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Abstract
This paper investigates stability behavior in a variant of

a generalized Jackson queueing network. In our network,
some customers use a join-the-shortest-queue policy when
entering the network or moving to the next station. Further-
more, we allow interarrival and service times to have gen-
eral distributions. For networks with two stations we derive
necessary and sufficient conditions for positive Harris recur-
rence of the network process. These conditions involve only
the mean values of the network primitives. We also provide
counterexamples showing that more information on distrib-
utions and tie-breaking probabilities is needed for networks
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with more than two stations, in order to characterize the sta-
bility of such systems. However, if the routing probabilities
in the network satisfy a certain homogeneity condition, then
we show that the stability behavior can be explicitly deter-
mined, again using the mean value parameters of the net-
work. A byproduct of our analysis is a new method for using
the fluid model of a queueing network to show non-positive
recurrence of a process. In previous work, the fluid model
was only used to show either positive Harris recurrence or
transience of a network process.
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1 Queueing network models

We consider a variant of the classical Jackson queueing net-
work [9, 10]. The main added feature is that an arriving cus-
tomer may have several routes to choose from at its arrival
time. We assume that the customer always chooses to join
the shortest queue among a set of allowed queues. In ad-
dition, we allow the interarrival and service times to have
general distributions, rather than being restricted to the ex-
ponential case.

Our queueing network model is assumed to have J ≥ 1
stations, with each station consisting of a single server. Each
station has a dedicated queue or buffer that holds customers
waiting to be served by the station. Let J = {1, . . . , J } be
the set of stations. For each station i ∈ J , let ηi(n) be the
service time of the nth customer to be served by station i.
We assume that each station is non-idling, that customers
within a buffer are served on a first-in–first-out basis, and
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that no service is preempted. To describe the external arrival
processes, let P be the class of nonempty subsets of J . For
each subset C ∈ P of queues, there is an associated exoge-
nous arrival process with interarrival times {ξC(n) : n ≥ 1}.
We call this arrival process a type-C external arrival process.
Upon arriving to the network, each type-C customer joins
the shortest queue among all the queues in C, using a tie-
breaking rule to be specified shortly. After being served by
station i, i ∈ J , a customer leaves the system with probabil-
ity 1 − p∗

i , and becomes a type-C customer with probabil-
ity piC , independent of the customer’s entire history, where∑

C∈P piC = p∗
i . When multiple queues are tied for the

shortest queue, a tie-breaking rule is needed. We assume that
for each subset B ∈P of queues, there is a distribution γB =
{γB,j : j ∈ B}. When a customer is to join a shortest queue
that is tied by a set B of queues, the customer joins queue
j with probability γB,j independently of its history. This
type of routing behavior on the part of arriving customers
is called Join-the-Shortest-Queue (JSQ) in the literature.

We allow ξC(n) = ∞ for all n for some C. In this case,
the type-C-external arrival process is null. Let

E = {C ∈P : the type-C-external

arrival process is non-null}.
For each C ∈ E , we assume that ξC = {ξC(n) : n ≥ 1} is an
independent and identically distributed (i.i.d.) sequence with
mean 1/λC , and for each station i, ηi = {ηi(n) : n ≥ 1} is an
i.i.d. sequence with mean 1/μi . We further assume that the
interarrival time sequences, service time sequences, feed-
back decisions, and tie-breaking decisions are all indepen-
dent. Additional distributional assumptions on the interar-
rival times will be specified in Sect. 2. We call λC the arrival
rates, μi the service rates, piC the feedback probabilities,
and γB,j the tie-breaking probabilities of the network. From
now on, for purposes of discussion, and stating results, we
will refer to the network described above as a JSQ Network.

