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Abstract In a service system, the system performance is sensitive to customer abandonment.
We focus on G/GI/n + GI parallel-server queues, which serve as a building block to
model service systems. Consistent with recent empirical findings, such a queue has a
general arrival process (the G) that can be time nonhomogeneous, independent and
identically distributed (iid) service times with a general distribution (the first GI),
and iid patience times with a general distribution (the +GI). Following the square-
root safety staffing rule, companies are able to operate such queues in the quality- and
efficiency-driven (QED) regime that is characterized by large customer volume, the
waiting times being a fraction of the service times, only a small fraction of customers
abandoning the queue, and high server utilization. We survey recent results on many-
server queues that operate in the QED regime. These results include the sensitivity of
patience time distributions and diffusion models as a practical tool for performance
analysis.

Keywords Kingman approximation; heavy traffic; square-root safety staffing; Halfin–Whitt
regime; quality- and efficiency-driven regime; piecewise OU process; functional central
limit theorem

1. Introduction

In a production system such as a semiconductor wafer fabrication line, parts may wait for
a long time before they are processed at various stations. It is common for the long-run
average waiting time to be several times longer than the average processing time; see, e.g.,
Lu et al. [35]. Customers in a service system such as a call center are human beings, how-
ever, and their patience of waiting is often limited. Thus, some of them may abandon the
system before their service begins. The phenomenon of customer abandonment is ubiqui-
tous because no one would wait for service indefinitely. As argued by Garnett et al. [22],
customer abandonment is a key factor for call center operations. It can significantly impact
the performance of a service system. The abandonment probability or the long-run fraction
of customers who abandon the system is an important performance measure, at least for
most revenue-generating service systems. One must model customer abandonment explicitly
for an operational model to be relevant for decision making. See §5 for an example.

In this paper, we focus on a mathematical model that is denoted as a G/GI/n+GI queue.
In this queue, we model customer abandonment by assigning each customer a patience time.
When a customer’s waiting time for service exceeds his patience time, he abandons the queue
without service. In the notation, the G refers to a general arrival process that can be time
nonhomogeneous, the first GI refers to independent and identically distributed (iid) service
times with a general service time distribution, n is the number of identical servers, and +GI
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refers to iid patience times with a general distribution. We call a G/GI/n+GI queue with a
large number of parallel servers a many-server queue. Such a queue serves as a building block
to model large-scale service systems. For service systems such as call centers, it is reasonable
to assume that the patience times are iid, because the queue is usually invisible to waiting
customers. As argued by Halfin and Whitt [27], the performance of many-server queues
is qualitatively different from that of single-server queues or queues with a small number
of servers. Therefore, single-server-based approximations cannot describe the operations of
large-scale service systems.

In a single-server queue, the mean waiting time goes to infinity because of the stochastic
variability in interarrival and service times as the server approaches 100% utilization. Unlike
a single-server queue for which a manager has to make a painful choice between quality of
service (short waiting times) and efficiency (high server utilization), a many-server queue
can be operated in the quality- and efficiency-driven (QED) regime that is characterized by
large customer volume, the waiting times being a fraction of the service times, only a small
fraction of customers abandoning the queue, and high server utilization. Many-server queues
can be operated in the QED regime because of the pooling effect achieved by a large number
of servers working in parallel. Clearly, managers should strive to operate their systems in
the QED regime, which is also called the rationalized regime by Gans et al. [21]. See §§2
and 3 for more discussions on the contrast between single-server queues and many-server
queues.

An important decision for a manager is to decide how many servers should be used at
different hours of a day. The square-root safety staffing rule is an important staffing principle
that is both theoretically justified and widely practiced. Under the square-root safety staffing
rule, when the customer volume is high, the system will be operated in the desired QED
regime. See §4 for more discussion.

It was empirically reported that both the service time distribution and the patience time
distribution are far from exponential; see, e.g., Brown et al. [14]. Therefore, one must use
general distributions to model service times and patience times. Recent papers, e.g., those by
He and Dai [28], Mandelbaum and Momčilović [36], and Zeltyn and Mandelbaum [52], show
that a many-server queue in the QED regime is insensitive to the patience time distribution
as long as the patience time density at the origin is fixed. See §6 for more discussion.

When the service time and the patience time distributions are general, except by computer
simulation, there is no analytical or numerical method to evaluate the performance of such a
queue. We survey diffusion approximations for a many-server queue in the QED regime. In
our diffusion models, the service time distribution is modeled by a phase-type distribution,
and the patience time distribution is general. In §7, we show that the diffusion models are
accurate in predicting the system performance of a many-server queue.

2. Painful Choice: Quality or Efficiency in Single-Server Queues

For a typical service system such as a call center or a hospital emergency department, the
customer arrival process approximately follows a Poisson process, possibly time nonhomo-
geneous; see, e.g., Brown et al. [14] and Shi et al. [45]. To evaluate the quality of service
for such a system, the fraction of customers who have to wait before receiving service, also
known as the delay probability, and the average customer waiting time are two important
performance measures. Usually, these two measures should be maintained under certain
levels to meet customer expectations.

If the system has only one server, an important model is an M/GI/1 queue, where the
arrival process is assumed be a homogeneous Poisson process. Let λ be the arrival rate of
the Poisson process, and let m be the mean service time. Then,

ρ = λm
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is the traffic intensity of the queue. When ρ < 1, it can also be interpreted as the server
utilization. By the Poisson-arrivals-see-time-averages property (see, e.g., Wolff [51]), the
delay probability is given by

Pw = 1 − ρ.

When ρ is close to one, almost all customers have to wait before receiving service.
Let c

2
s

be the squared coefficient of variation (SCV) of the service times. (The SCV of a
positive random variable is defined as the variance divided by the squared mean.) By the
Pollaczek–Khinchine formula (see, e.g., Gross and Harris [25]), the mean waiting time of the
M/GI/1 queue is given by

w = m
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We call f the waiting time factor of the queue. It is the ratio of the mean waiting time to
the mean service time. Formula (1) shows that the waiting time factor is proportional to
ρ/(1 − ρ) in a single-server queue. As a result, both the waiting time factor and the mean
waiting time are large when the server utilization ρ is close to one.

Consider a special case when the service times are exponentially distributed. The SCV of
the service times is c

2
s

= 1, and the corresponding queue is denoted as an M/M/1 queue.
Suppose that the mean service time is five minutes. If the server is kept busy 95% of time,
then 95% of customers have to wait before receiving service. In the meantime, the waiting
time factor is f = 19, giving an expected waiting time of more than one hour and a half.
Such quality of service is unlikely acceptable if customers are human beings.

In the case when “customers” are jobs to be processed or messages to be transmitted, long
waiting times can sometimes be acceptable to keep certain expensive bottleneck resources
heavily utilized. For example, a modern semiconductor wafer fabrication line costs more
than three billion dollars to build, and it is important to keep the parts in process waiting in
queues to be processed at various stations. It is not uncommon for the waiting time factor
to be larger than 19 in such a production system. In a service system, it is human beings,
not parts, that wait. A customer would not be satisfied if his expected waiting time was
19 times his service time. In a service system, the quality of service is important. Although
how to measure quality of service may differ, depending on managers and the application
context, we choose to focus on the delay probability and the mean waiting time in this paper.
The Pollaczek–Khinchine formula (1) dictates that, in the single-server setting, one cannot
and should not maintain high server utilization to achieve good quality of service. In the
setting of a single server or a small number of servers, the operational efficiency (high server
utilization) must be sacrificed to maintain the service quality at a satisfactory level because
of the variability in the arrival and service processes. However, managers do not have to face
this painful trade-off between quality and efficiency when there are many servers working
in parallel; see §3 below.

