �
+

m
√

�N r �

)

−Xr

(

m
√

�N r �

))

1 (61)

Hydrodynamic scaled version of Qr and Zr are defined as follows;

Qr1m4t5=
1

√
xr1m

(

Qr

(√
xr1mt

�N r �
+

m
√

�N r �

))

1 and

Zr1m4t5=
1

√
xr1m

(

Zr

(√
xr1mt

�N r �
+

m
√

�N r �

)

−N rx∗

)

0

(62)

Note that Qr1m4 · 5 and Zr1m4 · 5 keep track of the deviation of processes Qr4 · 5 and Zr4 · 5, respectively, from
their respective fluid limits during the time interval 6m/

√

�N r �1
√
xr1mL/�N

r � +m/
√

�N r �7, which is also scaled
with their initial value at time m/

√

�N r �. Observe that xr1m must be in the order of
√

�N r � for Qr and Zr to have
meaningful diffusion limits. Also, if xr1m is in the order of

√

�N r �, then Qr1m4 · 5 and Zr1m4 · 5 is very similar to
the diffusion scaling. Although our results hold no matter how xr1m behaves, provided conditions of Theorem 4.1
hold, this reveals the relationship between the hydrodynamic and diffusion scaling that will be used to translate
a SSC result from hydrodynamic limits to diffusion limits.

For notational convenience, with a slight abuse of notation, we set

V r1m
jk 4Dr1m

jk 4t51 b5=
1

√
xr1m

(

Vjk

(

Dr
jk

(√
xr1mt

�N r �
+

m
√

�N r �

)

+ b1

)

−Vjk

(

Dr
jk

(

m
√

�N r �

)

+ b2

))

1 (63)

Y r1m
k 4Rr1m

k 4t51 b5=
1

√
xr1m

(

Yk

(

Rr
k

(√
xr1mt

�N r �
+

m
√

�N r �

)

+ b1

)

− Yk

(

Rr
k

(

m
√

�N r �

)

+ b2

))

1 (64)

and for b = 4b11 b25 ∈�2. By (16) and (17),

V r1m
jk 4Dr1m

jk 4t51 401155≤ T r1m
jk 4t5≤ V r1m

jk 4Dr1m
jk 4t51 411055 and (65)

Y r1m
k 4Rr1m

k 4t51 401155≤Gr1m
k 4t5≤ Y r1m

k 4Rr1m
k 4t51 4110550 (66)

Let �r1m = t4Ar1m1Ar1m
s 1Ar1m

q 1Br1m1 T r1m1Qr1m1Zr1m1Rr1m1Gr1m5. We refer to �r1m as the hydrodynamic scaled
process. From the definition of xr1m we have that

��r1m405� ≤ 10

It can easily be checked that �r1m satisfies the following equations for all t ≥ 0.

Ar1m
i 4t5=

∑

k∈K

Ar1m
ik 4t5+

∑

k∈K

∑

j∈J4k5

Ar1m
ijk 4t51 for all i ∈I1 (67)

Qr1m
k 4t5=Qr1m

k 405+
∑

i∈I

Ar1m
ik 4t5−

∑

j∈J4k5

Br1m
jk 4t5−Rr1m

k 4t51 for all k ∈K1 (68)

Zr1m
jk 4t5=Zr1m

jk 405+
∑

i∈I

Ar1m
ijk 4t5+Br1m

jk 4t5−Dr1m
jk 4t51 for all j ∈J and k ∈J4k51 (69)

Dr1m
jk 4t5=

Sjk4
√
xr1mT

r1m
jk 4t5+ T r

jk4m/
√

�N r �55− Sjk4T
r
jk4m/

√

�N r �55
√
xr1m

1 for all j ∈J and k ∈J4k51 (70)

T r1m
jk 4t5=

�N r
j �x∗

jk

�N r �
t +

√
xr1m

�N r �

∫ t

0
Zr1m
jk 4s5ds1 for all j ∈J and k ∈K4j51 (71)

Rr1m
k 4t5=

Fk4
√
xr1mG

r1m
k 4t5+Gr

k4m/
√

�N r �55− Fk4G
r
k4m/

√

�N r �55
√
xr1m

1 for all k ∈K1 (72)

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Dai and Tezcan: State Space Collapse in Many-Server Diffusion Limits
286 Mathematics of Operations Research 36(2), pp. 271–320, © 2011 INFORMS

Gr1m
k 4t5=

√
xr1m

�N r �

∫ t

0
Qr1m

k 4s5ds1 for all k ∈K1 (73)

Qr1m
k 4t5

(

∑

j∈J4k5

∑

k′∈K4j5

Zr1m
jk′ 4t5

)

= 01 for all k ∈K1 (74)

∫ t

0

∑

j∈J4k5

(

∑

k′∈K4j5

Zr1m
jk′ 4s−5

)

dAr1m
ik 4s5= 01 for all i ∈I and k ∈K0 (75)

We have the following estimates that are similar to those established in Proposition 5.1 in Bramson [10].

Proposition 5.1. Let 8�r
�9 be a sequence of �-parallel server system processes. Assume that (20) and (21)

hold and � satisfies Assumption 3.2. Fix � > 0, L> 0 and T > 0. Then, for large enough r , there exists N > 0
such that

P

{

max
m<

√
�N r �T

∥

∥

∥

∥

Ar1m4t5−
�r

�N r �
t

∥

∥

∥

∥

L

> �

}

≤ �1 (76)

P

{

max
m<

√
�N r �T

sup
t11t2≤L

�Dr1m4t15−Dr1m4t25�>N �t1 − t2� + �

}

≤ �1 and (77)

P

{

max
m<

√
�N r �T

∥

∥

∥

∥

V r1m
jk 4Dr1m

jk 4t51 b5−
1
�jk

Dr1m
jk 4t5

∥

∥

∥

∥

L

> �

}

≤ �1 (78)

for all j ∈J1 k ∈K4j5, and b = 41105 or 40115.

The proof is given in Appendix C.2.1.

Proposition 5.2. Let 8�r
�9 be a sequence of �-parallel server system processes. Assume that Assumption 3.1

holds and � satisfies Assumption 3.2. Fix � > 0, L> 0 and T > 0. Then, for large enough r ,

P

{

max
m<

√
��N r ��T

�Rr1m
k 4t5�L > �

}

≤ �1 (79)

k ∈K.

The proof is given in Appendix C.2.2.
Using these two propositions, one can show that �r1m is almost Lipschitz, as described in the next proposition.

In this section and for the remainder of this paper N without a superscript is reused to denote a general constant.

Proposition 5.3. Let 8�r9 be a sequence of �-parallel server system processes. Assume that Assumption 3.1
holds and � satisfies Assumption 3.2. Fix � > 0, L> 0, and T > 0. Then, for large enough r ,

P

{

max
m<

√
�N r �T

sup
t11 t2≤L

��r1m4t15−�r1m4t25�>N �t1 − t2� + �

}

≤ �1 (80)

where N <� and only depends on 4I1 J 1K1�5.

The proof is similar to that of Proposition 5.2 in Bramson [10] and presented in Appendix C.2.3. For conve-
nience, we assume for the rest of the paper that N ≥ 1 and L≥ 1. Let

Kr
0 =

{

max
m<

√
�N r �T

sup
t11 t2≤L

��r1m4t15−�r1m4t25� ≤N �t1 − t2� + �4r5

}

1 (81)

where L, N , and T are fixed as before and �4r5 with �4r5 → 0 as r → � is a sequence of real numbers.
Similarly, we can replace � in (76), (78), and (79) by �4r5. We denote these new inequalities obtained from
(76), (78), and (79) by (76′), (78′), and (79′). Let Kr denote the intersection of Kr

0 with the complements of
the events in (76′), (78′), and (79′). As in Bramson [10], when �4r5→ 0 sufficiently slowly as r → �, one can
show that P4Kr5→ 1 as r → �.

We summarize the above discussion in the following corollary for future reference.
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Corollary 5.1. Let 8�r
�9 be a sequence of �-parallel server system processes. Assume that Assumption 3.1

holds and � satisfies Assumption 3.2. Fix L> 0 and T > 0 and choose N and �4r5 as above. Then, for Kr

defined as above

lim
r→�

P4Kr5= 10 (82)

Remark 5.1. If preemptions are allowed, (80) does not have to hold in general. More specifically, the
problem is bounding the number of customers whose service start, the term Br1m

jk , in a given interval. When
preemptions are not allowed Br1m

jk 4t25−Br1m
jk 4t15 is bounded by the maximum of total number of arrivals to this

class in this interval,
∑

i4A
r1m
ik 4t25 − Ar1m

ik 4t155, and the total number of departures from server pool j in this
interval,

∑

kD
r1m
jk 4t25−Dr1m

jk 4t155. If preemptions are allowed, this bound is not necessarily valid any more.

5.2. Hydrodynamic limits of �-parallel server systems. In this section, we define the hydrodynamic limits
of �-parallel server systems. First, we define a set of functions that contains all of the hydrodynamic limits.
The following definitions are similar to those in Bramson [10, §6], and the notation is adapted from that paper.

Fix L> 0. Let Ẽ be the set of right continuous functions with left limits, x2 601L7→�d. Let E ′ denote those
x ∈ Ẽ that satisfies

�x405� ≤ 1

and
�x4t25− x4t15� ≤N �t2 − t1� for all t11 t2 ∈ 601L71

where constant N is chosen as in Proposition 5.3. We set

Er
=
{

�r1m1 m<
√

�N r �T 1 � ∈Kr
}

and
E= 8Er 2 r ∈�91

where T is fixed, and Kr is defined as in the previous section. (These quantities are not correlated to the external
arrival processes E introduced in §2.2.)

We define a hydrodynamic limit x of E to be a point x ∈ Ẽ such that for all � > 0 and r0 ∈ �, there exist
r ≥ r0 and y ∈Er , with �x4 · 5− y4 · 5�L < �.

Because
��r1m405� ≤ 1 (83)

for all m<
√

�N r �T and r ∈�, the following result is a corollary in Bramson [10, Proposition 4.1] and is similar
to Proposition 6.1 in that paper. It shows that the hydrodynamic limits are “rich” in the sense that for r large
enough, every hydrodynamic scaled process is close to a hydrodynamic limit.

Corollary 5.2. Let 8�r
�9 be a sequence of �-parallel server system processes. Assume that Assumption 3.1

holds, � satisfies Assumption 3.2. Let Ẽ, Er , and E be as specified above. Fix � > 0, L > 0, and T > 0, and
choose r large enough. Then, for � ∈Kr and any m<

√

�N r �T

��r1m4 · 5− �̃4 · 5�L ≤ � (84)

for some hydrodynamic limit �̃4 · 5 of E with �̃4 · 5 ∈E ′.

The next result is mainly needed to translate the condition on the hydrodynamic model solutions to hydrody-
namic limits given in Assumption 4.2. It also reveals the origin of hydrodynamic model equations.

Proposition 5.4. Let 8�r
�9 be a sequence of �-parallel server system processes. Assume that Assumption 3.1

holds and � satisfies Assumption 3.2. Choose L > 0 and let �̃� be a hydrodynamic limit of E over 601L7.
�̃� satisfies the hydrodynamic model Equations (30)–(38) on 601L7.

The proof is given in Appendix C.3.1.
Observe that by (53) and definitions of hydrodynamic and diffusion scalings

�g4Qr104051Zr104055� ≤ �g4Q̂r4051 Ẑr4055�0 (85)
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If condition (55) holds, (85) implies that g4Qr104051Zr104055 → 0 in probability as r → �. Therefore, we can
choose �4r5 with �4r5→ 0 as r → � such that for Lr =Kr ∩Gr , where

Gr
=
{

�g4Qr104051Zr104055� ≤ �4r5
}

1

we have

lim
r→�

P4Lr5= 10 (86)

We set

Er
g = 8�r104·1�51 � ∈Lr9

and

Eg = 8Er
g1 r ∈�90

The following proposition is similar to Bramson [10, Proposition 6.4], a proof is presented in Appendix C.3.2.

Proposition 5.5. Let 8�r
�9 be a sequence of �-parallel server system processes. Assume that Assumption 3.1

holds, � satisfies Assumption 3.2, g satisfies Assumption 4.1, and the hydrodynamic model of the �-parallel
server system satisfies Assumption 4.2. Fix � > 0, L > 0, and T > 0, and assume that r is large. Then, for
� ∈Kr ,

g
(

Qr1m4t51Zr1m4t5
)

≤H4t5+ � (87)

for all t ∈ 601L7, and m<
√

�N r �T , with H4 · 5 is given in Assumption 4.2.
Furthermore, for � ∈Lr

�g4Qr104t51Zr104t55�L ≤ �0 (88)

If, in addition, condition (55) holds, then (86) holds.

5.3. SSC in the diffusion limits. In this section we change the scaling from hydrodynamic to diffusion
to prove Theorem 4.1. Once the scaling is changed, a few complications needs to be dealt with regarding the
change in the range of the time variable.

We begin with changing the scaling. One can check by employing (29) and (62) that

Qr1m
k 4t5=

√

�N r �

xr1m
Q̂r

k

(√
xr1mt

�N r �
+

m
√

�N r �

)

=
1

yr1m
Q̂r

k

(

1
√

�N r �
4yr1mt +m5

)

and

Zr1m
jk 4t5=

√

�N r �

xr1m
Ẑr
jk

(√
xr1mt

�N r �
+

m
√

�N r �

)

=
1

yr1m
Ẑr
jk

(

1
√

�N r �
4yr1mt +m5

)

1

(89)

where

yr1m =

√

xr1m
�N r �

=

∣

∣

∣

∣

Q̂r

(

m
√

�N r �

)

∣

∣

∣

∣

∨

∣

∣

∣

∣

Ẑr

(

m
√

�N r �

)

∣

∣

∣

∣

∨ 10 (90)

By changing the scaling in Proposition 5.5 as above, we can rephrase (87) and (88). However, the domain
of the time scales will change and the domain 0 ≤ t ≤ L for the arguments on the left-hand side of (89) will
correspond to

m
√

�N r �
≤ t ≤

1
√

�N r �
4yr1mL+m5 (91)

for the arguments on the right.
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Proposition 5.6. Let 8�r9 be a sequence of �-parallel server system processes. Assume that Assumption 3.1
holds, � satisfies Assumption 3.2, g satisfies Assumption 4.1, and the hydrodynamic model of the �-parallel
server system satisfies Assumption 4.2. Fix � > 0, L > 0, and T > 0, and assume that r is large. Then, for
� ∈Kr and for H4 · 5 given as in Assumption 4.2

g4Q̂r4t51 Ẑr4t55≤ ycr1mH

(

1
yr1m

4
√

�N r �t −m5

)

+ �ycr1m (92)

for all t ∈ 601 T 7 and m satisfying (91). Also
∥

∥g4Q̂r4t51 Ẑr4t55
∥

∥

Lyr10/
√

�N r �
≤ �ycr10 (93)

for � ∈Lr .

Proof. The bounds (92) and (93) are obtained from (87) and (88), respectively, by applying (89) and
using (53). �

If we can show that 4
√

�N r �t−m5/yr1m is large, where �N r � is the total number of servers in the r th system, we
can conclude the proof of Theorem 4.1 by using the convergence property of H4 · 5, as given in Assumption 4.2.
It will be shown that it is enough to have

√

�N r �t −m and L large.
Because the value of L is a matter of choice, we can take L sufficiently large and redefine Kr with the

reselected L. Let H be given as in Assumption 4.2. Because H4t5→ 0 as t → �, independent of L, for � > 0
fixed, there exists s∗4�5 > 1 such that for t > s∗4�5, H4t5 < �. We assume for the rest of the paper that

L≥ 6Ns∗4�51 (94)

where N is chosen as in (81).
To make

√

�N r �t−m large, for a fixed t ∈ 601 T 7, we take the smallest m that satisfies (91), which we denote
by mr4t5. We need the following lemmas, whose proofs are given in Appendix C.4, to show that

√

�N r �t−mr4t5
is large.