The dynamics of the JSQ network can be described by
a continuous time Markov process X = {X(t) : t ≥ 0}, as
long as the state space is chosen appropriately. When the
interarrival and service time distributions are exponential,
Z = {(Z1(t), . . . ,ZJ (t)) : t ≥ 0} is such a process, where
Zi(t) is the total number of customers that are either waiting
in queue i or being served by station i at time t . This paper
is primarily concerned with the stability of the queueing net-
work. The network is said to be stable if the Markov process
X is positive Harris recurrent. When λC = 0 and pi,C = 0
for all C ∈ P with more than one element, i.e., customers
are never offered a choice of queues to join, the correspond-
ing network is called a generalized Jackson network. Under
some minor conditions on the interarrival time distributions,
it is known that such a network is stable if and only if the
traffic intensity at each station is less than one (see, for ex-
ample, Dai [2]). The traffic intensity is defined through the

first order data of the network, i.e., arrival rates, service rates
and feedback probabilities. In particular, the stability of a
generalized Jackson network does not depend on the distrib-
utions of interarrival and service times. One might hope that
for the model introduced in this paper, the positive Harris re-
currence can again be determined by the arrival rates, service
rates and the feedback probabilities. Our first result, Theo-
rem 1, shows that this assertion is indeed true when J = 2 by
describing explicit recurrence conditions in terms of arrival
rates, service rates and feedback probabilities. In particular,
the stability of a 2-station network does not depend on the
distributions of interarrival and service times, nor does it de-
pend on the tie-breaking probabilities. Unfortunately, when
J ≥ 3, an analogous result does not hold. Specifically, as
our second result, we provide two counterexamples which
demonstrate that Theorem 1 cannot be generalized to larger
networks. In the first example with J = 3, we show that
the positive Harris recurrence of the process depends on the
tie-breaking probabilities γB,i . In the second example, again
with J = 3, we show that the positive Harris recurrence of
the process depends on the distributions of the service times.
As a final contribution of the paper, we prove that when all
the stations have homogeneous feedback probabilities, i.e.,
piC does not depend on queue i, the positive Harris recur-
rence is again determined by the arrival rates, services and
feedback probabilities, and not on the distributions of the in-
terarrival and service times or the tie-breaking probabilities.
In this case, we give explicit recurrence conditions in terms
of arrival rates, service rates and feedback probabilities. The
first and the last result will be used in a companion paper to
prove recent conjectures of Suhov and Vvedenskaya [14].

Queueing systems with JSQ type routing have a long his-
tory in the literature. We only mention the papers in which
there is stability analysis of JSQ networks. Kurkova [11]
treated a special system when J = 2, the interarrival and
service times distributions are exponential, and a fair coin is
flipped to break a tie. She represented the system as a contin-
uous time Markov chain with a countable state space and ob-
tained an explicit recurrence condition for the Markov chain
by using Lyapunov functions. Stability of JSQ networks,
when there is no feedback, was studied by Foss and Cher-
nova [8] and Foley and McDonald [6, 7]. A quite general
JSQ network with feedback was treated by Suhov and Vve-
denskaya [14]. However, their stability analysis was limited
to a few special cases.

Queueing networks with alternate routes arise in many
telecommunication and service systems. A customer call
center is an example of such a service system. The myopic
join-the-shortest-queue routing decision is often employed
in practice. The stability of these networks is essential to the
capacity planning of these systems.

We employ the standard fluid model tool in our stability
analysis. Whenever appropriate, we do not go through every
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detail of using the tool; readers may consult, for example,
Dai [4] for additional details. Fluid models are commonly
used to prove the positive recurrence of queueing networks
and/or the transience of such systems, but here we are also
able to use the fluid model approach to prove non-positive
recurrence. As such we are able to identify the stability be-
havior on the boundary of the stability region. The behavior
on the boundary is often left as an open question in stability
analysis via fluid models, and to the best of our knowledge,
this paper is the first to use fluid models to prove the non-
positive recurrence of a queueing network.

The paper is organized as follows: In Sect. 2, we provide
the Markov process characterization of the network. This
section also gives the necessary and sufficient conditions for
stability in terms of arrival rates, service rates and feedback
probabilities for systems with two stations (J = 2), and for
systems with more than two stations (J ≥ 3) under an addi-
tional assumption on the network structure. In Sect. 3, two
examples with three stations (J = 3) are given, the first of
which shows that the stability depends on the tie-breaking
probabilities, and the second of which shows that the stabil-
ity depends on not only the first order data but also the dis-
tributions of the service times. In Sect. 4, a fluid model for
the system is defined and criteria for stability and instability
of the system are given. Most of the proofs are collected in
Sect. 5 and the Appendices 1–3.