The Pollaczek–Khinchine formula (1) clearly shows the nonlinear effect of the server
utilization on the mean waiting time. The waiting time factor increases rapidly as the server
utilization approaches one. For example, for an M/M/1 queue as the server utilization grows
from ρ = 0.9 to 0.95, the waiting time factor increases from f = 9 to 19. However, as the
server utilization grows from ρ = 0.8 to 0.85, the waiting time factor increases only from
f = 4 to 5.67. Therefore, when a single-server queue is already heavily loaded, even a slight
increase in server utilization will degrade the quality of service significantly.

Figure 1 illustrates how the waiting time factor evolves with the server utilization in an
M/M/1 queue.
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Figure 1. Waiting time factor vs. server utilization in an M/M/1 queue.
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3. Simultaneous Quality and Efficiency in Multiserver Queues

In contrast to a single-server system that has to compromise between service quality and
operational efficiency, it is possible to achieve both of them simultaneously in a service
system with many parallel servers. Let us consider an M/M/n queue that has a Poisson
arrival process with rate λ, exponentially distributed service times with mean m = 1/µ, and
n identical servers working in parallel. The traffic intensity is now defined as

ρ = λ/(nµ).

Let X(t) be the number of customers in the system at time t. Then X = {X(t): t ≥ 0}
is a continuous-time Markov chain. Assume that ρ < 1. The Markov chain has a unique
stationary distribution π = (πi: i = 0,1,2, . . .) that satisfies the following balance equations:






λπi = (i+ 1)µπi+1 for i = 0,1, . . . , n − 1,

λπi = nµπi+1 for i = n,n+ 1, . . . ,
∞�

i=0

πi = 1.

(2)

From (2), one has the Erlang-C formula for the delay probability, i.e.,

Pw =
∞�

i=0
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The mean waiting time is given by

w = λ
−1

∞�

i=0

iπn+i = Pw

1
(1 − ρ)nµ

.

Hence, the waiting time factor for the M/M/n queue is given by

f(n,ρ) = wµ = Pw

1
(1 − ρ)n

. (4)
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Figure 2. Delay probability and waiting time factor vs. number of servers for M/M/n queues with
ρ = 0.95.
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Because Pw ≤ 1, we have

f(n,ρ) ≤ 1
(1 − ρ)n

.

Thus, for each fixed ρ < 1, the waiting time factor f(n,ρ) approaches zero as n → ∞.
Set the average utilization per server to be ρ = 0.95. In Figure 2, we plot the delay

probabilities and the waiting time factors as the number of servers n increases from one. The
figure shows that the delay probability decreases gradually while the waiting time factor
decreases rapidly. For example, when n = 18, the delay probability is 76.7%, and the waiting
time factor is f(18,0.95) = 0.85 < 1. Thus, when n = 18, the average utilization per server is
95%, 76.7% of customers are delayed before receiving service, and the mean waiting time is
less than the mean service time; the quality of service is reasonable. If one further increases
the number of servers to n = 100 and the average utilization per server is kept at 95%, then
the delay probability decreases to 50.7%, and the waiting time factor is f(100,0.95) = 0.101.
In this case, nearly half of all customers are served immediately upon arrival without any
delay, and the mean waiting time is only 10% of the mean service time. This level of service
is highly attractive despite the fact that the servers are 95% utilized. Such a system achieves
both high quality of service and operational efficiency. Therefore, it is operated in the QED
parameter regime, a term coined by Atar et al. [3]. In the QED regime, the system has a
large number of parallel servers, the arrival rate is high, and the arrival rate and the service
capacity are approximately balanced so that the server utilization is close to one. The QED
regime is also called a rationalized regime by Gans et al. [21] because, in most cases, a
manager should operate his service system in this regime.

Even though the average server utilization is close to one, only a fraction of customers
need to wait in a queue with enough servers working in parallel. This phenomenon is in
sharp contrast to the one in which almost all customers have to wait in a single-server queue.
To illustrate how the waiting time factor changes with the server utilization in a multiserver
queue, we also plot the waiting time factor curve for a queue with n = 18 servers in Figure 3.
Compared with the curve for the single-server queue that was first plotted in Figure 1 and
is replotted in Figure 3, the waiting time factor for the 18-server queue increases much more
slowly as the server utilization approaches one.

The Poisson arrival process assumption is equivalent to the assumption that the interar-
rival times are iid following an exponential distribution. For the Poisson arrival process, the
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Figure 3. Waiting time factor vs. server utilization in an M/M/1 queue and an M/M/18 queue.
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SCV of its interarrival times is c
2
a

= 1. Then, the Pollaczek–Khinchine formula (1) for the
mean waiting time in an M/GI/1 queue can be written as

w = m
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2
s

2

�
. (5)

Kingman [32] showed that when the server utilization is close to one, formula (5) approx-
imately holds for a GI/GI/1 queue that has iid interarrival times following a general dis-
tribution (the first GI). When the queue has no variability so that c

2
a

= c
2
s
= 0, there is no

waiting, and thus w = 0. In general, the variability in customer arrival and service processes
contributes to the system congestion, degrading the quality of service, particularly when the
system is heavily loaded. Figure 3, however, illustrates that the influence of the variability
can be offset by pooling service facilities. The pooling principle has been widely used in
resource management under uncertainty.

4. Square-Root Safety Staffing Rule

Consider a GI/GI/n queue with arrival rate λ and mean service time 1/µ. Let R = λ/µ be
the offered load of the queue. When the arrival rate λ is large, so is the offered load R. One
expects that an appropriate staffing level n should be

n = R + ∆,

where ∆ is the excess service capacity against the system’s stochastic variability. To keep the
server utilization high, ∆ should be much smaller than the offered load R. The square-root
safety staffing rule recommends an amount of excess service capacity of

∆ = β

√
R

for some β > 0. Thus, following the square-root safety staffing rule, the staffing level n

satisfies
n = R +β

√
R ≈ R +β

√
n (6)

when the offered load R is high. Of course, the value of n given by (6) should be rounded to an
integer. It turns out that, with a fixed β > 0, as the offered load increases, the corresponding
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staffing level n in (6) stabilizes the delay probability and makes the waiting time factor on
the order of 1/

√
n. At the end of this section, we show the approximation

Pw ≈ 1
βΦ(β)/φ(β) + 1

(7)

when the offered load R is high in the M/M/n setting, where φ and Φ are the probability
density and the cumulative distribution function, respectively, of the standard normal vari-
able. An improvement, particularly when the offered load R is not necessarily high, over
approximation (7) will also be discussed.

There are at least two usages for formula (7). The first one is for performance analysis
with a given staffing level n, and the second one is to determine the staffing level that
achieves a given delay probability. In the first usage, for a given staffing level n and a given
utilization level ρ < 1, set

β =
√

n(1 − ρ),

and use the right side of (7) to approximate the delay probability Pw. Once we have the
delay probability, the waiting time factor f(n,ρ) in (4) becomes

f(n,ρ) =
Pw√
nβ

. (8)

For example, when n = 100 and ρ = 0.95, one has β = 0.5, and the right side of (7) predicts
Pw to be 0.505, compared with the exact value 0.507 from (3). The waiting time factor
computed through (4) is 0.101 based on both exact and approximate values of Pw.