Lemma 5.1. Let 8�r9 be a sequence of �-parallel server system processes. Assume that Assumption 3.1
holds and � satisfies Assumption 3.2. For fixed L> 0 and T > 0, and large enough r

yr1m+1 ≤ 3Nyr1m (95)

for � ∈Kr and m<
√

�N r �T , with the constant N chosen as in (81).

Let yr4mr4t55= yr1mr 4t5
.

Lemma 5.2. Let 8�r9 be a sequence of �-parallel server system processes. Assume that Assumption 3.1
holds and � satisfies Assumption 3.2. For fixed L> 0 and T > 0, and large enough r

√

�N r �t −mr4t5≥ Lyr4mr4t55/6N (96)

for � ∈Kr and t ∈ 4Lyr10/
√

�N r �1 T 7, with the constant N chosen as in (81).

Proof of Theorem 4.1. Assume that Assumption 3.1 holds, � satisfies Assumption 3.2, g satisfies Assump-
tion 4.1, the hydrodynamic model of the �-parallel server system satisfies Assumption 4.2, and condition
(55) holds.

Fix � > 0. By (82) and (86), there exists r0 > 0 such that

P4Kr5≥ P4Lr5 > 1 − �/2 (97)

for all r > r0. Fix � > 0 and take L≥ 6Ns∗4�5. Then, by (92) and Lemma 5.2, for � ∈Kr , t ∈ 4Lyr10/
√

�N r �1 T 7,
and r large enough

g4Q̂r4t51 Ẑr4t55≤ 2�4yr4mr4t555
c0 (98)

However, by (90),

yr4mr4t55=

∣

∣

∣

∣

Q̂r

(

mr4t5
√

�N r �

)

∣

∣

∣

∣

∨

∣

∣

∣

∣

Ẑr

(

mr4t5
√

�N r �

)

∣

∣

∣

∣

∨ 1 ≤ �Q̂r4 · 5�T ∨ �Ẑr4 · 5�T ∨ 10 (99)
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From (93) and (99), for t ∈ 601Lyr10/
√

�N r �7 and � ∈Lr

g4Q̂r4t51 Ẑr4t55≤ �4yr105
c
≤ �

(

�Q̂r4 · 5�T ∨ �Ẑr4 · 5�T ∨ 1
)c
0 (100)

Combining (98), (99), and (100) gives

g4Q̂r4t51 Ẑr4t55≤ 2�
(

�Q̂r4 · 5�T ∨ �Ẑr4 · 5�T ∨ 1
)c

(101)

for all t ∈ 601 T 7 and � ∈Lr . Finally, by (97) and (101), for large enough r ,

P

{

�g4Q̂r4 · 51 Ẑr4 · 55�T

4�Q̂r4 · 5�T ∨ �Ẑr4 · 5�T ∨ 15c
> 2�

}

< �0

This clearly implies (56) because � > 0 and � > 0 are arbitrary. �
Proof of Theorem 4.2. Suppose that Assumption 3.1 holds, � satisfies Assumption 3.2, g satisfies

Assumption 4.1, the hydrodynamic model of the �-parallel server system satisfies Assumption 4.2, and �Q̂r405�∨
�Ẑr405� satisfies the compact containment condition:

Let

ur1max
= max

i∈I

{

ui4m52 Ui4m− 15≤ 2�N r
����L1 m= 1121 : : :

}

1

where � = 4�11 : : : 1 �I5 is given by (21). In words, ur1max is an upper bound, for r large enough, for the
maximum interarrival time for those events that started before time L of the process 8Ai2 i ∈ I9, because
�r
i < 2�N r ���� for large enough r . Assume for the moment that

ur1max
/

√

�N r � → 0 in probability as r → � (102)

and that for some sequence 8Lr9 that satisfies the conditions given in the theorem
∣

∣

∣

∣

g

(

Q̂r

(

Lr

√

�N r �

)

1 Ẑr

(

Lr

√

�N r �

))

∣

∣

∣

∣

→ 0 in probability as r → �0 (103)

Consider the sequence of processes 8�r9 defined by �r4 · 5 = �r4Lr/
√

�N r � + ·5. Then, 8�r9 satisfies (55)
by (103). Also by (102), distributions of the first interarrival times of the processes A and S after Lr/

√

�N r �

satisfy the conditions needed for Proposition 5.1 to be valid. Because the other conditions of Theorem 4.1 are
satisfied by 8�r9, the proof above can be repeated to show that (56) holds for 8�r9. However, this shows that
(57) holds for 8�r9. Hence, it suffices to show that (102) and (103) hold.

The limits (102) are proven in Lemma C.2.
Next we prove (103). We show that there exists a sequence 8Lr9 with Lr → � as r → � and Lr = o4

√

�N r �5
such that for any � > 0 and � > 0, there exists r ′ such that

P

{

∣

∣

∣

∣

(

Q̂r

(

Lr

√

�N r �

)

1 Ẑr

(

Lr

√

�N r �

))

∣

∣

∣

∣

> �

}

< �1 (104)

for all r > r ′.
Set �n = 1/n and L̃n = 4N n51/4 for all n = 1121 : : : 0 Define Kr

L̃n as in §5.1; see (81) and the discussion
succeeding it, with L being replaced with L̃n. Note that by the definition of Kr

L̃n and Proposition 5.6, there exists
rn such that for r > rn

P8Kr
L̃n9 > 1 − 1/n (105)

and

g
(

Q̂r4t51 Ẑr4t5
)

≤ ycr1mH

(

1
yr1m

(

√

�N r �t −m
)

)

+ �ny
c
r1m (106)

holds for all t ∈ 601 T 7 and m satisfying (91).
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Set Lr = L̃1 and K̃r = Kr
L̃1 for r ≤ r2, Lr = L̃n, and K̃r = Kr

L̃n for r ∈ 4rn1 rn+17, and for n = 2131 : : : 0 Note
that Lr = o4

√

�N r �5, and Lr → � as r → �. Furthermore,

lim
r→�

P4K̃r5= 10

Fix �1 � > 0. Let
Ur

C = 8�Q̂r405� ∨ �Ẑr405�<C90 (107)

Choose r0 and C > 1 such that for r ≥ r0

P4Ur
C5 > 1 − �/20

We fix C to this value for the rest of the proof.
Let r ′

1 be the smallest integer greater than r0 that satisfies �r ′
1
< �/42Cc5. Choose r ′

2 > r ′
1 such that for all

r > r ′
2, Lr > 2s∗4�r ′

1
5C, where s∗ is defined as in (94).

For t ∈ 6C−1Lryr10/
√

�N r �1Lryr10/
√

�N r �7, mr4t5= 0 from (91) and

√

�N r �t ≥C−1Lryr100

Hence, for r > r ′
2, by (106),

g4Q̂r4t51 Ẑr4t55≤ 2�r ′
1
ycr10 < � (108)

for all t ∈ 6C−1Lryr10/
√

�N r �1 Lryr10/
√

�N r �7 and � ∈ K̃r ∩Ur
C .

Now observe that for � ∈ K̃r ∩Ur
C , Lr/

√

�N r � ∈ 6C−1Lryr10/
√

�N r �1Lryr10/
√

�N r �7 for all r ≥ 1. Hence, by
(5.3) and (108) there exits r ′ > r ′

2 such that for r > r ′

P
{

g
(

Q̂r
(

Lr
/

√

�N r �
)

1 Ẑr
(

Lr
/

√

�N r �
))

> �
}

< �0

This gives (104), thus completes the proof of (103). �
Proof of Remark 4.3. Assume that 8�r

�9 is a sequence of �-parallel server system processes that satisfy
the conditions of Theorem 4.2. Also, assume that g4Q̂r4051 Ẑr4055 satisfy the compact containment condition
and H is bounded.

Fix L> 0. By assumption there exists a constant B0 > 0 such that supt∈601�5H4t5 < B0. By (87)

g4Qr1m4t51Zr1m4t55 < 2B0

for all t ∈ 601L7. This implies, similar to (92), that

∥

∥g4Q̂r4t51 Ẑr4t55
∥

∥

Lyr10/
√

�N r �
< 2B0y

c
r100 (109)

for all � ∈Kr . Let Ur
C be defined as in (107). Since �Q̂r405�∨ �Ẑr405� satisfy the compact containment condition

by assumption, for � > 0 fixed, there exists C > 0 and r1 > 0 such that P4Ur
C5 > 1 − �, for all r > r1. For each

fixed L, on Ur
C ∩Kr

∥

∥g4Q̂r4t51 Ẑr4t55
∥

∥

L/
√

�N r �
≤
∥

∥g4Q̂r4t51 Ẑr4t55
∥

∥

Lyr10/
√

�N r �
≤R0

Now choose the sequence 8Lr9 as in the previous proof. Then,

lim sup
r→�

P
{

∥

∥g4Q̂r4t51 Ẑr4t55
∥

∥

Lr /
√

�N r �
>C

}

< �0

Since � and C is arbitrary, this completes the proof. �

6. Extensions. In this section we present two extensions of our main result. In the first extension, we
weaken the homogeneity assumption (53) on the SSC function. In the second extension, we only assume that the
SSC function is continuous but make an additional assumption that Q̂r and Ẑr satisfy the compact containment
condition.
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6.1. A weaker homogeneity condition. Theorem 4.1 can be generalized by relaxing condition (53) on the
class of SSC functions. We replace condition (53) with the following condition: there exist c1 > 0 and c2 > 0
such that

�c1g4x5≤ g4�x5≤ �c2g4x5 (110)

for all x ∈�K+dz and 0 ≤ �≤ 1.

Corollary 6.1. Under condition (110), Theorem 4.1 holds with c replaced with c1.

The proof is placed in Appendix D.1.

6.2. When the homogeneity condition does not hold. When the SSC function g does not satisfy homo-
geneity assumption (53) or (110), the framework in Theorem 4.1 does not directly apply. In this section we
present a framework without requiring the homogeneity assumption on the SSC function g. We show that when
g is only continuous but (1) holds, a relationship between SSC in hydrodynamic model solutions and diffusion
limits still exists.

One of the models we are interested in studying is presented in Armony and Maglaras [3], where a threshold
type policy is proposed. For this kind of policies conditions (53) or (110) prove to be too strong. More details
will be discussed in §8.

Now we consider a general parallel server system and extend our main result, Theorem 4.1, to prove SSC
results when the SSC function satisfies a weaker condition. For the extension we only assume that the SSC
function satisfies the following condition.

Assumption 6.1. The SSC function g2 �K+dz →�+ is a nonnegative and continuous function.

When the SSC function g only satisfies Assumption 6.1 but not Assumption 4.1 we need the following
compact containment condition on the queue length and number of busy server processes.

Assumption 6.2. For every T > 0, (1) holds for the sequence of random variables l84�Q̂r4 · 5�T ∨

�Ẑr4 · 5�T 59.

When the SSC function g does not satisfy (53), we replace Assumption 4.2 with the following stronger
assumption.

Assumption 6.3. There exists a constant C0 such that for every C >C0, there exists a function HC4t5 with
HC4t5→ 0 as t → � such that

g
(

C4Q̃4t51 Z̃4t55
)

≤HC4t5 for all t ≥ 0 (111)

for each hydrodynamic model solution �̃� satisfying �4Q̃4051 Z̃4055� ≤ 1.
Furthermore, for each hydrodynamic hydrodynamic solution �̃� with �4Q̃4051 Z̃4055� ≤ 1 and g4C4Q̃4051

Z̃40555= 0, g4C4Q̃4t51 Z̃4t555= 0 for t ≥ 0.

We are ready to state the main result of this section.

Theorem 6.1. Let 8�r
�9 be a sequence of �-parallel server system processes. Suppose that Assumption 1

holds, � satisfies Assumption 3.2, g satisfies Assumption 6.1, Assumption 6.2 holds, the hydrodynamic model of
�-parallel server system satisfies Assumption 6.3, and

g4Q̂r4051 Ẑr4055→ 0 in probability (112)

as r → �. Then, for each T > 0,

�g4Q̂r4t51 Ẑr4t55�T → 0 in probability1 (113)

as r → �.

The proof is presented in Appendix D.2.
Remark 6.1. Because we will use a slightly different hydrodynamic scaling in the proof of Theorem 6.1, the

hydrodynamic Equations (38) used in Assumption 6.3 can be different from those in Assumption 4.2. We remark
that an equation can be added into the hydrodynamic model only when it is satisfied by each hydrodynamic
limit. See the proof of Theorem 6.1 for more details.
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Nr

�11 �12 �1I

…

Figure 1. A V-parallel server system.

7. SSC for V-parallel server systems. In this and the following section we illustrate the applications of
our main results. Additional (more complex) applications of our main results can be found in Tezcan [45]
and Dai and Tezcan [16]. The first system we consider is known as the V-parallel server system. A V-parallel
server system consists of multiple customer classes and a single server pool (see Figure 1 for an example).
We study this model when the scheduling decisions are made according to a static buffer priority (SBP) policy
and we call the resulting queueing system the SBP V-parallel server system. We show that in the diffusion
limit of an SBP V-parallel server system all the buffers except the one with the lowest priority is empty. This
model has recently been studied by Gurvich et al. [25]. They prove an SSC result that is similar to our main
result of this section (Theorem 7.1 below) by assuming that the service rates of all classes are the same; see
Proposition 3.2 in that paper. A slightly different model with phase-type service time distributions is studied by
Puhalskii and Reiman [40].

As explained above, in a V-parallel server system there are I arrival streams and a single server pool. The
number of customer classes is equal to the number of arrival streams, hence I = K. Upon arrival, a type i
customer joins queue i, so there is no routing decision to be made.

We make the following assumptions about the service and the arrival rates. For the arrival rates, we assume
that (15) holds. For the number of servers, condition (20) is automatically satisfied. We assume (21) holds with
�∗ =

∑

i �i/�1i = 1. Furthermore, we assume that

√

�N r �

(

�r
i

�N r �
−�i

)

→ bi as r → �1 (114)

for bi ∈�, which implies that

lim
r→�

√

�N r �

(

1 −
∑

i∈I

�r
i

�N r ��1i

)

= � (115)

for some � ∈�. Let the traffic intensity �r be defined by

�r
=

I
∑

i=1

�r
i

�N r ��1i

0

Condition (115) implies that �r → �∗ = 1 as r → �. Clearly (25) has a unique solution with x∗
1i = �i/�1i,

�∗ = 1, and 8�r9 satisfies Assumption 3.1.
Under an SBP policy, each classes is assigned a fixed priority. When a server needs to choose a new customer

to serve, that server chooses the longest waiting customer in the highest priority nonempty class. We assume
that there is no tie in the priorities and for simplicity that every class has priority over all the classes that have
a lower index. The following result shows that the diffusion limits of all the queue length processes except the
one with the lowest priority is zero.