Now we collect some mathematical notation used in the
rest of the paper. For a set C, |C| indicates the cardinality
of C. However, for x ∈ R

N , we use |x| to denote the l1-
norm. For random variables X and Y , X ≥st Y indicates that
X is stochastically larger than Y . When a probability opera-
tor appears with a subscript π , this indicates the probability
is the one generated by initial distribution π (this may in-
clude a degenerate initial distribution consisting of only one
state).

2 Network definitions and main results

We use

X(t) = (Z(t),U(t),V (t)) (1)

to denote the state of our queueing network at time t .
The first component Z(t) = (Z1(t), . . . ,ZJ (t)) is J -dimen-
sional, where, as before, Zi(t) is the total number of cus-
tomers that are either waiting in queue i or being served
by station i at time t . The second component U(t) =
(UC(t) : C ∈ E) is |E |-dimensional, where UC(t) is the
remaining interarrival time of the type-C external arrival
process at time t . The last component V (t) =
(V1(t), . . . , VJ (t)) is J -dimensional, where Vi(t) is the re-
maining service time of the customer who is in service
at station i at time t . (Vi(t) is set to be zero if there is

no customer in service at station i at time t .) The process
X = {X(t) : t ≥ 0} is taken to be right continuous with left
limits. It follows from Dai [2] that X is a strong Markov
process whose state space S is a subset of R

2J+|E |.
The Markov process X is said to be positive Harris recur-

rent if it possesses a unique stationary distribution. To state
the main results of this paper, we make the following addi-
tional assumptions on interarrival times. We assume that, for
any C ∈ E , the distribution of ξC(1) is unbounded, i.e.,

P(ξC(1) ≥ x) > 0, for any x > 0. (2)

We also assume that, for any C ∈ E , the distribution of ξC(1)

is spread out, i.e., there exists an integer nC > 0 and a func-
tion qC(x) ≥ 0 on (0,∞) with

∫ ∞
0 qC(x)dx > 0, such that

P(a ≤ ξC(1) + · · · + ξC(nC) ≤ b) ≥
∫ b

a

qC(x)dx,

for any 0 ≤ a < b.

Our first result is for queueing networks with J = 2. For
simplicity of notation we use λ1, λ2 and λ instead of λ{1},
λ{2} and λ{1,2}, respectively, in the two station case. We also
use pij instead of pi{j}, i, j = 1,2. To avoid trivial cases, we
assume that p11 < 1, p22 < 1 and at least one of p∗

1 and p∗
2

is less than 1. However, we make no assumptions on pi,{1,2},
i = 1,2.

Theorem 1 Consider a JSQ network with J = 2. The
Markov process X is positive Harris recurrent if and only
if the following three conditions hold:

(i) λ1 + λ2 + λ + (p∗
1 − 1)μ1 + (p∗

2 − 1)μ2 < 0;
(ii) if p∗

2 < 1, then p21(λ1 + λ2 + λ + μ1p
∗
1 − μ1) +

(1 − p∗
2)(λ1 + μ1p11 − μ1) < 0;

(iii) if p∗
1 < 1, then p12(λ1 + λ2 + λ + μ2p

∗
2 − μ2) +

(1 − p∗
1)(λ2 + μ2p22 − μ2) < 0.

We leave the proof of the theorem to Sect. 5. Kurkova [11]
obtained a necessary and sufficient condition that is equiva-
lent to ours (see Appendix 2). Her paper examines the spe-
cial case when the exogenous arrival processes are Pois-
son, all service times have an exponential distribution with
mean 1, and γ{1,2},j = 1

2 , j = 1,2. The following theorem is
proved in Sect. 5.