The second and more significant usage of (7) is that it leads to the following implemen-
tation of the square-root safety staffing rule in the M/M/n setting. Suppose that the delay
probability is required to be less than a target value 0 < γ < 1. One needs to set the staffing
level n (i.e., the number of servers) so that the delay probability is approximately γ. For
this, one first solves for β using

γ =
1

βΦ(β)/φ(β) + 1
. (9)

Once we have β, for a given offered load R, one sets the staffing level n using the first
part of (6).

The celebrated Halfin–Whitt regime refers to a parameter regime when the offered load
R → ∞ while the safety coefficient β remains fixed, and the staffing level n is set according
to the square-root safety staffing rule (6). This regime was first analyzed in the seminal
paper by Halfin and Whitt [27]. As the offered load R increases, as long as the staffing level
n increases accordingly following (6) with the fixed β satisfying (9), the delay probability
stabilizes at γ. Because ρ = R/n, following the square-root safety staffing rule (6), the server
utilization gets close to one as the offered load increases to infinity. Also, it follows from (4)
that the waiting time factor is f = Pw/(

√
nβ), which approaches zero at rate 1/

√
n as

the offered load increases to infinity. Hence, in the M/M/n setting, the square-root safety
staffing rule automatically leads the system to the QED regime, achieving both quality and
efficiency. The analysis in Reed [42] concludes that the square-root safety staffing rule also
automatically leads the system to the QED regime in the GI/GI/n setting.

The origin of the square-root safety staffing rule can be traced back to Erlang’s paper
written in 1923, which was collected in Brockmeyer et al. [13]. In the M/M/n/n setting,
which models a loss system such as a telephone system, Erlang derived the rule by marginal
analysis of the benefit of adding a server. He also mentioned that such a rule had been
practiced as early as in 1913. The square-root safety staffing rule has also been advocated
by Grassmann [23, 24], Kolesar [34], Newell [40, 41], and Whitt [48]. Whitt [48] formally
proposed and analyzed the rule.
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Now we show approximation (7). In this derivation, we work directly with the continuous-
time Markov chain, rather than with the diffusion approximations in Halfin and Whitt [27].
Recall that the delay probability Pw is given in (3). Using the fact that R = nρ, we have

Pw =
R

n
/n!

(1 − ρ)
�

n−1

k=0
Rk/k! +Rn/n!

=
(Rn

/n!)e−R

(1 − ρ)
�

n−1

k=0
(Rk/k!)e−R + (Rn/n!)e−R

.

The square-root safety staffing rule n = R +β
√

n implies R = n(1 −β/
√

n). Therefore,

R
n

n!
e
−R =

n
n(1 −β/

√
n)n

n!
e
−n+β

√
n =

n
n

n!
e
−n+β

√
n+n log(1−β/

√
n)

. (10)

Using the Stirling formula and the Taylor expansion for log(1 −x), we have

n! ∼
√

2πn
n+1/2

e
−n and n log(1 −β/

√
n) ∼ −β

2
/2 −β

√
n (11)

as n → ∞. (Here, f(n) ∼ g(n) means limn→∞ f(n)/g(n) = 1.) By (10) and (11), we have

R
n

n!
e
−R ∼ 1√

n

1√
2π

e
−β

2
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1√
n

φ(β).

Let N be a Poisson random variable with mean R. Then
n−1�

k=0

(Rk
/k!)e−R = P[N < n].

When the offered load R is high, N is approximately normally distributed with both the
mean and the variance being R. Thus,

P[N < n] = P
�
N −R√

R
<

n −R√
R

�
≈ P

�
N − R√

R
< β

�
≈ Φ(β).

The above analysis leads to approximation (7).
When the offered load R is moderate, there are refined normal approximations for the

Poisson probability P[N < n]. For example, the Wilson–Hilferty approximation (see Johnson
and Kotz [30]) gives

P[N < n] ≈ 1 −Φ
�

c− µ0

σ0

�
,

where c = (R/n)1/3, µ0 = 1 − 1/(9n), and σ0 = 1/(3
√

n); see also the approximations in
Janssen et al. [29]. Once one has a refined normal approximation for P[N < n], one can
estimate the delay probability by

Pw =
1

1 +β(1 −Φ((c−µ0)/σ0))/φ(β)
. (12)

For example, when n = 18 and ρ = 0.95, (12) gives 76.8% as an approximation for Pw,
compared with the exact value 76.7% computed from (3). The approximation (7) gives
75.9% for the delay probability.

5. Customer Abandonment

The phenomenon of customer abandonment is present in most service systems that serve
human beings. For a service system with significant customer abandonment, any queueing
model that ignores the abandonment phenomenon is likely irrelevant to operational deci-
sions. To demonstrate the significant influence of customer abandonment to the system
performance, let us consider an M/M/n+M queue with n = 50 servers. The arrival process



Dai and He: Queues in Service Systems

44 Tutorials in Operations Research, c� 2011 INFORMS

Table 1. Comparison between queues with and without
customer abandonment.

M/M/50+ M M/M/50

Abandonment fraction 10.2% N/A
Mean waiting time (in sec.) 12.5 87.7
Mean queue length 11.2 72.2
Server utilization (%) 98.8 98.8

is Poisson with rate λ = 55 customers per minute. The service times are exponentially dis-
tributed with mean one minute. Each customer has a patience time, and the patience times
are iid following an exponential distribution with mean two minutes. Several performance
measures of this queue are listed in Table 1.

In the same table, we also list the performance measures for a modified queue. The modified
queue is an M/M/n queue with the same mean service time, the same number of servers, and
the same throughput as the original queue, but it has no customer abandonment. The arrival
rate λ

∗ in the modified queue is set to be equal to the throughput of the original queue, i.e.,
λ

∗ = 55× (1−0.102) = 49.39. Table 1 shows that both the mean waiting time and the mean
queue length in the original queue are much smaller than that in the modified queue. In other
words, with the same service capacity and throughput, some key performance measures in
a queue with abandonment can be much better than in a queue without abandonment. To
meet a certain service requirement without considering customer abandonment, one tends to
overestimate the staffing level. Of course, customer abandonment can be costly. One needs
to find a trade-off between customer abandonment and staffing cost using a correct model.

The better performance on the waiting times in a queue with customer abandonment
can be explained intuitively as follows. In the original queue with customer abandonment,
when the system is in a congestion period, customers who experience long waiting times
abandon the system. For these customers, their waiting times are capped by their patience
times. In the corresponding queue without abandonment, these customers will experience
extremely long delays, which degrades the overall waiting time statistics for the system.

The square-root safety staffing rule (6) also applies to a service system with high
offered load in the presence of customer abandonment. Consider the staffing problem for
M/M/n +M queues. Let 1/α be the mean patience time. As argued by Garnett et al. [22],
to meet the target delay probability 0 < γ < 1, one can set the staffing level following (6),
but the value of β is now determined by solving

γ =
�

1 +
h(β

�
µ/α)�

µ/αh(−β)

�−1

(13)

with
h(x) =

φ(x)
1 −Φ(x)

being the hazard rate function of the standard normal distribution. For a service system with
customer abandonment, the fraction of abandoned customers is another important perfor-
mance measure. Let β be a fixed real number that can be either positive or zero or negative.
For each offered load R, set the staffing level n by (6). It follows from Garnett et al. [22] that
the fraction of customers who abandon the M/M/n +M queue is approximately given by

PA ≈ 1√
R

(
�

α/µh(β
�

µ/α) −β)
�

1 +
h(β

�
µ/α)�

µ/αh(−β)

�−1

.