Theorem 7.1. Let 8�r
SBP9 be a sequence of SBP V-parallel server system processes. Assume that (15), (21),

and (114) hold. Also assume that (28) holds and

4Q̂r4051 Ẑr4055 ⇒ 4Q̂4051 Ẑ4055 (116)
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for a random vector 4Q̂4051 Ẑ4055 and

I
∑

i=2

Q̂r
i 405→ 0 in probability (117)

as r → �. Then, for each T > 0, as r → �

∥

∥

∥

∥

I
∑

i=2

Q̂r
i 4t5

∥

∥

∥

∥

T

→ 0 in probability0 (118)

We provide a proof in §7.1.
Remark 7.1. If (116) is replaced by the weaker condition

�Q̂r405� ∨ �Ẑr405� satisfies the compact containment condition (119)

then (118) still holds because (??) is only used in the proof to show that (119) holds.
If assumptions (116) and (117) are replaced by (119), the following holds by Theorem 4.2; for any T > 0

sup
�r≤t≤T

∣

∣

∣

∣

I
∑

i=2

Q̂r
i 4t5

∣

∣

∣

∣

→ 0 in probability1 (120)

where 8� r9 is a sequence of real numbers with � r > 0 and � r → 0 as r → �. Note that this result is weaker
than (118) because the SSC result does not hold initially but holds after time zero.

7.1. Establishing the SSC results for the SBP V-parallel server systems. In this section we present the
steps involved in proving Theorem 7.1 and provide a proof at the end of the section. The proofs of the results
presented in this section are placed in Appendix E. As discussed above, by (15), (21), and (114), Assumption 3.1
holds. To use Theorem 4.1, we verify Assumptions 3.2–4.2 hold below.

Next we show that under the SBP policy, Assumption 3.2 is satisfied.

Proposition 7.1. Let 8�r
SBP9 be a sequence of SBP V-parallel server system processes. Assume that (15),

(21), and (114) hold. Then 8�r
SBP9 satisfies Assumption 3.2.

Next, we present the SSC function and the additional hydrodynamic equations for the SBP V-parallel server
systems. Let

g4q1 z5=

I
∑

i=2

�qi�1 (121)

where q1 z ∈�I . Note that, g4Q̂r4t51 Ẑr4t55=
∑I

i=2 �Q̂r
i 4t5� =

∑I
i=2 Q̂

r
i , and hence g is the desired SSC function.

Clearly g is continuous and satisfies Assumption 4.1 with c = 1.
We now verify that Assumption 4.2 holds. First we need to identify the additional equations satisfied the

hydrodynamic limits of the SBP V-parallel server systems. For an SBP V-parallel server system, if there are
customers waiting in a queue whose class has priority over another class, then all the customers in the lower
priority class have to wait until those customers of higher priority class are served. This property is also preserved
in the hydrodynamic limits as given by (122) in the following result.

Proposition 7.2. Let 8�r
SBP9 be a sequence of SBP V-parallel server systems described as above that sat-

isfies the conditions of Theorem 7.1. Fix L> 0. Then, in addition to (30)–(37), each hydrodynamic limit �̃SBP

of 8�r
SBP9 on 601L7 satisfies

˙̃A�

k1k4t5+
˙̃B�

1k4t5= 0 when Q̃⊕

k+14t5 > 01 (122)

for all t ∈ 601L7 and k ∈K, where

Ã�

k1k4t5=

k
∑

l=1

Ãl1l4t51 B̃�

1k4t5=

k
∑

l=1

B̃1l4t51 and Q̃⊕

k 4t5=

I
∑

j=k

Q̃j4t50

We next show that Assumption 4.2 is satisfied by the hydrodynamic model of the SBP V-parallel server
systems. Note that by Proposition 7.2, the hydrodynamic model equations consist of (30)–(37) and (122).
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Proposition 7.3. Let 8�r
SBP9 be a sequence of SBP V-parallel server system processes. Assume that (15),

(21), and (114) hold. The hydrodynamic model of the SBP V-parallel server system satisfies Assumption 4.2 with
H4t5= 4I −�11z11t5

+.

Now we are ready to prove a multiplicative SSC result for the SBP V-parallel server systems using
Theorem 4.1.

Theorem 7.2. Let 8�r
SBP9 be a sequence of SBP V-parallel server system processes. Assume that (15), (21),

and (114) hold. Then, for each T > 0,

�
∑I

i=2 Q̂
r
i 4t5�T

4�Q̂r4t5�T ∨ �Ẑr4t5�T ∨ 15
→ 0 in probability (123)

as r → �.

Proof. Let 8�r
SBP9 be a sequence of SBP V-parallel server system processes. Assume that (15), (21) with

�∗ = 1, and (114) hold.
It can easily be checked using (15) and (21) that Assumption 3.1 holds. Assumption 3.2 holds by Proposi-

tion 7.1. By definition, g given by (121) satisfies Assumption 4.1. Assumption 4.2 holds by Proposition 7.3. By
virtue of Theorem 4.1, we have that (123) holds. �

Following Remark 4.2, we obtain Theorem 7.1 by virtue of the following result.

Lemma 7.1. Let 8�r
SBP9 be a sequence of SBP V-parallel server system processes and assume that the

conditions of Theorem 7.2 hold. Then, Ẑr and Q̂r satisfies the compact containment condition.

8. Armony-Maglaras threshold policy. In this section we focus on the model studied in Armony and
Maglaras [3]. Our purpose is to illustrate the extension of our main result presented in §6.2. In Armony and
Maglaras [3], a V-model system has been used to study a contact center with two channels; one for real-time
telephone service and another for a postponed call-back service offered with a guarantee on the maximum delay
until a reply is received. We assume that the second customer class consists of those customers who call for the
call-back option.

Armony and Maglaras [3] proposed the following policy.
Threshold Rule. If Q24t5 >

√

�N r ��, give priority to class 2, otherwise give priority to class 1.
Let

�r
= �N r

��

(

1 −
�

√

�N r �

)

0 (124)

We assume that the arrival rates for each customer class is given according to

�r
1 = ��r and �r

2 = 41 −�5�r 0 (125)

for some � ∈ 40115. Let

X̂r4t5= Q̂r
14t5+ Q̂r

24t5+ Ẑr
114t5+ Ẑr

214t5 (126)

and assume that

4Q̂r4051 Ẑr4055 ⇒ 4Q̂4051 Q̂40551 (127)

as r → �. By Theorem 2 in Halfin and Whitt [26], X̂r converges weakly to a diffusion process X as r → �.
We show that the following SSC result holds.

Proposition 8.1. Let 8�r9 be a sequence of V-parallel server system processes working under the Armony-
Maglaras threshold policy. Assume that (127), (124), and (125) hold and

(

Q̂r
14051 Q̂

r
2405

)

⇒
(

4X405− �5+1 4X405+ ∧ �5
)

(128)

as r → �. Then
(

Q̂r
14 · 51 Q̂

r
24 · 5

)

⇒
(

4X4 · 5− �5+1 4X4 · 5+ ∧ �5
)

as r → �.

We provide a proof in §8.1. Proposition 8.1 was first presented in Armony and Maglaras [3]; see Propo-
sition 3.1 there. The proof presented in Armony and Maglaras [3] contains a step that cannot be rigorously
justified, see inequality (29) in that paper. In this section, we will present an alternative proof using Theorem 6.1.
Using Proposition 8.1 one can prove the asymptotic optimality of the threshold policy; see Proposition 3.4 in
Armony and Maglaras [3].
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8.1. Establishing the state space collapse results for the V-systems under the threshold policy. In this
section we prove Proposition 8.1 and illustrate the steps involved proving this result. The proofs of the results
presented in this section are placed in Appendix F. We use Theorem 6.1 to prove Proposition 8.1. By (124)
and (125) Assumption 3.1 holds. Below we verify Assumptions 3.2, 6.1, 6.2, and 6.3 hold.

First we show that Assumption 3.2 holds.

Proposition 8.2. Let 8�r9 be a sequence of V-parallel server system processes working under the Armony-
Maglaras threshold policy. Assume that (127), (124), and (125) hold. Then 8�r9 satisfies Assumption 3.2.

Next we define the SSC function for this setting. Let q = 4q11 q25 ∈�2, z= 4z11 z25 ∈�2, x = q1 +q2 +z1 +z2,
and g2 �4 →� be defined by

g4q1 z5= q1 − 4x− �5+ (129)

Clearly �g� is continuous but it does not satisfy Assumption 4.1 but satisfies Assumption 6.1. Therefore, we use
Theorem 6.1.

Next, we show that Assumption 6.2 holds.

Proposition 8.3. Let 8�r9 be a sequence of V-parallel server system processes working under the Armony-
Maglaras threshold policy. Assume that (127), (124), and (125) hold. Then,

lim
R→�

lim
r→�

P
{

�Q̂r4t5�T ∨ �Ẑr4t5�T >R
}

= 01 (130)

i.e., 8�r9 satisfies Assumption 1.

Next we present the additional hydrodynamic equations. For R> 0 and T > 0 and let Ar
R4T 5 be defined by

Ar
R4T 5=

{(

�Q̂r4 · 5�T ∨ �Ẑr4 · 5�T

)

≤R
}

0 (131)

Proposition 8.4. Let 8�r9 be a sequence of V-systems under the threshold policy described above that
satisfies the conditions of Theorem 8.1. Fix T > 0, R > 0, and L > 0. Then, in addition to (30)–(37), each
hydrodynamic limit �̃ of 8�r9 on 8Ar

R4T 59 satisfies

˙̃B114t5=� when g̃4R4Q̃4t51 Z̃4t555 > 0 and Q̃14t5 > 0 (132)

˙̃B124t5=� when g̃4R4Q̃4t51 Z̃4t555 < 0 and Q̃24t5 > 0 (133)

for t ∈ 601L7.

Now we are ready to prove Proposition 8.1.
Proof of Proposition 8.1. Let 8�r9 be a sequence of V-parallel server system processes working under

the Armony-Maglaras threshold policy. Assume that (124), (125), (127), and (128) holds.
From Propositions 8.2 and 8.3 and the definition of g in (129), to invoke Theorem 6.1, it is enough to show

that Assumption 6.3 holds.
We prove that

d
dt

∣

∣g4Q̂r4t51 Ẑr4t55
∣

∣< 0 (134)

for every regular point t of �g� whenever �g4Q̂r4t51 Ẑr4t55�> 0, which implies Assumption 6.3.
Let X̃i4t5 = Q̃i4t5 + Z̃1i4t5 and X̃4t5 = X̃14t5 + X̃24t5. Then, by (33) and (33), X̃i4t5 = X̃i405 for all t ≥ 0,

hence
˙̃X4t5= 0 for all t ≥ 00 (135)

First assume that g14R4Q̃4t51 Z̃4t555 > 0. Then, by (132)

˙̃Q14t5= �1 −�= −41 −�5t0

Hence,

ġ14R4Q̃4t51 Z̃4t555=R ˙̃Q14t5−
d
dt

4RX̃4t5− �5+ = −41 −�5t0

by (135).
Similarly, if g14R4Q̃4t51 Z̃4t555 < 0, then

ġ1

(

R4Q̃4t51 Z̃4t55
)

=
˙̃Q14t5= �t0

This proves (134). �
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Appendix A. Equivalence of the original and perturbed systems. This appendix is devoted to the proof
of Theorem 2.1. The proof will be presented at the end of this section. In Pang et al. [39, Lemma 2.1], the
authors show a similar result for M/M/n+M systems. Our setting is significantly more complicated because
arrivals are general, and scheduling decisions affect the system evolution.

For notational simplicity we focus on systems with no routing and abandonment. We assume that a type i
customer will be automatically routed to queue i at the time of his arrival. Therefore, I = K, and we omit the
subscript k from the notation. For the rest of this section we fix a policy �. Recall that each policy is associated
with a transaction function f� . For simplicity, we assume that f� is a deterministic function, but it can be taken
as a random variable that only depends on the state of the system at the decision instant.

To prove the equivalence of the original system with the perturbed system we model both systems as
piecewise-deterministic Markov processes (PDMP’s) that are introduced by Davis [18]. In §A.1 we give a brief
overview of PDMP’s. In §A.2, we construct a PDMP for our parallel server system. In §A.3, we construct a
PDMP for our perturbed system and complete the proof of Theorem 2.1.

A.1. Piecewise-deterministic Markov processes (PDMP) and parallel server systems. A thorough treat-
ment of the subject and examples of how to model M/G/1 and G/G/1 queues as PDMPs can be found in
Davis [18].

For our purposes, it is enough to define a PDMP on a state space E ⊂ �p that is closed in �p for some
positive integer p. A portion of the state space, denoted by E�, is designated as the topological boundary. Then,
Eo = E\E� is the “interior” of E. We let E denote the Borel subsets of E, and we will let P4E5 be the space
of probability measures on the measurable space 4E1E5; the space P4E5 is endowed with the topology of weak
convergence. Under suitable regularity conditions a PDMP can be uniquely determined by a function h2 E →�p,
an intensity function �2 E → �+, and a transition measure �2 E → P4E5. We assume that �4Eo � x5 = 1 for
each x ∈E.

By convention, each sample path 8x4t51 t ≥ 09 of a PDMP is right continuous on 601�5 and has left limits in
401�5. For each time t ≥ 0, the state x4t5 always lives in the “interior” Eo of the state space E. For t > 0, we
use x4t−5 to denote the left limit at t; namely, x4t−5= lims↑t x4s5 ∈ E�. It is possible that x4t−5 goes outside
of the “interior.” When x4t−5 ∈E�, a jump occurs at time t, moving the state instantaneously into the “interior.”
While x4t5 is in the “interior,” it can also make jumps. Such a jump is governed by an exponential clock with
rate �4x5 when x4t5= x, independently of the process history. Between jumps x4t5 obeys dx4t5/dt = h4x4t55.
If a jump occurs at time t with either x4t5 = x ∈ Eo or x4t−5 = x ∈ E�, the process is transferred immediately
to a new state in Eo that is randomly chosen following probability measure �4dx � x5. We use �n to denote the
nth jump time of the PDMP process x4t5. Let N4t5=

∑�

i=1 I�i≤t . Under the assumption that

Ɛ6N 4t57 <� for all t1 (A1)

it can be shown that 8x4t51 t ≥ 09 is a strong Markov process, see Davis [18]
For parallel server systems, function h will be used to model the fact that once an interarrival time is generated

the remaining interarrival time will decrease linearly at rate 1 until it reaches zero. Once it reaches zero a new
interarrival time is generated. This will be modeled as defining the boundary E� and the transition measure �
appropriately. The intensity function � defines the service rate at each instant. The transition measure � will
be defined to govern the behavior of the system when a new customers arrives to the system or a service is
completed. When a new customer arrives, a new interarrival time for that class is generated, and the system’s
state is updated to this new state according to the interarrival time distribution. If there are idle servers in the
system, the arriving customer may be assigned to one of these servers according to the scheduling policy. When
a service is completed by a server, the server starts a new service from a customer waiting in queue (if there are
any) according to the scheduling policy or stays idle. Both types of jumps are modeled by defining � properly.

A.2. Construction of parallel server systems. In this section we construct the processes associated with
a parallel server system. Recall that arrivals to class i are given by a delayed renewal process Ai (see §2). For
notational simplicity we assume Ai is a renewal process and we assume that the interarrival times of Ai are
given by the i.i.d. sequence 8ui4m52 m = 1121 : : : 9 for each i ∈ I. We also assume that �8ui415 > 09 = 1 and
that the probability of having two or more simultaneous arrivals is zero. The latter assumption holds, e.g., when
each ui415 has a density.

Let X4t5 = 4Q4t51 Z4t51 b4t55 denote the state of the system at time t, where Q and Z have the same
interpretations as before (see §2) and b4t5= 4b14t51 : : : 1 bI4t55 with bi4t5 is the remaining time before the next

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Dai and Tezcan: State Space Collapse in Many-Server Diffusion Limits
298 Mathematics of Operations Research 36(2), pp. 271–320, © 2011 INFORMS

class i customer will arrive at time t. Although we appended “′” in §2 to processes associated with the original
system, we ignore it in this section for notational simplicity.