Theorem 2 Consider a JSQ network with J = 2. The
process X is unstable in the sense that |Z(t)| → ∞ as
t → ∞ with probability 1 if

λ1 + λ2 + λ + (p∗
1 − 1)μ1 + (p∗

2 − 1)μ2 > 0, or (3)

p21(λ1 + λ2 + λ + μ1p
∗
1 − μ1)

+ (1 − p∗
2)(λ1 + μ1p11 − μ1) > 0, or (4)
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p12(λ1 + λ2 + λ + μ2p
∗
2 − μ2)

+ (1 − p∗
1)(λ2 + μ2p22 − μ2) > 0. (5)

We now provide an interpretation of the conditions in
Theorem 1. The first condition is the most straightforward.
First, partition the state space of the number of customers
in the system, say (z1, z2) into two regions. Let region I be
{(z1, z2) : z1 < z2} and region II be {(z1, z2) : z1 > z2} (we
ignore the boundary set for now). In region I all type-{1,2}
customers join the queue at station 1. Then, if station 1 is
busy the net rate at which it eliminates jobs from the system
is

r1 ≡ μ1 + μ1p12 − μ1p
∗
1 + μ2p22 − μ2p

∗
2 − λ1 − λ.

Similarly, in region I the net rate at which station 2 elimi-
nates customers from the system is

r2 ≡ μ2 − μ1p12 − μ2p22 − λ2.

Notice that the left-hand side of condition (i) is simply
−(r1 + r2), i.e. condition (i) implies that the total net rate
at which customers are eliminated must be positive. One can
check that the left-hand side of (i) also corresponds to the net
customer elimination rate in region II. On the boundary be-
tween the two regions, the elimination rate seemingly should
depend on the tie-breaking probability. However, since the
rates are the same in either region, we see that the tie-
breaking probability is immaterial to this rate condition.

Condition (i) is a type of drift condition on the interior
of the state space. The other two conditions are drift rate
conditions on the boundaries. To see this suppose z1 = 0,
i.e. station 1 is idle. In this case, the net drift rate of the
number of jobs is given by

(s1, s2) ≡ (λ1 + λ + μ2(p
∗
2 − p22), λ2 + μ2p22 − μ2).

Then condition (iii) is equivalent to (−r2, r1) · (s1, s2) < 0,
i.e. the normal to the interior drift and the reflection vector
must form an acute angle. This is the usual stability condi-
tion for a process with (constant) oblique reflection at the
boundaries. Condition (ii) has an analogous interpretation
for the boundary defined by z2 = 0.

Theorem 1 implies that the stability of a 2-station net-
work does not depend on the distributions of interarrival
and service times or the tie-breaking probabilities. Unfor-
tunately, when J ≥ 3, the analogous result does not hold
as we will see in Sect. 3. However, for such networks we
can identify stability conditions in terms of λC , μC and
piC, i ∈ J ,C ∈ P , under an additional assumption on net-
work structure.

Assumption 1 For any C ∈ P , piC does not depend on
i ∈ J . Namely, all stations have the same feedback prob-

abilities. For C ∈ P , let

�C ≡
∑

B:φ 	=B⊆C

λB,

PC ≡
∑

B:φ 	=B⊆C

piB and μC ≡
∑

i∈C

μi.

Let λ∗ ≡ �J be the total external arrival rate to the net-
work and p∗ ≡ p∗

i , which is independent of station i ∈ J .
To avoid triviality, further assume that p∗ < 1.

Under this assumption, the stability of larger networks
can be determined directly from the first-order network pa-
rameters, as the next two results demonstrate.

Theorem 3 Consider a JSQ network with J ≥ 3 whose
parameters are in concordance with Assumption 1. The
Markov process {X(t) : t ≥ 0} is positive Harris recurrent
if and only if

�C + λ∗

1 − p∗ PC < μC, for all C ∈ P . (6)

Theorem 4 Consider a JSQ network with J ≥ 3 whose
parameters are in concordance with Assumption 1. The
process X is unstable in the sense that |Z(t)| → ∞ as
t → ∞ with probability 1 if there exists a C ∈P such that

�C + λ∗

1 − p∗ PC > μC. (7)

We leave the proofs of both theorems to Sect. 5.

3 Two counterexamples

In this section, we consider the case J = 3 and give two ex-
amples which show that λC , μi and piC, i ∈ J ,C ∈ P , are
not sufficient to determine the stability of the system. The
first example shows that the stability of the system may de-
pend on the tie-breaking rule γC,i , C ∈P, i ∈ J . The second
example shows that the stability of the system may depend
not only on the mean service times but also on the distribu-
tions of the service times.