Therefore, in the presence of customer abandonment, the square-root safety staffing rule
can still lead the system to the QED regime and yield high server utilization, short waiting
times, and a very small abandonment fraction.
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Because abandoned customers do not receive any service, the traffic intensity ρ = λ/(nµ)
should not be interpreted as the server utilization any longer. With customer abandonment,
a service system can reach a steady state even if the customer arrival rate is larger than
its service capacity. As more and more customers accumulate in the buffer, the customer
abandonment rate keeps increasing until arrivals and departures (including both service
completions and abandonments) reach an equilibrium. When solving (13) for β, it is possible
to have a negative solution that results in a staffing level below the offered load. Because
of the presence of customer abandonment, the service system can still achieve both quality
and efficiency in this case.

There is a growing list of papers that study queueing models with customer abandonment.
These papers include those by Baccelli et al. [4], Bassamboo et al. [6, 7], Bhattacharya and
Ephremides [8], Boxma and de Waal [10], Brandt and Brandt [11, 12], Mandelbaum and
Zeltyn [37], and Zeltyn and Mandelbaum [52]. Fluid models and related analysis of many-
server queues with customer abandonment have been studied by Atar et al. [1], Bassamboo
and Randhawa [5], Kang and Ramanan [31], Whitt [49, 50], and Zhang [53]. Diffusion models
and related analysis have been studied in Atar et al. [2], Dai and He [17], Dai et al. [19],
Dai and Tezcan [18], Garnett et al. [22], Gurvich and Whitt [26], He and Dai [28], Koçağa
and Ward [33], Mandelbaum and Momčilović [36], Mandelbaum and Zeltyn [38], Reed and
Tezcan [43], Reed and Ward [44], Talreja and Whitt [46], and Tezcan and Dai [47].

6. Performance Insensitivity to Patience Time Distributions

As we have demonstrated in the previous sections, service systems operating in the QED
regime are characterized by short customer waiting times. For example, for M/M/n queues
operating in the QED regime with β =

√
n(1 − ρ) being fixed, it can be seen from (8) that

the waiting time decreases to zero at rate 1/
√

n as the number of servers n → ∞. The same
decreasing rate of waiting times has been proved in Garnett et al. [22] for M/M/n + M

queues operating in the QED regime. The work of Dai and He [17] suggests that a similar
result holds for GI/GI/n + GI queues. Hence, the waiting times are relatively short for a
service system in the QED regime. For example, if a service system has hundreds of servers
working in parallel, and the service times are typically several minutes, then in the QED
regime, the waiting times should be on the order of seconds. The above observation implies
that when n is large, the patience time distribution, outside a small neighborhood of zero,
barely has any influence on the system dynamics. Such a result can be confirmed by the
following numerical example.

Consider an M/M/n +GI queue. Let F be the patience time distribution that satisfies

F (0) = 0 and α = F
�(0+) = lim

x↓0

x
−1

F (x) < ∞. (14)

So α is the density of F at the origin. In particular, α is identical to the abandonment
rate when the patience time distribution is exponential. If the waiting times are short, the
abandonment process should depend on the patience time distribution mostly through its
density at the origin. Suppose that the queue has n = 100 servers, the Poisson arrival pro-
cess has rate λ = 105, and the service times are exponentially distributed with mean one.
This system is slightly overloaded. A fraction of traffic, at least (λ − 100)/λ = 4.8% of the
arrivals, has to abandon the system. For a general patience time distribution, there are
no analytical tools or numerical methods to compute the abandonment fraction and the
mean queue length. We consider three patience time distributions with the same densities at
the origin: an exponential distribution (Exp) with rate α, a uniform distribution (Uniform)
on the interval [0,1/α], and a two-phase hyperexponential (H2) distribution. A two-phase
hyperexponential distribution can be determined by its initial distribution p = (p1, p2) with
p1 + p2 = 1 and its rate vector ν = (ν1,ν2). For such a hyperexponentially distributed ran-
dom variable, with probability p1 it is exponentially distributed with mean 1/ν1, and with
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probability p2 it is exponentially distributed with mean 1/ν2. In our example, the hyperex-
ponential patience time distribution is set to have p = (0.21,0.79) and ν = (0.3α,79α/30).
Thus, 21% of customers have long service times with mean 10/(3α), and 79% of customers
have short service times with mean 30/(79α). Equivalently, the density function of the
hyperexponential patience time distribution is given by

fH2(x) = 0.21α exp(−0.3αx) + 0.79α exp(−79αx/30), x ≥ 0. (15)

All three distributions have density α at the origin.
Computer simulation is conducted to estimate the abandonment fraction and the mean

queue length for each case. The simulation estimates are averaged over 20 independent runs,
and each run lasts 105 time units. Table 2 displays the results for different α values and
different patience time distributions. For each row with a fixed α, the performance is very
close for different patience time distributions.

The above simulation example indicates that in the QED regime, the system performance
is generally invariant with the patience time distribution as long as its density at the origin
is fixed and positive. This invariance also suggests that to obtain performance measures for
a many-server queue with a general patience time distribution, it is generally accurate to
replace the patience time distribution by an exponential distribution with the same density
at the origin. An exponential patience time distribution is attractive in many aspects. For
example, when the service time distribution is phase type, the matrix-analytic method
sometimes can be effective to compute the performance of a queue with exponential patience
time distribution. The computed performance is in turn used to approximate the original
queue with a general patience time distribution. Section 7 will have more discussion on
phase-type distributions and the matrix-analytic method.

Table 2 supports the replacement of an M/M/100 + GI queue by an M/M/100 + M

queue. However, it is important that the two systems match the patience time density at
the origin, not any other statistics such as the mean patience time. To highlight this point,
suppose that a manager uses an M/M/100+M system to replace an M/M/100+GI system.
But this time, the manager matches the mean patience time, a practice that is often used
in industry. In Table 3, for a fixed mean patience time mp, simulation estimates of mean
queue lengths are given for different patience time distributions, including an exponential
distribution with rate α = m

−1
p

, a uniform distribution in [0,2mp] with α = m
−1
p

/2, and the
hyperexponential distribution given by (15) with α = 2.447m

−1
p

. Table 3 shows that for each
fixed mp, the performance is drastically different as the patience time distribution changes.
This example illustrates that the mean patience time is a wrong statistic to focus on and
one should never use it to calibrate a customer abandonment model.

The phenomenon of performance insensitivity to patience time distributions was first
studied by Zeltyn and Mandelbaum [52] for steady-state analysis and later elaborated on by
Dai and He [17] for process-level analysis, where a deterministic relationship is established
between the abandonment processes and the queue length processes for many-server queues.

Table 2. Performance insensitivity to patience time distributions.