Note that Q4t5 ∈ �I
+

, Z4t5 ∈ �I×J , and b4t5 ∈ �I
+

. Hence X4t5 ∈ �I
+

× �I×J × �I
+

. In terms of the PDMP
characterization in §A.1, we define the state space E for X by E = �I ×�I×J ×�I

+
, with the boundary E� =

�I ×�I×J × ¡�I
+

, where

¡�I
+

=
{

x = 4x11 : : : 1 xI5 ∈�I
+
2 xi = 0 for some i = 11 : : : 1 I

}

0

Let Eo =E\E�. It is clear that Eo =�I ×�I×J ×�I
++

, where

�I
++

=
{

x ∈�I 2 xi > 0 for i = 11 : : : 1 I
}

0

We assume for simplicity that X405 ∈Eo, which means bi405 > 0 for i = 11 : : : 1 I . We also assume bi405 6= b`405
for i 6= `. Recall that, we use 8�n9 to denote the increasing sequence of event times, either an arrival to or
departure from the system.

Next we explain how we can model a parallel server system as a PDMP. Between jump points

dQ4t5/dt = dZ4t5/dt = 0 and db4t5/dt = −e1 (A2)

where e is a I-dimensional vector of ones. In terms of the PDMP characterization in §A.1, the function h2 E →

�I ×�I×J ×�I is given by h= 4h11 h25 with h12 E →�I ×�I×J , and h22 E →�I , where

h14x5= 0 and h24x5= −e1 (A3)

for any x ∈E.
The boundary E� is reached when one of the remaining interarrival times bi4t5 reaches zero. At that instant, an

arrival to class i occurs. A new interarrival time, ui, for class i is generated following interarrival distribution Fi.
At this time t, bi jumps with bi4t5= ui and the other components of b do not change at time t. Also, Q and Z
are updated at time time according to the scheduling policy, in our setting according to function f� (see §2 for
a definition), as explained next.

Because service times are assumed to be exponentially distributed, the total service rate at any time is equal
to summation of service rates of all customers in service at that instant. Therefore, for any x = 4q1 z1 b5 ∈ Eo,
the intensity function is given by

�4x5=
∑

k∈K1 j∈J4k5

zjk�jk0 (A4)

To complete the formal definition of the PDMP for the parallel server system, we need to specify the transition
measure � . Recall that the transition measure must be defined in two circumstances; (i) when the system reaches
the boundary at t, i.e., X4t−5 ∈E�, (ii) when a jump occurs at t in the interior, i.e., X4t5 ∈Eo.

First, we focus on the case when the system reaches the boundary at time t. Denote x = 4q1 z1 b5 = X4t−5.
It is necessarily true that x ∈E� or equivalently one of components of b is zero. Assume bi = 0 for some i. We
define the probability measure � on 4�I ×�J×K ×�K

+
5× 4�K ×�I×J ×�K

+
5 as follows:

�4B1 ×B2 � x5= 1f� 4q1 z1 ei5
4B15�Fi

4B251 (A5)

where B1 ⊂�I ×�I×J , B2 ∈B4�I5, ei denotes the event that a customer arrived to class i, and �Fi
is the measure

associated with interarrival distribution Fi. The distribution given in (A5) specifies the behavior of the system
when there is an arrival to class i.

We next specify the transition measure when a jump occurs at t in the interior. Let x = 4q1 z1 b5=X4t5. This
time �4· � x5 is a discrete distribution: at 4qji1 zji1 b5, it has mass

zji�ji
∑

k∈I1 `∈J4k5 z`k�`k

(A6)

where 4qji1 zji5 = f�4q1 z1 eji5, where eji denotes the event that a server in pool j finishes serving a class i
customer. The right-hand side of (A6) gives the probability that the service of a class i customer is completed
in server pool j , given that there is a service completion in the system. In addition, once a service is completed,
the remaining service time of each customer who is still in service can be generated according to that customer’s
service time distribution. Because service times are exponentially distributed, it is possible to define a parallel
server system this way.

It is clear that X4t5 = 4Q4t51Z4t51 b4t55 is a PDMP with intensity function �, transition measure � , and
evolution Equation (A2). Also, because Ɛ6Ak4t57 < � for all t ≥ 0 and remaining service times at event times
have exponential distribution, Ɛ6N 4t57 < � for all t ≥ 0. Therefore, (A1) is satisfied and 8X4t51 t ≥ 09 is a
regular strong PDMP.
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A.3. Construction of perturbed systems. Next, we focus on our perturbed system and show that it has the
same intensity function, evolution equation, and the transition measure with the parallel server system described
in the previous section. We again fix an admissible policy �.

Note that in the perturbed system, the total service rate is equal to the number of customers in service
times their service rate. Also, service times are still exponential, hence, the remaining service times are also
exponential after an arrival or a service completion. Therefore, the service rate is given by (A4). In addition,
(A5) still holds because arrivals are governed by the same process as in the parallel server systems. Also, (A6)
still holds because service times are exponential.

Proof of Theorem 2.1. Note that the perturbed system has the same PDMP characterization as the original
system; that is, they have the same transition measure, intensity function, and evolution equation. Also, by
an argument similar to that at the end of the last section, Ɛ6N 4t57 < � for all t ≥ 0 for the perturb system,
too. Hence, in Davis [18, Theorem 5.5] both Markov processes, the parallel server system and the perturb
system have the same generator. Therefore, they have the same finite-dimensional distributions in Ethier and
Kurtz [19, Proposition 1.6, Chapter 4]. �

Appendix B. Fluid limits. In this section we study the fluid limits and present the fluid model equations of
parallel server systems. Also, we establish a general framework that can be used to check whether Assumption 3.2
is satisfied by a control policy.

Let A⊂ì be such that 8Q̄r4059 is bounded and the following FSLLN holds:

E4�N r �·5

�N r �
→ �4 · 51

Sjk4�N
r �·5

�N r �
→ �jk4 · 51 and

Fk4�N
r �·5

�N r �
→ âk4 · 5 u.o.c. (B1)

as r → �, where �jk4t5=�jkt, âk4t5= �kt, for all j ∈J1 k ∈K4j5, and �4t5= te, where e is the I-dimensional
row vector of ones. Note that we can take P4A5= 1 from (15). For the rest of paper we only consider sample
paths in A.

Let 8�r
�9 be a sequence of �-parallel server system processes and

�̄r
�4t5=�r

�4t5/�N
r
�0 (B2)

We call this scaling the fluid scaling and �̄r
� the fluid scaled process. �̄� is called a fluid limit of 8Xr

�9 if there
exists an � ∈A and a sequence 8rl9 with rl → � as l → �, such that �̄rl

�4·1�5 converges u.o.c. to �̄� as l → �.
The following theorem is analogous to Dai [13, Theorem 4.1]. Its proof is given at the end of this section.

Theorem B.1. Let 8�r
�9 be a sequence of �-parallel server system processes. Assume that (20) and (21)

hold and 8Q̄r4059 is bounded a.s. as r → �. Then, 8�̄r
�9 is a.s. precompact (i.e., every subsequence has a

convergent subsequence) in the Skorohod space �d601�5 endowed with the u.o.c. topology. Thus, the fluid limits
exist, and each fluid limit, �̄� , of 8�̄r

�9 satisfies the following equations for all t ≥ 0:

�it =
∑

k∈K

Āik4t5+
∑

k∈K

∑

j∈J4k5

Āijk4t51 for all i ∈I1 (B3)

Q̄k4t5= Q̄k405+
∑

i∈I

Āik4t5−
∑

j∈J4k5

B̄jk4t5−�k

∫ t

0
Q̄k4s5ds1 for all k ∈K1 (B4)

Z̄jk4t5= Z̄jk405+
∑

i∈I

Āijk4t5+ B̄jk4t5−�jkT̄jk4t51 for all j ∈J and k ∈K4j51 (B5)

T̄jk4t5=

∫ t

0
Z̄jk4s5ds1 for all j ∈J and k ∈K4j51 (B6)

Ȳj4t5= �j t −
∑

k∈K4j5

T̄jk4t51 for all j ∈J1 (B7)

Q̄k4t5

(

∑

j∈J4k5

(

�j −
∑

l∈K4j5

Z̄jl4t5

))

= 01 for all k ∈K1 (B8)

∫ t

0

∑

k∈K4j5

Q̄k4s5dȲj4s5= 01 for all j ∈J1 (B9)

∫ t

0

∑

j∈J4k5

(

�j −
∑

l∈K4j5

Z̄jl4s5

)

dĀik4s5= 01 for all i ∈I and k ∈K1 (B10)
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Ā1 Āq1 Ās1 T̄ 1 and B̄ are nondecreasing1 (B11)

Q̄4t5≥ 01 Z̄jk4t5≥ 01 and
∑

k∈K4j5

Z̄jk4t5≤ �j1 for all j ∈J and k ∈K4j50 (B12)

Definition B.1. We call the vector 4q1 z5 a steady state of the fluid limits if for any fluid limit �̄� , Q̄405= q
and Z̄405= z implies Q̄4t5= q and Z̄4t5= z for all t > 0.

We denote the set of all the steady states of the fluid limits of 8�r
�9 by M� . The following result presents a

condition that is equivalent to Assumption 3.2.

Lemma B.1. Let 8�r
�9 be a sequence of �-parallel server system processes that satisfy the conditions of

Theorem B.1 and Assumption 3.1. A control policy � satisfies Assumption 3.2 if 401 z5 ∈M� , where zjk = �jx
∗
jk

and x∗ is given as in Assumption 3.1.

Proof. Assume that 4Qr405/�N r �1 Zr405/�N r �5→ 401 z5 a.s. as r → � and 401 z5 ∈M� . We prove the result
by contradiction. Assume that Assumption 3.2 does not hold. Then we can find � ∈ A and a subsequence,
denoted again by r for notational simplicity, such that �̄r

� is convergent. Because every fluid limit satisfies the
fluid model equations this implies Q̄r4 · 5 → 0 and Z̄r4 · 5 → z as r → � u.o.c., which contradicts our initial
assumption. �

Proof of Theorem B.1. Assume that (20) and (21) hold. Consider a sequence of numbers that we again
denote, with a slight abuse of notation, by 8r9. We show that 8�̄r4·1�59 has a convergent subsequence, for all
� ∈A. We fix � ∈A for the rest of the proof.

Observe that
∣

∣

∣

∣

T r4t21�5

�N r �
−

T r4t11�5

�N r �

∣

∣

∣

∣

≤ �t2 − t1�1

for all 0 ≤ t1 < t2. Hence, 8T̄ r4·1w59 is tight; there exists a subsequence 8rl9 such that T̄ rl4·1�5 converges u.o.c.
to some continuous function T̄ . We define the fluid scaled idle time process Ȳ r

j for the jth server by

Ȳ r
j 4t5=

N r
j

�N r �
t −

∑

k∈K4j5

T̄ r
jk4t5 (B13)

for all t ≥ 0 and set Ȳ r = 4Ȳ r
1 1 : : : 1 Ȳ

r
j 5.

Now, because D̄
rl
jk4t5= 41/N r5Sjk4N

r T̄
rl
jk4t551

D̄
rl
jk4 · 5 converges u.o.c. to D̄jk4 · 51 (B14)

where D̄jk4t5 = �jkT̄ 4t5 in Ata and Kumar [4, Lemma 11]. By (B1), Ārl4·1�5 converges u.o.c. to Ā4t5 = �t;
hence, it is precompact in DI 601�5. However, for all 0 ≤ t1 < t2 and j ∈J,

Ā
rl
ik4t21�5− Ā

rl
ik4t11�5≤ Ārl4t21�5− Ārl4t11�50

By Billingsley [8, Theorem 12.3], this implies that 8Ārl
ik4·1�59 is also precompact. By the same argument, so is

8Ā
rl
ijk4·1�59, for all i ∈I, k ∈K, and j ∈J4k5.
Fix j ∈ J, k ∈ K4j5, and 0 ≤ t1 ≤ t2. We omit � from the notation below. Note that Brl

jk can only increase
when a service in pool j is completed. On the other hand, some of the servers in pool j will receive customers
right after they arrive at the system. Hence, by (8), we have that

B̄
rl
jk4t25− B̄

rl
jk4t15≤

∑

k′∈K4j5

4D̄
rl
jk′4t25− D̄

rl
jk′4t1550 (B15)

Because B̄
rl
jk is nondecreasing, by (B14) and again by Billingsley [8, Theorem 12.3], (B15) implies that

8B̄
rl
jk4·1�59 is precompact. This implies by (8) and (B14) that 8Z̄rl

jk4·1�59 is precompact.
Assume without loss of generality that

(

Ārl4 · 51 Ārl
s 4 · 51 Ā

rl
q 4 · 51 D̄

rl4 · 51 T̄ rl4 · 51 Ȳ rl4 · 51 B̄rl 1 Z̄rl4 · 5
)

→
(

Ā4 · 51 Ās4 · 51 Āq4 · 51 D̄4 · 51 T̄ 4 · 51 Ȳ 4 · 51 B̄1 Z̄4 · 5
)

(B16)
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u.o.c. and

Q̄rl405→ Q̄405 (B17)

as l → �. We next show that 8Q̄rl4 · 59 is precompact. Fix T > 0 and choose rl large enough so that

�Ārl4 · 5�T <M

for r > rl and M <�. Note that such M exists by (B16). Then, for 0 ≤ s ≤ t ≤ T
∫ t

0
Q̄

rl
k 4u5du−

∫ s

0
Q̄

rl
k 4u5du≤ 4t − s5M0

for all k ∈K. Hence, the sequence of processes
{

∫ ·

0
Q̄r

k4u5du

}

(B18)

is precompact for all k ∈K. This, by (B1) and Ata and Kumar [4, Lemma 11], implies that the sequence
{

Fk4�N
rl �
∫ ·

0 Q̄
rl
k 4s5ds5

�N rl �

}

(B19)

is precompact for all k ∈K. By (B16)–(B19) and (7), we conclude that

8Q̄rl4 · 59

is precompact.
Next, we show that every fluid limit satisfies (B3)–(B10). Let �̄ be a fluid limit and for notational convenience

assume that

�̄r4·1�5→�4 · 5 (B20)

u.o.c. as r → � for some � ∈A. �̄ satisfies (B3) by (6), the convergence of Ār
i 4·1�5 to Āi4t5= �it and the fact

that Ār
ik4·1�5 and Ār

ijk4·1�5 are both convergent.
Note that because Q̄r4 · 5→ Q̄4 · 5 u.o.c. as r → �,

∫ ·

0
Q̄

rl
k 4s5ds→

∫ ·

0
Q̄k4s5ds u.o.c. as r → �

by Lemma 11 in [4] and so by (B1) and again Lemma 11 in [4]

Fk4�N
rl �
∫ ·

0 Q̄
rl
k 4s5ds5

�N rl �
→ �

∫ ·

0
Q̄k4s5ds u.o.c. as r → �0

Therefore, fluid limits satisfy (B4) by (7) and (B20). Equation (B5) follows from (B14), the convergence
of Z̄r

jk401�5, Ār
ijk4·1�5, and B̄r

jk4·1�5. Equation (B6) follows from (10) and the convergence of Z̄r
jk4·1�5 to

Z̄jk4 · 5 u.o.c.
We next show that �̄ satisfies (B8). Fix t > 0. If Q̄k4t5 = 0, then (B8) is satisfied trivially, so assume that

Q̄k4t5 > 0. By the continuity of Q̄k, there exist t > �> 0 and �> 0 such that Q̄k4s5 > � for all s ∈ 6t−�1 t+�7.
Because Q̄r

k converges u.o.c. to Q̄k, for large enough r

Q̄r
k4s1�5 > �/4 for all s ∈ 6t − �1 t + �70

By (11), this gives

∑

j∈J4k5

(

N r
j

�N r �
−
∑

l∈K4j5

Z̄r
jl4s1�5

)

= 0 for all s ∈ 6t − �1 t + �70

Using the fact that �̄r converges u.o.c. to �̄ again, we have that

∑

j∈J4k5

(

�j −
∑

l∈K4j5

Z̄jl4s5

)

= 0 for all s ∈ 6t − �1 t + �71

thus proving (B8). It can be shown similarly that �̄ satisfies (B9) and (B10). �
Remark B.1. It follows from (B3)–(B6) and the proof of Theorem B.1 that each component of �̄ is Lipschitz

continuous, and so they are absolutely continuous and differentiable almost everywhere with respect to the
Lebesgue measure on 601�5.
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Appendix C. Proofs of the results in §5

C.1. Bounds on hydrodynamically scaled processes. We need the following lemma to prove that the
departure process of a hydrodynamic limit satisfies the associated hydrodynamic model equation and the number
of customers abandoning from the queues are negligible in the hydrodynamic limits. Recall that we denote by A
the subset of ì whose elements satisfy (B1) and P4A5= 1.