Both examples fit into a class of networks, whose struc-
ture is pictured in Fig. 1. The network has three stations,
each represented by a circle. Each station serves customers
in its queue, which is represented by an open rectangle. In
each example, there are potentially four types of exogenous
arrival processes, which are assumed to be four independent
Poisson processes. The first three processes correspond to
arrivals which are dedicated to queues 1, 2, and 3 respec-
tively. The fourth Poisson process corresponds to arrivals
which join the shorter of the two queues 1 and 2. If the



Queueing Syst (2007) 57: 129–145 133

Fig. 1 A JSQ network

queue lengths are equal at the time of an arrival, the cus-
tomer breaks the tie using a Bernoulli(r) random variable
which is independent of all the other primitive processes,
with a success indicating that the customer joins queue 1.
The four Poisson processes have rates λi , i = 1,2,3,4.

The service times at stations 2 and 3 are assumed to be
i.i.d. exponential random variables with rates μ2 and μ3,
respectively. The service times at station 1 are assumed to
be i.i.d. random variables which are hyperexponential. We
assume that the hyperexponential is generated by mixing in-
dependent exponential(a) and exponential(b) random vari-
ables, with the first component being chosen with probabil-
ity ν. With these assumptions, the natural definition of the
rate of service at station 1 is then:

μ1 = (νa−1 + (1 − ν)b−1)−1.

Now, in such a network let

Y(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if no job is in service at station 1;
1, if the current job in service at station 1 is

assigned an exponential(a) service;
2, if the current job in service at station 1 is

assigned an exponential(b) service.

Then, for this class of networks both {(Z1(t),Z2(t), Y (t)) :
t ≥ 0} and {(Z1(t),Z2(t),Z3(t), Y (t)), t ≥ 0} are irre-
ducible continuous time Markov chains (CTMCs). When

λ1 + λ2 + λ4 < μ1 + μ2, (8)

it follows from Theorem 1 that the continuous time Markov
chain {(Z1(t),Z2(t), Y (t)) : t ≥ 0} is positive recurrent. We
use P{(Z1(∞),Z2(∞)) ∈ · } to denote the stationary distrib-
ution of {(Z1(t),Z2(t)) : t ≥ 0}. We use A1(t) to denote the
number of customers that have entered either the queue or
service at station 1 in [0, t], and we use D1(t) to denote the

number of service completions by station 1 in [0, t]. Note
that A1(t)/t and D1(t)/t are the arrival rate at station 1 and
the departure rate from station 1, respectively, in [0, t]. For a
fixed time t , both of these rates are random. Our next propo-
sition shows that, when (8) is satisfied, these rates converge
to constants as t → ∞.

Proposition 1 Assume that condition (8) holds.

(a) Set d1 = μ1P{Z1(∞) > 0}. For each initial state x,

Px

{
lim

t→∞D1(t)/t = d1

}
= 1. (9)

(b) Set a1 = λ1 + λ4(P{Z1(∞) < Z2(∞)} +
rP{Z1(∞) = Z2(∞)}). For each initial state x,

Px

{
lim

t→∞A1(t)/t = a1

}
= 1. (10)

(c) a1 = d1.

Proof The proofs of both (a) and (b) follow by applying
standard sample path versions of PASTA as in Wolff [15,
Chap. 5, Theorem 6 and Example 5–23]. We outline the
proof for (a), the proof for (b) uses similar arguments. All
arguments hold for the probability measure generated by a
fixed, but arbitrary initial state x.

Let {N(t), t ≥ 0} be a Poisson process with rate μ1. This
process generates departures from station 1 whenever there
is a job present at the station, otherwise an event in N(·) is
ignored. Recall that D1(t) is the number of departures from
station 1 in [0, t]. Then sample path PASTA and standard
results for ergodic CTMC’s yield:

lim
t→∞

D1(t)

N(t)
= P{Z1(∞) > 0} a.s.
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The strong law of large numbers for renewal processes
gives:

lim
t→∞

N(t)

t
= μ1 a.s.

Thus

lim
t→∞

D1(t)

t
= D1(t)

N(t)

N(t)

t
= μ1P{Z1(∞) > 0} a.s.