Abandonment fraction Mean queue length

Exp Uniform H2 Diffusion Exp Uniform H2 Diffusion

α = 0.1 0.0497 0.0498 0.0496 0.0497 52.18 50.59 54.19 52.19
α = 0.5 0.0603 0.0607 0.0599 0.0603 12.67 12.06 13.43 12.66
α = 1 0.0670 0.0676 0.0662 0.0669 7.031 6.585 7.592 7.022
α = 2 0.0739 0.0748 0.0730 0.0738 3.882 3.547 4.313 3.877
α = 10 0.0886 0.0902 0.0869 0.0886 0.9301 0.7540 1.172 0.9302
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Table 3. Mean patience time is a wrong statistic.

Abandonment fraction Mean queue length

Exp Uniform H2 Exp Uniform H2

mp = 0.1 0.0886 0.0840 0.0926 0.9301 1.505 0.5840
mp = 0.5 0.0739 0.0676 0.0794 3.882 6.585 2.455
mp = 1 0.0670 0.0608 0.0730 7.031 12.06 4.313
mp = 2 0.0603 0.0550 0.0682 12.67 22.10 6.438
mp = 10 0.0497 0.0481 0.0543 52.18 98.07 24.52

This relationship says that for many-server queues in the QED regime, the cumulative
number of customers who have abandoned the system is approximately equal to a constant
multiple of the cumulative amount of waiting time among all customers. Clearly, the constant
should be interpreted as the abandonment rate per unit of waiting time. It was proved in
Dai and He [17] that this constant is equal to the patience time density at the origin when
it is strictly positive. More specifically, if A(t) is the number of abandonments by time t and
Q(t) is the queue length (i.e., the number of waiting customers) at time t, then

�
t

0
Q(s)ds

is the cumulative waiting time by time t among all customers, and the scaled difference

1√
n

�
A(t) −α

�
t

0

Q(s)ds

�

is close to zero for any time t ≥ 0 when n is large. Hence, one may use

A(t) ≈ α

�
t

0

Q(s)ds (16)

to approximate the abandonment process in a many-server queue.

7. Diffusion Model for Many-Server Queues

The exact analysis of a many-server queue has largely been limited to the M/M/n + M

model, also known as the Erlang-A model, which has a Poisson arrival process and exponen-
tial service and patience time distributions. However, as pointed out by Brown et al. [14], the
service time distribution in a call center appears to follow a log-normal distribution. Such
distributions were also observed by Shi et al. [45] for length of stay in a hospital. In addition,
the patience time distribution in a call center was observed by Zeltyn and Mandelbaum [52]
to be far from exponential. With a general service or patience time distribution, there is
no finite-dimensional Markovian representation of the queue. Except computer simulations,
no methods are available to analyze such a queue either analytically or numerically. Hence,
much attention has been devoted to the approximate analysis of such a queue.

In our approximate analysis of a queue, we approximate a general service time distribution
with a phase-type distribution. A phase-type random variable is defined to be the time until
absorption of a transient, finite-state Markov chain. Any positive-valued distribution can be
approximated by phase-type distributions. See Neuts [39] for more discussion on phase-type
distributions. For an M/Ph/n+GI queue with a phase-type service time distribution, two
multidimensional diffusion processes were proposed by He and Dai [28] to approximate the
dynamics of the queue.

In §7.1, we introduce Brownian motion and illustrate how an arrival process such as a
Poisson process can be approximated by a Brownian motion model. In §7.2, we illustrate the
diffusion approximation of M/M/n + GI queues. Because the service time distribution is
exponential in this case, we are able to spell out the details of every step clearly in deriving
the diffusion approximation. The resulting diffusion process is a one-dimensional piecewise
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Ornstein–Uhlenbeck (OU) process, whose stationary distribution has an explicit formula.
In §7.3, the diffusion model for M/H2/n + GI queues is presented. The resulting diffusion
process is two-dimensional, whose stationary distribution can be computed numerically using
the algorithm developed in He and Dai [28]. Diffusion approximations are rooted in many-
server heavy traffic limit theorems, which require that the number of servers go to infinity.
Section 7.4 shows that the diffusion approximation is accurate, sometimes for as few as
20 servers. All these diffusion approximations use the patience time density at the origin
only. When the patience time density is zero at the origin or changes rapidly around the
origin, we present in §7.5 an alternative diffusion model that uses the hazard rate function
of the patience time distribution. The hazard rate diffusion model is shown to be accurate
when the previous diffusion model works poorly or fails.

7.1. Brownian Approximation

Let E = {E(t): t ≥ 0} be a Poisson arrival process with rate λ > 0. Assume that the arrival
rate is λ = 100 customers per minute. In Figure 4(a), we plot a sample path of the Poisson
process in the first 10 minutes. One can see that E(t) evolves around the straight line
given by the expectation E[E(t)] = λt. To focus on the stochastic variability of the arrival
process E, we plot the sample path of the corresponding centered process {E(t)−λt: t ≥ 0}
in Figure 4(b). The centered process records the fluctuation of the arrival process around its
mean. In the plot, the x-axis represents the time, in a span of 10 minutes. The fluctuation
represented by the y-axis is scaled automatically by the plotting software. To examine the
effect of this scaling further, in Figure 5 we plot the centered process when the arrival rate
is λ = 10,000. It turns out that the magnitude of the centered process is on the order of

√
λ

as λ becomes large.
Let µB ∈ R and σ

2

B
> 0 be given. A stochastic process B = {B(t): t ≥ 0} is said to be a

(µB ,σ
2

B
)-Brownian motion if (i) B(0) = 0 and almost every sample path is continuous,

(ii) {B(t): t ≥ 0} has stationary, independent increments, and (iii) B(t) is normally dis-
tributed with mean µBt and variance σ

2

B
t for every t > 0. The parameter µB is called the

drift, and σ
2

B
is called the variance. Such a process is called a standard Brownian motion

if µB = 0 and σ
2

B
= 1. By the well-known Donsker’s theorem, (see, e.g., Billingsley [9]),

Ẽλ = {Ẽλ(t): t ≥ 0} converges in distribution to a standard Brownian motion as λ → ∞,
where the scaled, centered process Ẽλ is defined by

Ẽλ(t) =
E(t) −λt√

λ
. (17)

For a Poisson process, Donsker’s theorem suggests that one may replace its scaled fluctuation
in (17) by the standard Brownian motion when the arrival rate λ is large. Donsker’s theorem

Figure 4. Poisson process with rate λ = 100.
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Figure 5. Poisson process with rate λ = 10,000.
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is an example of a functional central limit theorem. Such a theorem holds for much more
general arrival processes including renewal arrival processes.

For a general renewal arrival process E associated with a sequence of iid random variables
that has mean m0 and variance b

2
0, its scaled fluctuation process Ẽλ in (17) converges to a

Brownian motion with drift µB = 0 and variance σ
2

B
= b

2
0/m

3
0. The central idea of diffusion

approximation is to replace a scaled fluctuation process such as the one in (17) by an
appropriate Brownian motion.

For a queue with a renewal arrival process and a certain service time distribution,
Donsker’s theorem implies that we may use Brownian motions to approximate stochastic
variability in arrival and service. The diffusion model is obtained by replacing certain scaled
renewal processes in system equations by Brownian motions.

7.2. Diffusion Model for M/M/n+GI Queues

To illustrate the diffusion approximation of a queue, let us consider an M/M/n+GI queue
that has arrival rate λ, service rate µ, and the patience time distribution satisfying (14).
Recall that X(t) is the number of customers in the system at time t, including those in
service and those waiting. Let

X̃(t) =
1√
n

(X(t) −n).