Lemma C.1. Let 8�r9 be a sequence of �-parallel server system processes. Assume that Assumption 3.1
holds and � satisfies Assumption 3.2. Fix �> 0, L> 0, and T > 0. Then, for large enough r and � ∈A

max
m<

√
�N r �T

√
xr1m

�N r �

∫ L

0
�Zr1m

jk 4s5�ds < �1 ∀ j ∈J and k ∈K4j50

and

max
m<

√
�N r �T

√
xr1m

�N r �

∫ L

0
�Qr1m

k 4s5�ds < �1 ∀k ∈K0

Proof. Fix � ∈A and �> 0. Let z be given as in Assumption 3.2. For m<
√

�N r �T , by (60),

√
xr1m

�N r �
≤

∥

∥

∥

∥

Qr4t5

�N r �

∥

∥

∥

∥

T

∨

∥

∥

∥

∥

Zr4t5

�N r �
−

EN r

�N r �
x∗

∥

∥

∥

∥

T

∨
1

√

�N r �
0

Because � is assumed to satisfy Assumption 3.2, Lemma B.1 implies lim supr→� �Qr4t5/�N r ��T ∨�Zr4t5/�N r �−

EN r/�N r �x∗�T = 0. Hence, for r large enough and m<
√

�N r �T ,

√
xr1m

�N r �
≤ �0 (C1)

Similarly, for r large enough,

∥

∥

∥

∥

Qr4t5

�N r �

∥

∥

∥

∥

L�+T

∨

∥

∥

∥

∥

Zr4t5

�N r �
−

EN r

�N r �
x∗

∥

∥

∥

∥

L�+T

<
�

L
0 (C2)

Choose r large enough so that (C1) and (C2) hold. Then, for such r and for j ∈J, k ∈K4j5

max
m<

√
�N r �T

1
�N r �

∫ L

0

∣

∣

∣

∣

Zr
jk

(√
xr1m

�N r �
s +

m
√

�N r �

)

− x∗

jkN
r
j

∣

∣

∣

∣

ds ≤ L

∥

∥

∥

∥

Zr
jk4t5

�N r �
− x∗

jk

N r
j

�N r �

∥

∥

∥

∥

L�+T

<�

and

max
m<

√
�N r �T

1
�N r �

∫ L

0

∣

∣

∣

∣

Qr
k

(√
xr1m

�N r �
s +

m
√

�N r �

)

∣

∣

∣

∣

ds ≤ L

∥

∥

∥

∥

Qr4t5

�N r �

∥

∥

∥

∥

L�+T

<�0 �

Remark C.1. Let 8�4r59 be a sequence with �4r5→ 0 as r → �. Define

är
=

{

max
m<

√
�N r �T

(√
xr1m

�N r �

∫ T

0
�Zr1m4s5�ds ∨

√
xr1m

�N r �

∫ T

0
�Qr1m4s5�ds

)

< �4r5

}

0 (C3)

For �4r5→ 0 slowly enough as r → �, limr→� P4är5= 1, by Lemma C.1. Hence,

lim
r→�

P4är
∩Kr5= 11 (C4)

by Corollary 5.1, where Kr defined as in §5.1. With a slight abuse of notation, we set Kr = är ∩ Kr for
simplicity.
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C.2. Proofs of the results in §5.1

C.2.1. Proof of Proposition 5.1. We observe as in Bramson [10] that it is enough to investigate the processes
with index m = 0 and then to multiply the ensuing error bounds by the number of processes in each case;
√

�N r �T . To see this, note that

Ar1m
i 4t5=

1
√
xr1m

(

�i

(

�r
i

�N r �

(

√
xr1mt +

√

�N r �m

))

−�i

(

�r
i

�N r �

√

�N r �m

))

0

Let ur1m
i 415 be the first residual interarrival time of �i after time �r

i /�N
r �
√

�N r �m.

P

{

max
m<

√
�N r �T

∥

∥

∥

∥

Ar1m
i 4t5−

�r
i

�N r �
t

∥

∥

∥

∥

L

> 2�L
}

= P

{

max
m<

√
�N r �T

∥

∥

∥

∥

1
√
xr1m

(

�i4t +
√

�N r �m
�r
i

�N r �

)

−�i

(

�r
i

�N r �

√

�N r �m

))

−
t

√
xr1m

∥

∥

∥

∥

L
√
xr1m�

r
i /�N

r �

> 2�L
}

≤ P

{

max
m<

√
�N r �T

∥

∥

∥

∥

�i

(

t +
√

�N r �m
�r
i

�N r �

)

−�iv4
�r
i

�N r �

√

�N r �m

)

− 4t − ur1m
i 4155

∥

∥

∥

∥

L
√
xr1m�

r
i /�N

r �

>
√
xr1m�L

}

+P

{

max
m<

√
�N r �T

ur1m
i 415
√
xr1m

> �L

}

0 (C5)

To show that is enough to focus on m = 0 first we claim that the second term goes to zero as r → �. This
follows by Lemma C.2, because it is enough to show that 8ur1m

i 4151 i ∈I9 satisfies

ur1m
i 415

/

√

�N r � → 0 in probability as r → �1 for all i ∈I (C6)

for all m<
√

�N r �T . Note that

�i

(

t +
√

�N r �m
�r
i

�N r �

)

−�i

(

�r
i

�N r �

√

�N r �m

)

= �i

(

t +
√

�N r �m
�r
i

�N r �

)

−�i

(

�r
i

�N r �

√

�N r �m+ 4t − ur1m
i 4155

)

Also, by definition of Ar
i (see (18)) and because � is an admissible policy, �i4t +

√

�N r �m�r
i /�N

r �5 −

�i4�
r
i /�N

r �
√

�N r �m5 is independent of xr1m. Hence, for a random variable x̃r1m which has the same distribution
as xr1m and ũr1m

i , which has the same distribution as ur1m
i , and both of which are independent of �r , and because

�i is a renewal process, we have

P

{

max
m<

√
�N r �T

∥

∥

∥

∥

�i

(

t+
√

�N r �m
�r
i

�N r �

)

−�i

(

�r
i

�N r �

√

�N r �m+4t−ur1m
i 4155

)

−4t−ur1m
i 4155

∥

∥

∥

∥

L
√
xr1m�

r
i /�N

r �

≥
√
xr1m�L

}

=Pl

{

max
m<

√
�N r �T

l
∥

∥�i4t+ur10
i 4155−�i4u

r10
i 415+ ũr1m

i 4155−4t− ũr1m
i 4155r

∥

∥

L
√

x̃r1m�
r
i /�N

r �
−

√
x̃r1m�L≥0r

}

0 (C7)

Also, observe that

P

{

max
m<

√
�N r �T

∥

∥�i4t + ur10
i 4155−�i4u

r10
i 415+ ũr1m

i 4155− 4t − ũr1m
i 4155

∥

∥

L
√

x̃r1m�
r
i /�N

r �
−

√
x̃r1m�L≥ 0

}

≤
∑

m≤

√
�N r �T

P
{

��i4t5− t�L
√
x̃r1m�

r
i /�N

r �
>

√
x̃r1m�L

}

+P
{

��i4t + �r5−�i4t5�2����N r �T >
√

�N r �L�
}

1 (C8)

for �r → 0 in probability by Lemma C.2. Let �̂r
i 4t5= �i4�N

r �t5/
√

�N r �−1/
√

�N r �. Then by FCLT, �̂r
i converges

weakly to a Brownian motion as r → �. The second term in (C8) converges to 0 as r → �. To conclude the
proof, we show below that for each m

P
{

��i4t5− t�
L
√

x̃r1m�
r
i /�N

r �
>

√
x̃r1m�L

}

< �/4L
√

�N r �5
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Similarly, for each departure process too, it is enough to investigate the processes with index m= 0, because
we have

Dr1m
jk 4t5=

1
√
xr1m

(

Sjk

(

T r
jk

(√
xr1m

�N r �
t +

m
√

�N r �

))

− Sjk

(

T r
jk

(

m
√

�N r �

)))

(C9)

for j ∈ J1 k ∈ K4j5. Hence, by restarting the process at time m/
√

�N r �, we have that the only condition to be
checked is whether the residual time of the first arrival for Sjk after time T r

jk4m/
√

�N r �5 ∈ 601 �N r �T 7 satisfies a
similar condition to (C6).

The following lemma, taken from Bramson [10], shows that (C6) holds. Let

ur1 T 1max
i = max

{

�ui4l5�2 Ui4l− 15≤ 2����N r
�T
}

1 for all i ∈I and

vr1 T 1max
jk = max

{

�vjk4l5�2 Vjk4l− 15≤ �N r
�T
}

1 for all j ∈J and k ∈K4j50

Lemma C.2. Assume that ui415/
√
N r → 0 in probability as r → � and (19) holds and that �r/�N r � is

bounded. Then, for given T ,

ur1 T 1max
i

/

√

�N r � → 0 in probability as r → �1 for all i ∈I and

vr1 T 1max
jk

/

√

�N r � → 0 in probability as r → �1 for all j ∈J and k ∈K4j50

Proof. The proofs immediately follow by taking r =
√

2����N r � and r =
√

�N r �, respectively, in
Bramson [10, Lemma 5.1]. �

Fix � > 0, L> 0, and T > 0. We prove each bound separately.
Proof of (76). Fix i ∈I. Because xr10 ≥ �N r � by (60), similar to (5.31) in Bramson [10], using Lemma C.2,

for given � > 0 and large enough r ,

P
(

��i4t5− t�2���L
√
xr10

≥ 2����L
√
xr10

)

=

∫ �

0
P
(

��i4t5− t�2���L
√
x ≥ 2����L

√
x
)

dFxr10
4x5

≤
�

�2��L
√

�N r �
0

The first inequality follows from the fact that arrivals after a time point t are independent of the state of the
system at that point. Again for r large enough,

1
√
xr10

��i4t5− t�2���L
√
xr10

≥

∥

∥

∥

∥

Ar
i 4

√
xr10t/�N

r �5
√
xr10

−
�r
i

�N r �
t

∥

∥

∥

∥

L

=

∥

∥

∥

∥

Ar10
i 4t5−

�r
i

�N r �
t

∥

∥

∥

∥

L

0

Hence,

P

{

∥

∥

∥

∥

Ar10
i 4t5−

�r
i

�N r �
t

∥

∥

∥

∥

L

> 2�L
}

≤
2�

L
√

�N r �

and so

P

{

∥

∥

∥

∥

Ar104t5−
�r

�N r �
t

∥

∥

∥

∥

L

> �L

}

≤
2I�

2���L
√

�N r �
0

Multiplying the error bounds by �
√

�N r �T � and enlarging � by a factor of 2I4L∨ T 5 we obtain (76). �
Proof of (77). Fix j ∈J and k ∈K4j5. We first show that for r large enough

P

{

sup
0≤t1≤t2≤L

4Sjk42�j

√
xr10t25−Sjk42�j

√
xr10t155≥2�j

√
xr10

4t2 −t15

�jk

+4
√
xr10�jL�

}

≤
4�

�jL
√

�N r �
0 (C10)

By Proposition 4.3 of Bramson [10] and Lemma C.2, for large enough r ,

P

{

∥

∥

∥

∥

Sjk4t5−
t

�jk

∥

∥

∥

∥

2�jL
√
xr10

≥ 2�jL
√
xr10�

}

≤ 2
�

�jL
√

�N r �
0
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Then,

P

{

sup
0≤t1≤t2≤L

((

Sjk42�j

√
xr10t25−

2�j
√
xr10t2

�jk

)

−

(

Sjk42�j

√
xr10t15−

2�j
√
xr10t1

�jk

))

≥ 4
√
xr10�jL�

}

≤
4�

�jL
√

�N r �
0

This gives (C10). Next, we show that

P

{

sup
0≤t1≤t2≤L

(

Sjk

(

T r
jk

(√
xr10t2

�N r �

))

− Sjk

(

T r
jk

(√
xr10t1

�N r �

)))

≥ �j

√
xr10

4t2 − t15

�jk

+ 5
√
xr10�jL�

}

≤
5�

L�j

√

�N r �
0 (C11)

We prove (C11) by showing that the event in (C11) is included in (C10). Assume that for � ∈ì

Sjk

(

T r
jk

(√
xr10t2

�N r �

))

− Sjk

(

T r
jk

(√
xr10t1

�N r �

))

≥ �j

√
xr10

4t2 − t15

�jk

+ 4
√
xr10�jL� (C12)

for some 0 ≤ t1 ≤ t2 ≤ L0 Let

�l = T r
jk

(√
xr10tl

�N r �
1�

)

for l = 112. Then, for r large enough

0 ≤ �1 ≤ �2 ≤ 2L
√
xr10�j and (C13)

�2 − �1 ≤ 2
√
xr10�j4t2 − t150 (C14)

By (C12) and (C14)

Sjk

(

2�j

√
xr10

�2

2�j
√
xr10

)

− Sjk

(

2�j

√
xr10

�1

2�j
√
xr10

)

≥ 2�j

√
xr10

�2/42�j

√

xr105− �1/42
√

�jxr105

�jk

+ 4
√
xr10�jL�0

By (C13), 0 ≤ �1/42�j
√
xr105 ≤ �2/42�j

√
xr105 ≤ L. Using this and (C14), we get that � also satisfies the

inequality in (C5). Thus we have (C11). By (C9), this implies, by reselecting �, that

P

{

sup
t11t2∈601L7

�Dr104t25−Dr104t15� ≥N �t2 − t1� + �

}

≤
�

√

�N r �
1 (C15)

with N = maxj∈J1 k∈K4j58�j/�jk9. Multiplying the exceptional probability by �
√

�N r �T � and enlarging � appro-
priately we obtain (77). �

Proof of (78). By setting � = 1, t2 = L, and t1 = 0 in (C15), we have that

P

{

Dr
jk

(√
xr10

�N r �
L

)

≥ 2NL
√
xr10

}

≤
�

√

�N r �
0 (C16)

Off of the exceptional set given in (C16)

Dr
jk

(√
xr10

�N r �
L

)

+ 1 ≤ 3NL
√
xr100

Let a= 0 or 1. It follows from Bramson [10, Proposition 4.2] that for large enough n

P

{

∥

∥

∥

∥

Vjk4l5−
l

�jk

∥

∥

∥

∥

n

≥ �n

}

≤
�

n
0
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By setting n= 3NL
√
xr10, we get