To prove (c), we note that from the proof of Theorem 1,
the fluid model of the network consisting of the first two
queues is stable. Thus, the network is rate stable, see for ex-
ample, Dai [4]. Rate stability implies that d1 = a1, proving
part (c). �

When condition (8) holds, Proposition 1 asserts that the
long-run departure rate from station 1 exists and is equal to
d1, a component of our next proposition.

Proposition 2 For the network in Fig. 1, the Markov chain
{(Z1(t),Z2(t),Z3(t), Y (t)) : t ≥ 0} is positive recurrent iff

λ1 + λ2 + λ4 < μ1 + μ2 and λ3 + d1 < μ3.

Proposition 2 is proven in the Appendix 1. We are now
ready to analyze a set of examples which give further insight
into the stability behavior of JSQ networks.

Example 1 We now consider a special case of the three sta-
tion network introduced above. Let λ1 = λ2 = 0 and let
λ3 and λ4 be arbitrary. Furthermore, assume ν = 1 and
μ1 := a = μ2. Thus, there are exponential service times at
all stations, with stations 1 and 2 having the same service
rates. For simplicity, we then drop the component Y(t) from
the state descriptor X, since it is not needed for X to be a
Markov chain.

We now argue that the positive recurrence of X depends
on the tie-breaking parameter r . The first condition in Propo-
sition 2 reduces to λ4 < 2μ1. Under this condition, by The-
orem 1, the process {(Z1(t),Z2(t)) : t ≥ 0} is positive recur-
rent. Let {κij (r) : i, j ≥ 0} be the stationary distribution of
this process. Then applying Proposition 2 we immediately
obtain:

Claim 1 If λ4 ≥ 2μ1 then the Markov chain X is not pos-
itive recurrent. If λ4 < 2μ1, then X is positive recurrent if
and only if

λ3 + μ1

⎛

⎝1 −
∞∑

j=0

κ0j (r)

⎞

⎠ < μ3. (11)

By Lemma 7 in Appendix 3, it is seen that
∑∞

j=0 κ0j (r)

decreases strictly as r increases. Thus it is clear that one can
choose fixed parameters λ3, λ4,μ1, and μ3 for which the
stability conditions will hold for some r and not hold for an-
other choice of r . In particular, the necessary and sufficient
conditions for the positive recurrence of X depend on the
tie-breaking parameter r .

Example 2 Consider now another special case of the net-
work depicted in Fig. 1. In particular let λ1 = λ2 = 0.8,
λ3 = 0.17, λ4 = 0.1, r = 1/2 and μ1 = μ2 = μ3 = 1, where
station 1’s service time distribution remains to be chosen.
We now argue that the positive recurrence of X depends on
the distribution of the service times for station 1 even if the
mean is fixed.

First suppose ν = 1 and a = 1. Thus, all service times for
station 1 are exponentially distributed with mean 1. For this
case, we have the following claim:

Claim 2 If the service times for station 1 are exponentially
distributed with mean 1 then the process X is not positive
recurrent.

Proof For the set of parameters under consideration, condi-
tion (8) holds and we can apply Proposition 1, which implies
that the departure rate from station 1 (and station 2) exists
with probability 1. As argued earlier, from Theorem 1, con-
dition (8) also implies that the fluid model of the network
consisting of the first two queues is stable, and so the net-
work itself is rate stable. Hence, so the total departure rate
from the first two queues must equal the total arrival rate
of 1.7. Furthermore, by symmetry, the departures rates from
station 1 and station 2 must be equal. Thus, d1 = 0.85 and
applying Proposition 2, we infer that X is not positive recur-
rent. �

Now suppose we alter the distribution, but not the mean
service time, at station 1. In particular, let 0 < ν < 1 and
a = ν

1−ν+ν2 and b = 1/ν. Then services at station 1 are hy-
perexponential with the following c.d.f.:

F(x) = ν

(

1 − exp

( −νx

1 − ν + ν2

))

+ (1 − ν)

(

1 − exp

(

−x

ν

))

, 0 ≤ x < ∞. (12)

Note that for any 0 < ν < 1 the mean service time is 1. In
this case we need the component Y for X to be a CTMC.