We call X̃ = {X̃(t): t ≥ 0} the scaled customer-count process. When the arrival rate λ is
high and the square-root safety staffing rule is used so that

β =
√

n(1 − ρ) (18)

is a moderate number, we use a diffusion process Y to approximate X̃. To describe the
diffusion process, for each function u: R+ → R, one can find a unique function y that satisfies

y(t) = u(t) +µ

�
t

0

y(s)− ds−α

�
t

0

y(s)+ ds, t ≥ 0,

where α is the patience time density at the origin defined in (14), z
+ = max{z,0}, and

z
− = max{−z,0} for any real number z. Thus, Ψ: u �→ y defines a map from an arbitrary

function u to another function y. Let

U(t) = X̃(0) −βµt +B(t),
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where B is a (0,σ
2

B
)-Brownian motion with variance

σ
2

B
= µ(ρ + ρ ∧ 1). (19)

Each sample path of U is a function. Thus, Y = Ψ(U) is a well-defined function on each
sample path. Note that Y satisfies the stochastic differential equation

Y (t) = X̃(0) −βµt +B(t) +µ

�
t

0

Y (s)− ds−α

�
t

0

Y (s)+ ds. (20)

The stochastic differential equation (20) is the diffusion model for the M/M/n+GI queue.
Its solution Y = Ψ(U) is the diffusion process that we use to approximate the scaled
customer-count process X̃.

The drift coefficient of Y is piecewise linear, given by

b(z) =

�
−βµ−αz when z ≥ 0,

−βµ−µz when z < 0.

Suppose that α > 0. At any time t, if β ≥ 0, the drift is negative for Y (t) > −β and is
positive for Y (t) < −β; if β < 0, the drift is negative for Y (t) > −βµ/α and is positive for
Y (t) < −βµ/α. When Y (t) is either too positive or too negative, this drift will “pull it back”
to an equilibrium level. So over time, the process tends to evolve around its long-term mean.
An OU process that has a linear drift also has the similar mean-reverting property. Because
of its piecewise linear drift, Y is called a piecewise OU process. The piecewise OU process
is analytically tractable. In particular, it admits a piecewise normal stationary distribution,
which is given by

g(z) =






a1 exp
�

− α(z +α
−1

µβ)2

σ
2

B

�
when z ≥ 0,

a2 exp
�

− µ(z +β)2

σ
2

B

�
when z < 0,

(21)

where a1 and a2 are normalizing constants that make g(z) continuous at zero. See Browne
and Whitt [15] for more details. Recall that Q(t) is the number of waiting customers at
time t, excluding those in service, and let Z(t) be the number of customers in service at
time t. Clearly,

Q(t) =
√

nX̃(t)+ and Z(t) = n −
√

nX̃(t)−
.

One can compute performance estimates such as the long-run average queue length Q̄ and
the long-run fraction of abandoned customers PA for the queue. For that, let Y (∞) be a
random variable that has the stationary distribution of Y . Using the stationary density (21),
the long-run average queue length Q̄ can be computed by

Q̄ ≈
√

nE[Y (∞)+] =
√

n

� ∞

0

xg(x)dx, (22)

and the long-run average number of idle servers Z̄ can be computed by

Z̄ ≈
√

nE[Y (∞)−] = −
√

n

� 0

−∞
xg(x)dx.

Because n− Z̄ is the mean number of busy servers, it follows that the abandonment fraction
PA is given by

PA ≈ 1 −µ(n − Z̄)/λ. (23)
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We show the performance estimates computed by (22) and (23) from the diffusion model in
Table 2 under “diffusion” columns. The table shows that the diffusion estimates agree well
with the simulation results.

In the rest of this section, we give a detailed derivation of the diffusion model (20). Let E(t)
be the number of customer arrivals by time t, and let S = {S(t): t ≥ 0} be a Poisson process
with rate one. We assume that X(0), E = {E(t): t ≥ 0}, and S are mutually independent. Let

T (t) =
�

t

0

Z(s)ds,

which is the cumulative service time received by all customers up to time t. Because µ is
the service rate, S(T (t)) must be equal in distribution to the number of service completions.
Recall that A(t) is the cumulative number of abandoned customers by time t. One must
have

X(t) = X(0) +E(t) −S(µT (t)) − A(t). (24)
To derive Brownian approximations, we define several scaled processes by

Ẽ(t) =
1√
n

(E(t) −λt), S̃(t) =
1√
n

(S(nt)− nt),

Z̃(t) =
1√
n

(Z(t) −n), Ã(t) =
1√
n

A(t).

Correspondingly, the dynamical equation (24) has a scaled version

X̃(t) = X̃(0) −βµt + Ẽ(t) − S̃(n−1
µT (t)) −µ

�
t

0

Z̃(s)ds− Ã(t), (25)

with β given in (18).
In the diffusion model, we replace the scaled primitive processes in (25) by certain Brown-

ian motions. These approximations can be justified by Donsker’s theorem. When the number
of servers n is large, the corresponding diffusion process can be proved close to X̃. Please
refer to Dai et al. [19] for related convergence results.

Because the arrival process E is a Poisson process with rate λ, the scaled process Ẽ =
{Ẽ(t): t ≥ 0} is close to a Brownian motion. Note that Ẽ(t) has mean zero and variance
λt/n = µρt. We use a Brownian motion BE = {BE(t): t ≥ 0} with variance µρ to replace Ẽ

in (25). Because S is a Poisson process with rate one, the scaled process S̃ can be replaced
by a standard Brownian motion BS . We assume that X(0), BE , and BS are mutually
independent. Because T (t) is the cumulative service time for all customers up to t, T (t)/(nt)
should be close to the average utilization per server, i.e.,

1
n

T (t) ≈ (ρ ∧ 1)t.

Note that Z̃(t) is the scaled number of idle servers at time t, and let Q̃(t) = Q(t)/
√

n be the
scaled queue length at time t. We have

Q̃(t) = X̃(t)+ and Z̃(t) = X̃(t)−
.

By (16), we may approximate the scaled abandonment process by

Ã(t) ≈ α

�
t

0

X̃(s)+ ds.

It follows from (25) that

X̃(t) ≈ X̃(0) −µβt + BE(t)− BS

�
µ(ρ ∧ 1)t

�
+µ

�
t

0

X̃(s)−
ds−α

�
t

0

X̃(s)+ ds.

Let B(t) = BE(t) − BS(µ(ρ ∧ 1)t). Then B = {B(t): t ≥ 0} is a driftless Brownian motion
with variance µ(ρ+ ρ∧ 1), the same one as in (19). Thus, X̃ is approximately a solution to
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the stochastic differential equation (20). The proposed diffusion approximation is to use the
solution Y to the stochastic differential equation (20) to replace X̃.

7.3. Diffusion Model for M/H2/n+GI Queues

By using a similar Brownian replacement procedure as in §7.2, a diffusion model was derived
in He and Dai [28] for GI/Ph/n + GI queues in the QED regime with phase-type service
time distributions. A two-phase hyperexponential distribution, denoted as H2, is a special
case of phase-type distributions. In this section, we restrict ourselves to H2 service time
distributions and illustrate the diffusion approximation proposed by He and Dai [28].