P

{

∥

∥

∥

∥

Vjk4D
r
jk4t5+ a5−

Dr
jk4t5

�jk

∥

∥

∥

∥

4
√
xr10/�N

r �5L

≥ 3NL
√
xr10�

}

≤ B2

�
√

�N r �

for B2 ≥ 2/3NL0 By enlarging � appropriately, we get for b̃ = 41105 or 40105

P

{

∥

∥

∥

∥

V r10
jk 4Dr10

jk 4t51 b̃5−
Dr10

jk 4t5

�jk

∥

∥

∥

∥

L

≥ �

}

≤
�

√

�N r �
0

Multiplying the exceptional probability by �
√

�N r �T � and enlarging � appropriately, we obtain

P

{

max
m<

√
�N r �T

∥

∥

∥

∥

V r1m
jk 4Dr1m

jk 4t51 b̃5−
Dr1m

jk 4t5

�jk

∥

∥

∥

∥

L

≥ �

}

≤ �0 (C17)

For b = 40115 and b̃ = 40105, by (63)

P

{

max
m<

√
�N r �T

∥

∥V r1m
jk 4Dr1m

jk 4t51 b̃5−V r1m
jk 4Dr1m

jk 4t51 b5
∥

∥

L
≥ �

}

≤ P

{

max
m<

√
�N r �T

∣

∣

∣

∣

Vjk

(

Dr
jk

(

m
√

�N r �

))

−Vjk

(

Dr
jk

(

m
√

�N r �

)

+ 1
)

∣

∣

∣

∣

≥
√
xr1m�

}

0 (C18)

Observe that, by (16), Vjk4D
r
jk4m/

√

�N r �55≤ �N r �T and by Lemma C.2

P
{

vr1 T 1max
jk ≥

√
xr1m�

}

≤ � (C19)

for large enough r . Thus, we get (78) by combining (16) with (C17)–(C19). �

C.2.2. Proof of Proposition 5.2. Assume that Assumption 3.1 holds and � satisfies Assumption 3.2. Fix
� > 0, L> 0 and T > 0. Recall that

Rr1m
k 4t5=

1
√
xr1m

(

Fk
(√

xr1mG
r1m
k 4t5+Gr

k4m/
√

�N r �5
)

− Fk
(

Gr
k4m/

√

�N r �5
)

)

0

By Assumption 3.2 and Lemma B.1

�Qr4t5�T

N r
→ 0

in probability as N r → �. Hence, for

Cr
= 8�Qr4t5�T ≤N r91

PCr → 1 as r → �0 For the rest of the proof we only consider � ∈Cr .
Now, on Cr ,

max
m≤

√
�N r �T

∣

∣Gr
k4m/

√

�N r �5
∣

∣≤Gr
k4T 5≤ �N r

�T

Let

�r1 T 1max
k = max

{

∣

∣�i4l5
∣

∣2 ék4l− 15≤ �N r
�T
}

0

Then, similar to Lemma C.2, we have that

�r1 T 1max
k /

√

�N r � → 0 in probability as r → �0 (C20)
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Hence, similar to the proof of (76) we can focus on Rr10
k . Then, for är defined as in Remark C.1,

P

(

är
∩

{

∥

∥

∥

∥

F 4
√
xr10G

r10
k 4t55

√
xr10

∥

∥

∥

∥

L

> �

})

≤ P

{

∥

∥

∥

∥

F 4
√
xr10�4r55
√
xr10

∥

∥

∥

∥

L

> �

}

= P
{

∥

∥F 4�4r5t5−�k�4r5t
∥

∥

L
√
xr10

+�k�4r5T
√
xr10 > �

√
xr10

}

<
�

√

�N r �
(C21)

in Bramson [10, Proposition 4.2] and the fact that �4r5→ 0 as r → �.
Hence,

P

{

max
m<

√
�N r�T

�Rr1m
k 4t5�L > �

}

≤ �4r5+P

(

är
∩

{

max
m<

√
�N r�T

�Rr1m
k 4t5�L > �

})

≤ �4r5+
∑

m<
√

�N r�T

P
(

är
∩ 8�Rr1m

k 4t5�L > �9
)

≤ �4r5+ 2T�1

where the last inequality follows from (C20) and (C21).

C.2.3. Proof of Proposition 5.3. We use the bounds established in (76)–(78) and (79). Fix L1T , and
� > 0. Choose r large enough so that (76)–(78) and (79) hold with �/43d5. Let Vr be the intersection of the
complements of the events given in (76)–(78), so P8Vr9 > 1 − �. We show that for r large enough and all
� ∈Vr

max
m<

√
�N r �T

sup
t11t2≤L

∣

∣�r1m4t15−�r1m4t25
∣

∣≤ Ñ �t1 − t2� + � (C22)

for some Ñ that only depends on 4I1 J 1K1�5. We fix � ∈Vr for the rest of the proof and so omit it from the
notation. Let t11 t2 ∈ 601 T 7 and m≥ 0. We first show that for any j ∈J, and k ∈K4j5

∣

∣Zr1m
jk 4t25−Zr1m

jk 4t15
∣

∣≤N0�t2 − t1� + � (C23)

for some N0 > 0. Because Br1m
jk is nondecreasing similar to (B15) we have by (61) and (69) that

0 ≤ Br1m
jk 4t25−Br1m

jk 4t15≤
∑

l∈K4j5

(

Dr1m
jl 4t25−Dr1m

jl 4t15
)

0 (C24)

Combining (C24) with (69) yields
∣

∣Zr1m
jk 4t25−Zr1m

jk 4t15
∣

∣≤K
∣

∣Dr1m4t25−Dr1m4t15
∣

∣+ I
∣

∣Ar1m4t25−Ar1m4t15
∣

∣0

By (76), �Ar1m4t25−Ar1m4t15�< 2����t2 − t1�+� for r large enough. By setting N0 =KN +2I ��� and using (77),
we get (C23). Equation (C24) gives that

∣

∣Br1m
jk 4t25−Br1m

jk 4t15
∣

∣≤N0�t2 − t1� + �0

By (79)

�Rr1m
k 4t5�L ≤ �0

Combining this with (68) gives
∣

∣Qr1m
k 4t25−Qr1m

k 4t15
∣

∣≤N1�t2 − t1� +N1�1

for N1 = 4I + J 5N0. Observe that for any i ∈I, k ∈K, and j ∈J4k5
∣

∣Ar1m
ik 4t25−Ar1m

ik 4t15
∣

∣≤
∣

∣Ar1m
i 4t25−Ar1m

i 4t15
∣

∣1
∣

∣Ar1m
ijk 4t25−Ar1m

ijk 4t15
∣

∣≤
∣

∣Ar1m
i 4t25−Ar1m

i 4t15
∣

∣0

Also, for any j ∈J and k ∈K4j5 and for r large enough, by (66),
∥

∥T r1m
jk 4t25− T r1m

jk 4t15
∥

∥

L
≤ 2�j �t2 − t1� and

∥

∥Y r1m
j 4t25− Y r1m

j 4t15
∥

∥

L
≤ 2�j �t2 − t1�0

Note that, by the definition of Vr , the inequalities above hold for all m<
√

�N r �T . This shows that (C22)
holds, for r large enough, with Ñ =N1 ∨ 2.
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C.3. Proofs of the results in §5.2

C.3.1. Proof of Proposition 5.4. Proof is similar to that in Bramson [10, Proposition 6.2]. Assume that
Assumption 3.1 holds, � satisfies Assumption 3.2, g satisfies Assumption 4.1, and (55) holds.

Fix � ∈Kr and let �r1m be given as in §5.1. By (76′), we have for large enough r that
∥

∥

∥

∥

Ar1m4t5−
�r

�N r �
t

∥

∥

∥

∥

L

≤ �4r50 (C25)

Combining (65) with (78′) gives
∥

∥

∥

∥

T r1m
jk 4t5−

1
�jk

Dr1m
jk 4t5

∥

∥

∥

∥

L

≤ �4r50 (C26)

Recall that zjk = �jx
∗
jk. Using (C4), (71) and Remark C.1 gives

∥

∥T r1m
jk 4t5− zjkt

∥

∥

L
≤ �4r50 (C27)

By (78′)

�Rr1m
k 4t5�L ≤ �4r50 (C28)

Now select any hydrodynamic limit �̃ of E. For given �> 0, choose 4r1m5 so that, �4r5≤ �,
∥

∥�̃4t5−�r1m4t1w5
∥

∥

L
≤ �1 (C29)

and
∣

∣

∣

∣

�r

�N r �
−�

∣

∣

∣

∣

≤ �0 (C30)

It follows from (C25) and (C30) that
∥

∥Ã4t5−�t
∥

∥

L
≤ 2� (C31)

and from (C26) and (C27) that
∥

∥D̃jk4t5−�jkzjkt
∥

∥

L
≤ 2�0 (C32)

By (C28)

�R̃k4t5�L ≤ 2�0 (C33)

By combining (C29), (C31), (C33), (67), and (68), we get
∥

∥

∥

∥

�i −
∑

k∈K

Ãik4t5−
∑

k∈K1 j∈K4k5

Ãijk4t5

∥

∥

∥

∥

L

≤ 2KJ� and (C34)

∥

∥

∥

∥

Q̃k4t5− Q̃k405−
∑

i∈I

Ãik4t5+
∑

j∈J4k5

B̃jk4t5

∥

∥

∥

∥

L

≤ 4IJ�0 (C35)

By combining (C29) with (C32) and (69), we get
∥

∥

∥

∥

Z̃jk4t5− Z̃jk405−
∑

i∈I

Ãijk4t5− B̃jk4t5+�jkzjkt

∥

∥

∥

∥

L

≤ 6I�0 (C36)

Equations (C32)–(C36) show that the hydrodynamic limits satisfy (30), (31), and (33). Equations (35) and (32)
are clearly satisfied by the hydrodynamic limits.

That the hydrodynamic limits satisfy (36) and (37) is proved similarly to the fact that the fluid limits satisfy
the fluid analogs of those equations. Hence, we only illustrate the proof of (36).
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Fix a hydrodynamic limit �̃. By the definition of a hydrodynamic limit, there exists a sequence 4rl1ml1�l5,
with �l ∈Kl for all l ≥ 0, such that

�rl1ml4·1�l5→ �̃4 · 5 (C37)

u.o.c. as l → �. Fix t > 0. If Q̃k4t5 = 0, (36) holds trivially. Now we assume that Q̃k4t5 > a for some a > 0.
By (C37), there exists an l0 such that

Q
rl1ml

k 4t1�l5 > a/2

for all l > l0. This implies, by (74), that
∑

j∈J4k5

∑

l∈K4j5

Z̃
rl1ml

jl 4t1�l5= 00

Hence,

Q
rl1ml

k 4t1�l5
∑

j∈J4k5

∑

l∈K4j5

Z̃
rl1ml

jl 4t1�l5= 00 (C38)

Convergence in (C37) implies that

Q
rl1ml

k 4t1�l5
∑

j∈J4k5

∑

l∈K4j5

Z̃
rl1ml

jl 4t1�l5→ Q̃k4t5
∑

j∈J4k5

∑

l∈K4j5

Z̃jl4t5 as l → �0

This gives (36) by (C38).

C.3.2. Proof of Proposition 5.5. Assume that Assumption 3.1 holds, � satisfies Assumption 3.2, g satisfies
Assumption 4.1, and the hydrodynamic model of the �-parallel server systems satisfies Assumption 4.2.

Fix L > 0 and let �̃ be a hydrodynamic limit of E. Note that because �̃ is a limit of hydrodynamically
scaled processes ��̃405� ≤ 1 by (83). Also, by Proposition 5.4, �̃ satisfies the hydrodynamic model Equations
(30)–(37) for all t ∈ 601L7. Thus, using (30), (31), (33), and the fact that ��̃405� ≤ 1, one can show that there
exists RL > 0 such that

��̃4t5�L ≤RL0 (C39)

Fix � > 00 Because g is continuous, there exists �> 0 such that

�g4x5− g4y5�< � (C40)

if �x− y�<� and x1 y ∈ 6−2RL12RL7
I+dz .

Fix 0 < � < RL as given above and choose r large enough so that (84) holds for all � ∈ Kr and any
m<

√

�N r �T , that is,
∥

∥�r1m4 · 5− �̃4 · 5
∥

∥

L
≤ � (C41)

for some hydrodynamic limit �̃ of E. Hence, by (C39),

��r1m4t5�L ≤ 2RL0 (C42)

By (C39)–(C42) and Assumption 4.2 we have for all t ∈ 601L7 that

g
(

Qr1m4t51Zr1m4t5
)

≤H4t5+ �0

Result (88) is proven similarly. Let �̃ be a hydrodynamic limit of Eg . Then, there exits a sequence 8�rk109,
where 8rk9 is a subsequence of 8r9, such that

∥

∥�rk104 · 5− �̃4 · 5
∥

∥→ 0 (C43)

as k → �. But by definition of Eg , g4Q̃rk104051 Z̃rk104055→ 0. This implies by the continuity of g and (C43) that
g4Q̃4051 Z̃4055= 0. Thus, by the last statement in Assumption 4.2,

∥

∥g4Q̃4t51 Z̃4t55
∥

∥

L
= 00 (C44)
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This shows that (C44) holds for every hydrodynamic limit of Eg .
One can show as in Corollary 5.2 that hydrodynamic limits of Eg are rich in Eg . Hence, for large enough r

and � ∈Lr ,
∥

∥�r104 · 5− �̃4 · 5
∥

∥

L
≤ �

for some hydrodynamic limit �̃ ∈E of Eg . Using (C40) we have

g
(

Qr104t51Zr104t5
)

≤ �

for all t ∈ 601L7.
The validity of (86) when (55) holds is already proved before Proposition 5.5.

C.4. Proofs of the results in §5.3

C.4.1. Proof of Lemma 5.1. For � ∈Kr and r chosen large enough it follows from (81) that

∣

∣Qr1m4t25−Qr1m4t15
∣

∣≤N �t2 − t1� + 1

for t11 t2 ∈ 601L7 and m <
√

�N r �T . Setting t1 = 0 and t2 = 1/yr1m and applying (90) to the above inequality
gives

∣

∣

∣

∣

Qr

(

m+ 1
√

�N r �

)

−Qr

(

m
√

�N r �

)

∣

∣

∣

∣

≤
√
xr1m

N

yr1m
+

√
xr1m1

and so
∣

∣

∣

∣

Q̂r

(

m+ 1
√

�N r �

)

∣

∣

∣

∣

−

∣

∣

∣

∣

Q̂r

(

m
√

�N r �

)

∣

∣

∣

∣

≤N + yr1m ≤ 2Nyr1m0

The same argument gives

∣

∣

∣

∣

Ẑr

(

m+ 1
√

�N r �

)

∣

∣

∣

∣

−

∣

∣

∣

∣

Ẑr

(

m
√

�N r �

)

∣

∣

∣

∣

≤ 2Nyr1m0

Hence,

yr1m+1 ≤

(

∣

∣

∣

∣

Q̂r

(

m
√

�N r �

)

∣

∣

∣

∣

∨

∣

∣

∣

∣

Ẑr

(

m
√

�N r �

)

∣

∣

∣

∣

∨ 1
)

+ 2Nyr1m ≤ 3Nyr1m1

which yields (95).