When service times in a queue follow a two-phase hyperexponential distribution with
initial distribution p = (p1, p2) and rate ν = (ν1,ν2), one can envision two types of customers
arriving at the queue. With probability p1, a customer belongs to the first type, and his
service time is exponentially distributed with mean 1/ν1, and with probability p2, he is
of type two, and the service time is exponentially distributed with mean 1/ν2. Then, the
service rate is given by

µ =
1

p1/ν1 + p2/ν2

. (26)

As before ρ = λ/(nµ) and β is given in (18).
In steady state, one expects that the customers in service are distributed between the two

types following a distribution θ = (θ1,θ2), given by

θ1 =
p1/ν1

p1/ν1 + p2/ν2

and θ2 =
p2/ν2

p1/ν1 + p2/ν2

. (27)

Let X1(t) and X2(t) be the respective numbers of customers of the first and the second type
at time t. Because the customers in service are distributed following the distribution θ, we
define its centered and scaled version by

X̃j(t) =
1√
n

(Xj(t) −nθj), j = 1,2.

In the diffusion model, we use a two-dimensional diffusion process (Y1, Y2) to approximate
(X̃1, X̃2), where (Y1, Y2) satisfies the following stochastic differential equation:

Yj(t) = Yj(0) −βµpjt + pjBE(t) + (−1)j−1
BM (ρµt) −Bj((ρ ∧ 1)θjνjt)

− νj

�
t

0

(Yj(t)− pj(Y1(t) +Y2(t))+)ds− pjα

�
t

0

(Y1(s) +Y2(s))+ ds, (28)

for j = 1,2, where BE is the same Brownian motion as in §7.2, B1 and B2 are two independent
standard Brownian motions, and BM is a Brownian motion with drift zero and variance p1p2.
It has been proved by Dieker and Gao [20] that Y has a unique stationary distribution. The
algorithm proposed by He and Dai [28] can be used to compute the stationary distribution
numerically. Section 7.4 presents the performance estimates obtained from this diffusion
approximation.

In the rest of this section, we derive the diffusion approximation that uses (Y1, Y2) to
replace (X̃1, X̃2). Let C(i) = (C1(i),C2(i)) be a two-dimensional random vector indicating
the ith customer’s type. The random vector takes a value of (1,0) with probability p1 and
takes a value of (0,1) with probability p2. We assume that C(1),C(2), . . . are iid, so the
random variable

Mj(k) =
k�

i=1

Cj(i), j = 1,2,

is the number of type j customers among the first k arrivals. Let Mj = {Mj(k): k = 1,2, . . .},
M = (M1,M2), and Sj = {Sj(t): t ≥ 0} be a Poisson process with rate one. We assume that
(X1(0),X2(0)), E,S1, S2, and M are mutually independent.
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Let Zj(t) denote the number of type j customers being served at time t. Then,

Tj(t) =
�

t

0

Zj(s)ds (29)

is the cumulative service time received by type j customers. Let Lj(t) be the cumulative
number of type j customers who have abandoned the system by time t. Then, the number
of type j customers in the system must follow

Xj(t) = Xj(0) +Mj(E(t)) −Sj(νjTj(t)) −Lj(t) (30)

for j = 1,2. We define the scaled processes by

S̃j(t) =
1√
n

(Sj(nt) −nt), Z̃j(t) =
1√
n

(Z(t) −nθj),

L̃j(t) =
1√
n

Lj(t), M̃j(t) =
1√
n

�nt��

i=1

(Cj(i) − pj).

Then using (26)–(30), one can check that the scaled system equation is given by

X̃j(t) = X̃j(0) −βµpjt + pjẼ(t) + M̃j(n−1
E(t)) − S̃j(n−1

νjTj(t)) − νj

�
t

0

Z̃j(s)ds− L̃j(t)

for j = 1,2.
In the diffusion model for M/H2/n+GI queues, we replace Ẽ with the Brownian motion

BE as in §7.2. The processes S̃1 and S̃2 are replaced by B1 and B2, two independent standard
Brownian motions. Note that we always have M̃1(t) + M̃2(t) = 0. Hence, the process M̃1

is replaced by a Brownian motion BM with variance p1p2, and M̃2 is replaced by −BM .
When the number of servers n is large, both the abandoned customers and the waiting
customers in the queue are approximately distributed between the two types according to
the distribution p. Hence,

L̃j(t) ≈ pjÃ(t),

where Ã(t) is the scaled number of total abandoned customers by time t as defined in §7.2.
Recall that Q(t) is the number of waiting customers at time t. Then,

Zj(t) ≈ Xj(t) − pjQ(t).

Because Q(t) = (X1(t) +X2(t) −n)+, this approximation has a scaled version,

Z̃j(t) ≈ X̃j(t)− pj(X̃1(t) + X̃2(t))+.

We also exploit the approximations

E(t)
n

≈ λt

n
= ρµt,

Tj(t)
n

≈ (ρ ∧ 1)θjt,

as well as
Ã(t) ≈ α

�
t

0

Q̃(s)+ ds = α

�
t

0

(X̃1(s) + X̃2(s))+ ds.

These replacements lead to the diffusion model (28) for M/H2/n +GI queues.
In our diffusion model, a two-dimensional diffusion process is used to approximate

the scaled number of customers of each type. When this procedure applies to a general
phase-type service time distribution with d phases, the corresponding diffusion model is a
d-dimensional piecewise OU process.

7.4. Performance Estimation Using the Diffusion Model

To obtain the performance estimates of a queue using the diffusion model, one needs to know
the stationary distribution of the multidimensional diffusion process. Except for the one-
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dimensional case, the stationary distribution of a multidimensional piecewise OU process
does not have an explicit formula. In He and Dai [28], the authors also developed a finite
element algorithm computing the stationary distribution of a multidimensional diffusion
process. Using the numerical results obtained by this algorithm, they demonstrated that the
diffusion model is a good approximation of a many-server queue.

Consider an M/H2/n + M queue with n = 500 servers. We set the arrival rate to be
λ = 522.36 customers per minute and the rate of the exponential patience time distribution
to be α = 0.5. The hyperexponential service time distribution has parameters

p = (0.9351,0.0649) and ν = (9.354,0.072).

So the mean service time of the second-type customers is more than 100 times longer than
that of the first type. Although over 90% of customers are of the first type, the fraction of
its workload is merely 10%. One can check that the mean service time is one minute. Hence,
the queue is a bit overloaded with ρ = 1.045.

Recall that X(t) is the number of customers in the system at time t. For this M/H2/n + M

queue, the process X is a quasi-birth-and-death process. One can use the matrix-analytic
method to solve the stationary distribution of X. See Neuts [39] for details on the matrix-
analytic method. To evaluate the accuracy of the diffusion model, in Figure 6(a) we plot
both the (approximate) stationary distribution of X obtained by the diffusion model and
the stationary distribution produced by the matrix-analytic method. We see very good
agreement between the two results.

When the number of servers is moderate, the diffusion model can still capture the dynam-
ics of the queue. Next, we consider an M/H2/n + M queue with n = 20 servers. Let the
patience and service time distributions be the same as the previous scenario, and the arrival
rate be λ = 22.24. Thus, ρ = 1.112. As illustrated by Figure 6(b), the diffusion model can
still capture the exact stationary distribution for a queue with as few as 20 servers.

With an appropriate algorithm, performance estimation using the diffusion model can be
much more computationally efficient than the matrix-analytic method. The computational
complexity of the algorithm proposed by He and Dai [28], whether in computation time or
in memory space, does not change with the number of servers n. In contrast, the matrix-
analytic method becomes computationally expensive when n is large. In particular, the
memory usage becomes a serious constraint when a huge number of iterations are required in
the matrix-analytic method. For the n = 500 scenario in this example, it took approximately
two hours to finish the matrix-analytic computation, and the peak memory usage was nearly
five gigabytes. Using the diffusion model and the proposed algorithm, it took less than one
minute, and the peak memory usage was less than 200 megabytes on the same computer.

Figure 6. Stationary distribution of the customer number in the M/H2/n + M queue.
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7.5. A Diffusion Model Using the Hazard Rate of Patience Times

In the above diffusion model (e.g., the one in (20) for an M/M/n+GI queue), the patience
time density α at the origin is the key parameter for modeling the abandonment process.
This diffusion model, however, has its own limitations. First, one needs to estimate the
patience time density at the origin using data from a service system. Estimating density at
the origin is unreliable statistically. In addition, patience times are heavily censored data;–
i.e., a customer’s patience time can be observed only if he has abandoned the system. For a
queue in the QED regime, only a small fraction of customers abandon the system. Although
standard survival analysis tools, such as the Kaplan–Meier estimator (see, e.g., Cox and
Oakes [16]), can be used to estimate this parameter, one has to record every customer’s
waiting or patience time, and a good estimate requires a large amount of data. Second, for
a queue in the QED regime, no matter how small the waiting times are, the abandonment
process still depends on the behavior of the patience time distribution in a neighborhood of
the origin, not just at the origin. When the patience time density near the origin changes
rapidly, using solely the density at the origin may not yield an adequate approximation
for the abandonment process. Third, when α = 0, the integral term corresponding to the
abandonment process in the diffusion model, either (20) or (28), becomes zero. In this case,
the diffusion model approximates a queue as if it has no customer abandonment. But in a
queue with a zero patience time density at the origin, customer abandonment still occurs and
may affect the system performance significantly. For example, if such a queue is overloaded
(i.e., ρ > 1), it may still have a stationary distribution thanks to customer abandonment.
However, the diffusion model, with α = 0 and ρ > 1, does not have a stationary distribution
and fails to provide any performance estimates for this queue.

A diffusion model using the entire patience time distribution was proposed by He and
Dai [28]. This model exploits the idea of scaling the patience time hazard rate function,
which was first proposed by Reed and Ward [44] for single-server queues and was extended
to many-server queues by Reed and Tezcan [43]. This refined diffusion model provides a
more accurate approximation for many-server queues.

Let us consider an M/H2/n+H2 queue in which the patience time density changes rapidly
near the origin. In this queue, the hyperexponential service time distribution has

p = (0.5915,0.4085) and ν = (5.917,0.454).

The resulting mean service time is still one minute. We assume that the patience times
follow a two-phase hyperexponential distribution that has

p = (0.9,0.1) and ν = (1,200).

Hence, 10% of customers are extremely impatient. Their mean patience time is only 0.005
minute. These customers would abandon the system right away if no servers were available
upon their arrival.

Although the customer-count process X of this queue is a quasi-birth-and-death process,
the extremely high computational complexity prevents the matrix-analytic method from
producing the stationary distribution when n is moderate to large. See He and Dai [28]
for more details. We have to simulate the queue to obtain adequate performance estimates.
Two scenarios with n = 50 and 500 servers are investigated. The respective arrival rates are
λ = 57.071 and 522.36. Thus, ρ = 1.141 and 1.045. Several performance estimates obtained
by simulation, including the abandonment fraction, the mean queue length, and several
tail probabilities, are listed in Table 4. We use X(∞) to denote the stationary number of
customers in this system. In the same table, we also list the performance estimates from the
diffusion model (28) with α = 20.9. In this example, using solely the patience time density
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Table 4. Performance measures of the M/H2/n + H2 queue.

Diffusion, hazard
Simulation Diffusion in (28) rate scaling

(a) ρ = 1.141 and n = 50
Mean queue length 4.845 0.4709 4.869
Abandonment fraction 0.1499 0.1714 0.1504
P[X(∞) > 40] 0.9728 0.9578 0.9749
P[X(∞) > 50] 0.6111 0.3158 0.6377
P[X(∞) > 60] 0.1737 1.044 × 10−7 0.1749

(b) ρ = 1.045 and n = 500
Mean queue length 6.413 1.475 6.359
Abandonment fraction 0.05512 0.05863 0.05517
P[X(∞) > 480] 0.8881 0.8663 0.8929
P[X(∞) > 500] 0.4720 0.3192 0.4822
P[X(∞) > 520] 0.1050 9.274 × 10−5 0.1074

at the origin cannot capture the behavior of the abandonment process. The diffusion model
fails to produce proper performance estimates.

This issue can be fixed when the entire patience time distribution is built into the diffusion
model. In the same table, we list the performance estimates obtained by the diffusion model
using the hazard rate scaling (see He and Dai [28, §§4.3 and 6] for more details). This time,
we see good agreement between the refined diffusion model and the simulation results.

Next, we consider an M/H2/n+E3 queue, where +E3 signifies an Erlang-3 patience time
distribution. In this queue, each patience time is the sum of three stages, and the stages are
iid following an exponential distribution with a mean of one-third of a minute. So the mean
patience time is one minute. The density at the origin of an Erlang-3 distribution is zero.
The diffusion model (28) has α = 0 and hence does not have a stationary distribution when
ρ > 1. In this queue, the hyperexponential service time distribution is taken to be identical
to that of the previous M/H2/n +H2 queue.

We study two scenarios, with n = 50 and 500 servers, respectively. The arrival rates are λ =
57.071 and 522.36. Then, ρ = 1.141 and 1.045. We list performance estimates from simulation
and from the diffusion model using the hazard rate scaling in Table 5. As in the previous
example, the refined diffusion model produces adequate performance approximations.

Table 5. Performance measures of the M/H2/n + E3 queue.

Diffusion, hazard
Simulation rate scaling

(a) ρ = 1.141 and n = 50
Mean queue length 19.31 19.44
Abandonment fraction 0.1305 0.1303
P[X(∞) > 45] 0.9645 0.9704
P[X(∞) > 50] 0.9066 0.9169
P[X(∞) > 70] 0.4761 0.5037

(b) ρ = 1.045 and n = 500
Mean queue length 119.1 119.5
Abandonment fraction 0.04337 0.04340
P[X(∞) > 480] 0.9940 0.9946
P[X(∞) > 500] 0.9756 0.9770
P[X(∞) > 600] 0.6645 0.6733
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8. Summary

With the same server utilization, delays in single-server queues and in many-server queues
are qualitatively different. As such, one should not apply a single-server-based approximation
for the mean waiting time to study a service system that has at least a moderate number
of servers working in parallel. For example, one should avoid using such an approximation
to study the congestion of a hospital impatient department, in which hospital beds are
modeled as servers. For a service system that can be modeled by a many-server queue,
managers should staff the system following the square-root safety staffing rule so that the
system operates in the QED regime, achieving both a high level of service quality and a high
level of server utilization. When a system has a significant amount of abandonment, it is
critical to model the customer abandonment explicitly. It is the behavior of the patience time
distribution near the origin, not the mean patience time, that has the most impact on the
performance of a system operating in the QED regime. Diffusion models can be a practical
tool, sometimes the only tool besides computer simulation, to evaluate the performance of a
many-server queue when the service times have a phase-type distribution and the patience
time distribution is general.
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