C.4.2. Proof of Lemma 5.2. Let t ∈ 4Lyr10/
√

�N r �1 T 7. It follows from the definition of mr4t5 that
mr4t5≥ 1. So,

√

�N r �t − 4mr4t5− 15≥ Lyr4mr4t5− 150

Setting m=mr4t5− 1 in Lemma 5.1, one has

√

�N r �t −mr4t5≥ Lyr4mr4t5− 15− 1 ≥
L

3N
yr4mr4t55− 1 ≥

L

6N
yr4mr4t55

assuming L≥ 6N as in (94).
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Appendix D. Proofs of the results in §6

D.1. Proof of Corollary 6.1. A careful review of the proof of Theorem 4.1 reveals that (53) is needed to
show two results. The first result is the inequality in (85). If we only assume that (110) holds, this result still
holds because

g4Qr104051Zr104055≤

(

√

N r

xr10

)c2

g4Q̂r4051 Ẑr4055≤ g4Q̂r4051 Ẑr40551

as �N r �/xr10 ≤ 1 by (60). The second result, for which (53) is needed, is Proposition 5.6. By using (110) instead
of (53) we get

g4Qr1mg4t51Zr1m4t55 = g

(

√

N r/xr10

(

Q̂r

(√
xr1mt

N r
+

m
√
N r

)

1Zr

(√
xr1mt

N r
+

m
√
N r

)))

≥ 4
√

N r/xr105
c1g

(

Q̂r

(√
xr1mt

N r
+

m
√
N r

)

1Zr

(√
xr1mt

N r
+

m
√
N r

))

0

Observe that this gives (92) and (93) for all t ∈ 601 T 7 and m satisfying (91) with c replaced with c1. The rest
of the proof can be repeated verbatim to show that Theorem 4.1 holds when c is replaced with c1.

D.2. Proof of Theorem 6.1. In the rest of this section we assume that Assumption 1 holds, � satis-
fies Assumption 3.2, g satisfies Assumption 6.1, the hydrodynamic limits of �-parallel server system satisfies
Assumption 6.3, Assumption 6.2 holds and

g4Q̂r4051 Ẑr4055→ 0 in probability

as r → �.

D.2.1. Modified hydrodynamic limits. Fix T > 0 and � > 0. We will show that for r large enough

P
{

�g4Q̂r4t51 Ẑr4t55�T > �
}

<�1

where � > 0 is arbitrary. Note that this implies the conclusion of Theorem 6.1. Hence, we also fix � > 0 for the
rest of the proof.

By Assumption 6.2, for each C > 0 large enough there exists an r0 > 0 that may depend on C such that for
all r > r0

P4Ar
C4T 55 > 1 −�/21

where, for T > 0 and C > 0, Ar
C4T 5 is defined in (131).

To introduce the modified hydrodynamic limits, we change the hydrodynamic scaling slightly. For any non-
negative integer m<

√

�N r �T , let

xr1m =

∣

∣

∣

∣

Qr

(

m
√

�N r �

)

∣

∣

∣

∣

2

∨

∣

∣

∣

∣

Zr

(

m
√

�N r �

)

−N rx∗

∣

∣

∣

∣

2

∨ 4C2
�N r

�5

The difference between this definition and the definition (60) is the last term. We note that

xr1m =C2
�N r

� (D1)

on Ar
C4T 5 for m <

√

�N r �T . We define the hydrodynamic scaling as in (62) and (63). Observe that Equa-
tions (67)–(75) are still valid. Fix L > 0. The results in Propositions 5.1 and 5.2 still hold, hence so does the
result in Proposition 5.3. We redefine Kr4T 5 to be the intersection of Kr

0 in (81) with Ar
C4T 5 and the comple-

ments of the events in (76′), (78′), and (79′). The latter three events are modified from three events in (76), (78),
and (79) as explained in the passage immediately below (81). As in Corollary 5.1

lim
r→�

P4Kr4T 55 > 1 −�/20
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Let

Er
=
{

�r1m1m<
√

�N r �T 1� ∈Kr4T 5
}

0

Because (83) holds, Corollary 5.2 holds on Kr4T 5 with Er defined as above and

E= 8Er 2 r ∈�90

We call the hydrodynamic limits in this case the hydrodynamic limits on 8Ar
C4T 59. Observe that the hydrody-

namic limits on 8Ar
C4T 59 also satisfy hydrodynamic model Equations (30)–(37) by Proposition 5.4. However,

the policy depend Equation (38) can be different. Thus, the hydrodynamic model equations can be different
from those in §4.1.

Next we establish a similar result to Proposition 5.5. First note that on Kr4T 5

g

(

Q̂r

(√
xr1mt

�N r �
+

m
√

�N r �

)

1 Ẑr

(√
xr1mt

�N r �
+

m
√

�N r �

))

= g

(

√

xr1m
�N r �

4Qr1m4t51Zr1m4t55

)

= g4C4Qr1m4t51Zr1m4t555 (D2)

for m<
√

�N r �T by (D1) since Kr4T 5⊂Ar
C4T 5.

Therefore,

g
(

Q̂r4051 Ẑr405
)

= g
(

C4Qr104051Zr104055
)

on Kr4T 5.
Let Lr4T 5=Kr4T 5∩Gr where

Gr
=
{

∣

∣g
(

C4Qr104051Zr104055
)

∣

∣≤ �4r5
}

1

with �4r5→ 0 slowly enough as r → 0 so that

lim
r→�

P4Lr4T 55 > 1 −�/20

As in Proposition 5.5, using (6.3) and the continuity of g we have for C >C0 and r > r0 large enough that

g
(

C4Qr1m4t51Zr1m4t55
)

≤HC1T 4t5+ �1 t ∈ 601L7 (D3)

on Kr4T 5. Using the second part of Assumption 6.3, similar to (88) we have
∥

∥g
(

C4Qr104t51Zr104t55
)

∥

∥

L
≤ � (D4)

on Lr4T 5 for r large enough.

D.2.2. SSC in diffusion limits. Let

yr1m =

√

xr1m
�N r �

(D5)

We begin with changing the scaling using (D2). As in Proposition 5.6 we have from (D3) and (D2) that

g4Q̂r4t51 Ẑr4t55≤HC1T

(

1
yr1m

4
√

�N r �t −m5

)

+ �

for � ∈Kr4T 5, r large enough and

m
√

�N r �
≤ t ≤

1
√

�N r �
4yr1mL+m50 (D6)

Also by (D4) we have that

∥

∥g4Q̂r4t51 Ẑr4t55
∥

∥

Lyr10/
√

�N r �
≤ �

on Lr4T 5 for r large enough.
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Let mr4t5 be the smallest m that satisfies (D6) with t and yr4mr4t55= yr1mr 4t5
. Note that on Kr4T 5

Lyr1n = Lyr1m for all n1m<
√

�N r �T 1

by (D1) and (D5). Now observe that if t ∈ 6Lyr10/
√

�N r �1 T 7 then mr4t5≥ 1 hence
√

�N r �t − 4mr4t5− 15 > Lyr4mr4t5− 15= Lyr4mr4t550

Therefore
√

�N r �t −mr4t5 > Lyr4mr4t55− 1 >
L

2
yr4mr4t550

for L> 2.
Because the value of L is a matter of choice, we can take L sufficiently large and redefine Kr4T 5 with the

reselected L. Let HC1T be given as in Assumption 6.3. Because HC1T 4t5→ 0 as t → � is independent of L, for
� > 0 fixed, there exists s∗4�5 > 1 such that for t > s∗4�5, HC1T 4t5 < �. So we set

L≥ 6s∗4�50

The proof is completed similarly to the proof of Theorem 4.1.

Appendix E. Proofs of the results in §7. In this section we provide the proofs of the results in §7.1.

E.1. Proof of Proposition 7.1. We start by presenting the additional equations satisfied by the SBP
V-parallel server systems. For each class k, we denote by Q⊕

k 4t5 the total number of customers in the queue
whose priorities are at least as great as k and by B�

1k4t5 the total number of customers who got delayed in the
queue and whose service started before time t and whose priorities are at most as large as k. We define A�

k1k4t5
similarly. Hence,

Q⊕

k 4t5=

I
∑

j=k

Qr
j 4t51 A�

k1k4t5=

k
∑

l=1

Al1l4t5 and B�

1k4t5=

k
∑

l=1

B1k4t50 (E1)

The SBP policy entails that

B�

1k4t5+A�

k1k4t5 can only increase when Q⊕

k+14t5= 00 (E2)

The following proposition characterizes the fluid limits of the SBP V-parallel server systems.

Proposition E.1. Let 8�r
SBP9 be a sequence of SBP V-parallel server system processes. Assume that the

conditions of Theorem B.1 are satisfied.
(i) In addition to the fluid limit Equations (B3)–(B10), each fluid limit �̄SBP of �r

SBP satisfies

˙̄A�

k1k4t5+ ˙̄B�

1k4t5= 0 when Q̄⊕

k+14t5 > 0 (E3)

or equivalently

˙̄A⊕

k1k4t5+ ˙̄B⊕

1k4t5=

K
∑

k=1

˙̄D1k4t5 when Q̄⊕

k 4t5 > 01 (E4)

where Ā�

k1k4t5 and B̄�

1k4t5 are defined as in (E1) with processes in the original scale being replaced by their
fluid limit counterparts, and

Ā⊕

k1k4t5=

I
∑

l=k

Āl1l4t5 and B̄⊕

1k4t5=

I
∑

l=k

B̄1l4t50

(ii) Let Eqr = 4q11 : : : 1 qI5, where q1 = r ≥ 0 and qi = 0 for i = 21 : : : 1 I . Let z = 8z1i1 : : : 1 z1I9, where z1i =

�i/�1i for i = 11 : : : 1 I . Then, MSBP = 84 Eqr 1 z52 r ≥ 09 is the set of all the steady states of the fluid limits of �r
SBP.

Proof. We prove the proposition in two parts.
(i) Let �̄ be a fluid limit and for notational convenience assume that 8�̄r4·1�59, for some � ∈A, where A

is defined as in the proof of Theorem B.1, converges u.o.c. to �̄. Assume that Q̄⊕

k 4t5 > 0.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Dai and Tezcan: State Space Collapse in Many-Server Diffusion Limits
314 Mathematics of Operations Research 36(2), pp. 271–320, © 2011 INFORMS

By the continuity of Q̄ there exists � > 0 and � > 0 such that Q̄+

k 4s5 > � for all s ∈ 6t − �1 t + �7. Because
8�̄r4·1�59 converges u.o.c. to �̄,

∑K
l=k Q̄

r
l 4s5 > �/4 for all s ∈ 6t−�1 t+�7 and r large enough. Hence, Ar

l1l4·1�5
and Br

1l4·1�5 is flat on 6t − �1 t + �7 for all l < k by (E2). Hence

˙̄Al1l4t5+ ˙̄B1l4t5= 0 for all l < k0 (E5)

This implies (E3). By (11),
∑K

k=1 Z̄
r
1k4s5=N r for all s ∈ 6t − �1 t + �7, since Q̄+

k 4s5 > �. Hence,

K
∑

k=1

˙̄Z1k4s5= 00

But
K
∑

k=1

˙̄Z1k4s5=

K
∑

k=1

˙̄Ak1k4t5+ ˙̄B1k4t51

by (B5). This yields (E4) by (E5).
(ii) Fix 4 Eqr 1 z5 ∈ MSBP. We show that if Q̄405 = Eqr and Z̄405 = z then Q̄4t5 = Eqr and Z̄4t5 = z for all t > 0.

So assume that Q̄405= Eqr and Z̄405= z for a fluid model solution.
We first prove the result for K = 2. We start by showing that Z̄124t5 ≥ z12. Let f14t5 = 4Z̄124t5− z125

−. It is
enough to show, by virtue of Dai [13, Lemma 5.2], that ḟ14t5≤ 0 whenever f14t5 > 0 for a regular point t > 0.
Assume that f1 is differentiable at time t > 0 and that f14t5 > 0, i.e., Z̄124t5 < z12. Note that by (B5),

˙̄Z124t5= ˙̄B124t5+
˙̄A2124t5−�12Z̄124t50

If Q̄24t5 > 0, then by (E5), (B5), and (B9), ˙̄A2124t5 + ˙̄B124t5 = ˙̄D114t5 + ˙̄D124t5 = �1Z̄114t5 + �2Z̄214t5. Also
Q̄24t5 > 0 implies Z̄114t5+ Z̄124t5= 1, by (B8). Hence, ˙̄A2124t5+ ˙̄B124t5 > �12Z̄124t5, which implies ˙̄Z124t5 > 0
and ḟ14t5 < 0. If Q̄24t5= 0, then we claim that ˙̄A2124t5+

˙̄B124t5= �2. If Z̄114t5+ Z̄124t5 < 1, this trivially follows
from (B8). If Z̄114t5+ Z̄124t5 = 1, then we use the fact that ˙̄Q24t5 = 0, because it achieves its minimum at t.
This implies by (B4) that ˙̄A2124t5+ ˙̄B124t5= �2. Hence, if Q̄24t5= 0 and Z̄124t5 < z12, then ḟ14t5≤ 0. Hence, if
Z̄12405≥ z12 then Z̄124t5≥ z12 for all t ≥ 0.

Next, we show that if Q̄2405= 0 and Z̄12405≥ z12 then Q̄24t5= 0 and Z̄124t5≥ z12 for all t ≥ 0. Assume that
Q̄2405 = 0 and Z̄12405 ≥ z12 and that Q̄24t5 > 0. By the previous argument we have that Z̄124t5 ≥ z12. By (B4)
and (B5), ˙̄Q24t5+ ˙̄Z124t5≤ �1 −�12Z̄124t5≤ 0. By (E5), ˙̄Z124t5≥ 0 when Q̄24t5 > 0. Hence, if Q̄4t5 > 0 and it
is differentiable at t > 0, then ˙̄Q4t5≤ 0. Hence, if Q̄2405= 0 and Z̄12405≥ z12, then Q̄24t5= 0 and Z̄124t5≥ z12

for all t ≥ 0.
Now we are ready to show that if Q̄2405 = 0 and Z̄12405 = z12 then Q̄24t5 = 0 and Z̄124t5 = z12 for all t ≥ 0.

Assume that Q̄2405 = 0, Z̄12405 = z12, and Z̄124t5 > z12 for a regular point t > 0. By the previous paragraph
Q̄24t5 = 0, hence ˙̄Q24t5 = 0 by a similar argument above. If Z̄114t5+ Z̄124t5 = 1, ˙̄A2124t5+ ˙̄B124t5 = �1 by the
fact that ˙̄Q24t5= 0, and by Equations (B3) and (B4). If Z̄114t5+ Z̄124t5 < 1, then ˙̄A2124t5+ ˙̄B124t5= �1 by (B3),
(B4), (B6), and (B10). Because ˙̄Z124t5=

˙̄A2124t5+
˙̄B124t5−�12Z̄124t5, by (B5), ˙̄Z124t5 < 0 if Z̄124t5 > z12. Hence,

if Q̄2405= 0 and Z̄12405= z12 then Q̄24t5= 0 and Z̄124t5= z12 for all t ≥ 0.
Next we show that if Q̄2405= 0, Z̄12405= z12, and Z̄114t5= z11 then Q̄24t5= 0, Z̄124t5= z12, and Z̄114t5= z11

for all t ≥ 0. Let t > 0 be a regular point. By the arguments above, we have that Q̄24t5 = 0 and Z̄124t5 = z12.
Hence, Z̄114t5≤ z11 by the definition of the fluid scaling. So assume that Z̄114t5 < z11. This implies Q̄114t5= 0.
Hence, ˙̄A1114t5+ ˙̄B114t5= �1. This gives that ˙̄Z114t5 > 0, because ˙̄Z114t5=

˙̄A1114t5+ ˙̄B114t5−�11Z̄114t5.
Finally, we show that if Q̄2405 = 0, Z̄12405 = z12, Q̄1405 = r , and Z̄11405 = z11 then Q̄24t5 = 0, Z̄124t5 = z12,

Q̄14t5 = r , and Z̄114t5 = z11 for all t ≥ 0. Let t > 0 be a regular point. By the arguments above, we have that
Q̄24t5 = 0, Z̄124t5 = z12, and Z̄114t5 = z11. Assume that Q̄14t5 > r . Then ˙̄Q14t5 =

˙̄A114t5− ˙̄B114t5 = 0, since by
(B3) ˙̄A114t5 +

˙̄A1114t5 = �1 and by (B5) ˙̄A1114t5 + ˙̄B114t5 = �11z11 = �1, when Z̄114t5 = z11, Z̄124t5 = z12, and
Q̄124t5= 0. This completes the proof for the case when K = 2.

If K > 2, the argument above can be repeated first to prove that if Q̄K405= 0 and Z̄K1405= z1K then Q̄K4t5= 0
and Z̄K14t5 = z1K for all t ≥ 0. The same argument now can be repeated for K − 1 because Z̄K is a constant
function. Proceeding inductively, the same result can be shown to hold for all k > 1. The last step, for k = 1, is
same as above. �

Next we complete the proof of Proposition 7.1 using Proposition E.1. By (28), Q̄r405→ 0 and Z̄r405→ z as
r → �, for z = 4z111 : : : 1 z1K5, where z1k = �k/�1k. Hence, �r

SBP satisfies Assumption 3.2 by Lemma B.1 and
Proposition E.1.
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E.2. Proof of Proposition 7.2. Let �̃ be a hydrodynamic limit of 8�r1m
SBP9. Fix t > 0. Assume that Q̃⊕

k 4t5 > 0.
Then, by the continuity of Q̃, there exists an � > 0 and a � > 0 such that Q̃⊕

k 4s5 > � for all s ∈ 6t − �1 t + �7.
Fix 0 < �< �/2 and choose r large enough, together with an integer m and � ∈Kr , so that � < �4r5, for �4r5
selected as in Corollary 5.1. It follows from Corollary 5.2 that 4Qr1m

k 5+4s5 > �/4 for all s ∈ 6t − �1 t + �7.
We obtain from (E2) that

4Br1m
1k 5�4t5+ 4Ar1m

k1k 5
�4t5 can only increase when 4Qr1m

k+15
⊕4t5= 01 (E6)

where the processes 4Br1m
1k 5�1 4Ar1m

k1k 5
�, and 4Qr1m

k+15
⊕ are defined as in (E1), with the hydrodynamically scaled

processes replacing the corresponding original processes. By (E6), Br1m
1l 4 · 5 is flat on 6t− �1 t+ �7 for all l < k,

and because
∣

∣

(

Br1m
1l 4t + �5−Br1m

1l 4t − �5
)

−
(

B̃1l4t + �5− B̃1l4t − �5
)

∣

∣< 2�

and � is arbitrary, B̃1l4 · 5 is also flat on 6t − �1 t + �7 for all l < k. Therefore

˙̃B1l4t5= 0 (E7)

for all l < k. Similarly

˙̃Al1l4t5= 0 (E8)

for all l < k. This yields (122).

E.3. Proof of Proposition 7.3
Remark E.1. Note that if Q̃⊕

k 4t5 > 0, then
∑K

k=1 Z̃1k4s5 = 0 for every s ∈ 6t − �1 t + �7 by (36), where � is
selected as in the previous proof. Then, by (33)

K
∑

k=1

˙̃Z1k4s5=

K
∑

l=1

( ˙̃Al1l4t5+
˙̃B1l4t5−�1kz1k

)

= 00 (E9)

Combining (E7), (E8), and (E9) gives that

˙̃A⊕

k1k4t5+
˙̃B⊕

1k4t5=

K
∑

k=1

�1kz1k when Q̃⊕

k 4t5 > 0 (E10)

for all t ∈ 601L7, where

Ã⊕

k1k4t5=

I
∑

l=k

Ãl1l4t51 B̃⊕

1k4t5=

I
∑

l=k

B̃1l4t51 and Q̃⊕

k 4t5=

I
∑

j=k

Q̃j4t50

Let �̃SBP be a hydrodynamic model solution to the hydrodynamic model of the SBP V-parallel server system.
Let f 4t5=

∑I
i=2 Q̃i4t50 By definition of the hydrodynamic scaling we have ��̃405� ≤ 1. Hence f 405 < I . We use

Lemma 5.2 of Dai [13] to show that f 4t5= 0 for t ≥ I/4�115. Assume that f 4t5 > 0 and �̃SBP is differentiable
at time t. Observe that by (31)

I
∑

i=2

˙̃Qi4t5=

I
∑

i=2

˙̃Aii4t5−

I
∑

i=2

˙̃B1i4t5 (E11)

and by (30)
I
∑

i=2

˙̃Aii4t5+

I
∑

i=2

˙̃Ai1i4t5=

I
∑

i=2

�i =

I
∑

i=2

�1iz1i0 (E12)

Because
∑I

i=2 Q̃i4t5 > 0,
∑I

i=1
˙̃Zi4t5= 0 by (36) and the continuity of Q̃. Hence, by (33),

I
∑

i=1

˙̃Ai1i4t5+

I
∑

i=1

˙̃B1i4t5=

I
∑

i=1

�1iz1i0 (E13)

Combining (E11)–(E13) with (E10) gives

ḟ 4t5=

I
∑

i=2

�1iz1i −

I
∑

i=1

˙̃D1i4t5≤ −�11z110
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E.4. Proof of Lemma 7.1. The proof is similar to that of Lemma 3.2 of Puhalskii and Reiman [40]. We
only give a sketch of the proof here. Note that

Qr
k4t5+Zr

1k4t5 = Qr
k405+Zr

1k405+Ar
k4t5− S1k

(

∫ t

0
Zr

1k4s5ds
)

0

Let

Xr
k4t5=

Qr
k4t5+Zr

1k4t5−N r�k/�1k
√
N r

0

Then,

Xr
k4t5 = Xr

k405+

(

Ar
k4t5−�r

kt
√
N r

)

−
√
N r

(

S1k4N
r
∫ t

0 Z̄
r
1k4s5ds5

N r
−�1k

∫ t

0
Z̄r

1k4s5ds
)

+
√
N r t

(

�r
k

N r
−�k

)

−�1k

∫ t

0
Ẑr

1k4s5ds0 (E14)

Observe that

�Ẑr
1k4t5� ≤ �Xr

k4t5� +

( K
∑

i=1

Xr
i 4t5

)+

0 (E15)

The proof is completed using Gronwall’s inequality and arguments similar to that used in the proof of Lemma 3.2
and Puhalskii and Reiman [40, p. 589] with (114), (E14), and (E15).

Appendix F. Proofs of Results in §8

F.1. Proof of Proposition 8.2. Let 8�r9 be a sequence of V-systems working under the Armony-Maglaras
threshold policy. We start our analysis by presenting the additional equations that must be satisfied by �r .

Because class 2 jobs get priority when the number of class 2 jobs in the queue exceeds
√

�N r ��,

Br
114t5+Ar

1114t5 can only increase when Q24t5
r <

√

�N r ��0 (F1)

Also,

Br
214t5 can only increase when Q24t5

r
≥
√

�N r ��0 (F2)

The following proposition characterizes the fluid limits of the V-parallel server systems working under the
Armony-Maglaras threshold policy.

Proposition F.1. Let 8�r9 be a sequence of V-parallel server system processes working under the Armony-
Maglaras threshold policy. Assume that the conditions of Theorem B.1 are satisfied.

(i) In addition to the fluid limit Equations (B3)–(B10), each fluid limit �̄ of �r satisfies

˙̄A1114t5+ ˙̄B114t5= 0 when Q̄24t5 > 00

(ii) Let Eqr = 4q11 q25, where q1 = r ≥ 0 and q2 = 0 and z = 8z111 z129, where z1i = �i/�i for i = 112. Then,
M= 84 Eqr 1 z52 r ≥ 09 is the set of all the invariant states of the fluid limits of �r .

By (127),

4Q̄r4051 Z̄r4055 ⇒ 401 z51 (F3)

where z= 4�1/�11�2/�25, hence �r satisfies Assumption 3.2 by Proposition F.1. Note that, �r satisfies Assump-
tion 3.1 by (124) and (125).

Proof of Proposition F.1. We prove the proposition in two parts.
(i) Let �̄ be a fluid limit and for notational convenience assume that 8�̄r4·1�59, for some � ∈A, where A

is defined as in proof of Theorem B.1, converges u.o.c. to �̄. Assume that Q̄24t5 > 0.
By the continuity of Q̄ there exists � > 0 and � > 0 such that Q̄24s5 > � for all s ∈ 6t − �1 t + �7. Since

8�̄r4·1�59 converges u.o.c. to �̄, Q̄r
24s5 > �/4 for all s ∈ 6t−�1 t+�7 and r large enough. Hence, Ar

114·1�5 and
Br

114·1�5 are flat on 6t − �1 t + �7 by (F1). Hence

˙̄A1114t5+ ˙̄B114t5= 00 (F4)

(ii) The proof is similar to that of part (ii) Proposition E.1. �
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F.2. Proof of Proposition 8.3. The following result is established by Halfin and Whitt [26].

Theorem F.1. Let 8�r9 be a sequence of V-parallel server system processes working under the Armony-
Maglaras threshold policy and X̂r be defined as in (126). Assume that (127), (124), and (125) hold. Then

X̂r4 · 5 ⇒ X̂4 · 51

where

X̂4t5= X̂4t5+W4t5−�t −�
∫ t

0
4X̂4s55− ds

and W is a driftless Brownian motion with variance 2�.

It can be easily showed using Theorem F.1 that

lim
R→�

lim
r→�

P8�X̂r4t5�T >R9= 00 (F5)

Proof of Proposition 8.3 is similar to that of Lemma 3.2 of Puhalskii and Reiman [40]. Let

X̂r
k4t5=

Qr
k4t5+Zr

1k4t5− �N r ��k/�
√

�N r �
(F6)

for k = 112. We claim that

�Ẑr
1k4t5� ≤ �X̂r

k4t5� + 4X̂r4t55+0 (F7)

To prove this, assume that Ẑr
1k4t5 < 0; otherwise, the result is obvious. If Ẑr

114t5+ Ẑr
124t5 < 0, then Q̂r

k4t5 = 0,
so the result follows. Assume that Ẑr

114t5 + Ẑr
124t5 = 0. Without loss of generality we can assume that k = 1.

Because Ẑr
114t5 < 0, Ẑr

124t5= −Ẑr
114t5 and Q̂r

24t5≥ 0, so (F7) follows.
By (F6), for k = 112

X̂r
k4t5 = X̂r

k405+

(

Ar
k4t5−�r

kt
√

�N r �

)

−
√

�N r �

(

S1k4�N
r �
∫ t

0 Z̄
r
1k4s5ds5

�N r �
−�1k

∫ t

0
Z̄r

1k4s5ds
)

+
√

�N r �t

(

�r
k

�N r �
−�k

)

−�1k

∫ t

0
Ẑr

1k4s5ds0

Let

Âr
k4t5=

Ar
k4t5−�r

kt
√

�N r �
and crk4t5=

√

�N r �

(

S1k4�N
r �
∫ t

0 Z̄
r
1k4s5ds5

�N r �
−�

∫ t

0
Z̄r

1k4s5ds
)

0

Note that

Âr
k4 · 5 ⇒ W a

k 4 · 5 and Ŝr
k4t5 ⇒ W s

k 4 · 5 (F8)

as r → � by Proposition 8.2, (F3), and Donsker’s theorem, see Billingsley [8], where W a
k and W b

k are Brownian
motions with zero drift and variance �k.

Now observe that

�Xr
14t5� + �Xr

24t5�

≤ �X̂r
1405� + �X̂r

2405� + �Âr
14t5+ Ŝr

14t5� + �Âr
24t5+ Ŝr

24t5� +�
∫ t

0

(

�Ẑr
114s5� + �Ẑr

214s5�
)

ds

≤ �X̂r
1405� + �X̂r

2405� + �Âr
14t5� + �Âr

24t5� + �Ŝr
14t5� + �Ŝr

24t5� + 3�
∫ t

0

(

�Xr
14s5� + �Xr

24s5�
)

ds1

where the last inequality follows from (F7). This with Gronwall’s inequality and (F8) gives

lim
R→�

lim
r→�

P
{

�X̂r
14t5�T ∨ �X̂r

24t5�T >R
}

= 00

This gives (130) because Q̂r
i 4t5≥ 0 for all t ≥ 0, r ≥ 0, and k = 112.
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F.3. Proof of Proposition 8.4. Let 8�r9 be a sequence of V-parallel server system processes working under
the Armony-Maglaras threshold policy. Assume that (124), (125), (127), and (128) hold.

Note that, by (F1) and (F2)

Br
114t5+Ar

1114t5 can only increase when g
(

Q̂r4t51 Ẑr4t5
)

= Q̂r
14t5− 4X̂r4t5− �5+ > 0 (F9)

and

Br
214t5 can only increase when g4Q̂r4t51 Ẑr4t55= Q̂r

14t5− 4X̂r4t5− �5+ ≤ 01 (F10)

because, if Q̂r
14t5 > 4X̂r4t5 − �5+, then X̂r4t5 = Q̂r

14t5 + Q̂r
24t5, because the policy is nonidling. Therefore,

Q̂r
24t5≤ � in this case. Similarly, if Q̂r

14t5≤ 4X̂r4t5− �5+ and Q̂r
24t5 > 0, then Q̂r

24t5≥ �.
Equations (F9) and (F10) imply that

Br1m
11 4t5+Ar1m

111 4t5 can only increase when g

(

√

xr1m
�N r �

(

Qr1m4t51Zr1m4t5
)

)

> 0 and (F11)

Br1m
21 4t5 can only increase when g

(

√

xr1m
�N r �

(

Qr1m4t51Zr1m4t5
)

)

≤ 01 (F12)

where the hydrodynamic scaled process �r1m is defined as in §D.2.
Let �̃ be a hydrodynamic limit on Ar

R4T 5. Note that �̃ satisfies (30)–(37) (see §D.2 for more details). We
next characterize the additional equations associated with the policy. We claim that for t ∈ 601 T 7

˙̃B114t5=� when g
(

R4Q̃4t51 Z̃4t55
)

> 0 and Q̃14t5 > 0 (F13)

˙̃B124t5=� when g
(

R4Q̃4t51 Z̃4t55
)

< 0 and Q̃24t5 > 00 (F14)

To show this, assume that

g
(

R4Q̃4t51 Z̃4t55
)

> 2� and Q̃14t5 > 2� (F15)

for some � > 0. By continuity of g and �̃ there exists �> 0 such that

g
(

R4Q̃4s51 Z̃4s55
)

> � and Q̃14s5 > �1

for all s ∈ 6t − �1 t + �7.
Pick r large enough together with an integer m and � ∈Ar

R4T 5 so that
∥

∥�̃4t5−�r1m4t5
∥

∥< �/20

This gives that

g
(

R4Qr1m4s51Zr1m4s55
)

> �/2 and Qr1m
1 4s5 > �/21

because
√

xr1m/�N
r � =R on Ar4T 5 (see §D.2). By (F11)

Br1m
12 4t + �5−Br1m

12 4t − �5= 01

and so

˙̃B124t5= 01

Now, by (33)

˙̃Z124t5= −41 −�5� and ˙̃Z114t5=
˙̃B114t5−���0

Equations (33), (37), and (F15) give that

˙̃Z114t5+
˙̃Z114t5= 00

Hence,

˙̃B114t5=�0

Condition (133) is proved similarly.
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