Claim 3 If the service times for station 1 are hyperexpo-
nential as described above, then the process X is positive
recurrent.
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Proof In this case, Proposition 1 gives:

d1 = 0.8 + 0.1[P{Z1(∞) < Z2(∞)}
+ 0.5P{Z1(∞) = Z2(∞)}]. (13)

Then, by Proposition 2, X is positive recurrent iff

0.17 + 0.8 + 0.1P{Z1(∞) < Z2(∞)}
+ 0.05P{Z1(∞) = Z2(∞)} < 1,

or equivalently

10P{Z1(∞) < Z2(∞)} + 5P{Z1(∞) = Z2(∞)} < 3.

A sufficient condition for the inequality above to hold is

g(ν) ≡ P{Z1(∞) ≤ Z2(∞)} < 0.3. (14)

We will show that this is true for ν sufficiently small. Ob-
serve that

Z1(∞) ≥st Zν
M/G/1 and Z2(∞) ≤st ZM/M/1, (15)

where Zν
M/G/1 denotes a random variable whose distribu-

tion is the stationary distribution of the number of customers
in an ordinary M/G/1 queue with arrival rate 0.8 and ser-
vice time distribution function F given by (12), and ZM/M/1

denotes a random variable whose distribution is the station-
ary distribution of the number of customers in an ordinary
M/M/1 queue with arrival rate 0.9 and service rate 1.

Since the Laplace-Stieltjes transform (LST) of service
times in the M/G/1 queue is

∫ ∞

0
e−sxdF (x)

= ν2

(1 − ν + ν2)s + ν
+ 1 − ν

sν + 1
, Re(s) > 0,

the Pollaczek-Khintchine (see, e.g., p. 260 in [12]) formula
yields

E[zZν
M/G/1 ]

= (4 − 3ν + 8ν2) − 4(1 − 2ν + 2ν2)z

5(4 − 3ν + 8ν2) − 4(5 − ν + 6ν2 + 4ν3)z + 16ν(1 − ν + ν2)z2
,

which is the probability generating function for the number
of customers in the M/G/1 queue, in stationarity. Therefore

lim
ν→0+ E[zZν

M/G/1] = 0.2, |z| < 1.

Now applying the continuity theorem for probability gener-
ating functions (cf. Theorem 1.5.1 in [13]) we have

lim
ν→0+ P(Zν

M/G/1 ≤ x) = 0.2 for all 0 < x < ∞. (16)

By (15),

g(ν) = 1 − P{Z1(∞) > Z2(∞)}
≤ 1 − P{Z1(∞) > x > Z2(∞)}
= 1 − P({Z2(∞) < x} − {Z1(∞) ≤ x})
≤ 1 − P{Z2(∞) < x} + P{Z1(∞) ≤ x}
≤ 1 − P(ZM/M/1 < x) + P(Zν

M/G/1 ≤ x),

for any 0 < x < ∞. Hence, by (16),

lim sup
ν→0+

g(ν) ≤ 1.2 − P(ZM/M/1 < x).

Letting x → ∞ leads to

lim sup
ν→0+

g(ν) ≤ 0.2.

Therefore (14) holds for sufficiently small ν. Hence, for suf-
ficiently small ν, X is positive recurrent when the service
times for station 1 have the hyperexponential distribution
function (12). �

Claims 2 and 3, taken together, show that the positive
recurrence of X depends on more than just the mean values
of the primitive distributions in the network.

4 The fluid model and stability

In this section we introduce the queueing and fluid dynam-
ical equations, and provide results which relate the queue-
ing model and fluid models defined by these equations. This
framework allows us to use fluid model techniques to prove
the main results in Sect. 5.

We now define a number of processes related to the
queueing network:

E(t) = {EC(t) : C ∈ E}, t ≥ 0, where EC(t) is the number
of customers which arrive during [0, t] due to the type-C
external arrival process.

A(t) = {Ai(t) : i ∈ J }, t ≥ 0, where Ai(t) is the number of
arrivals to buffer i during [0, t] (including exogenous ar-
rivals and feedback arrivals).

D(t) = {Di(t) : i ∈ J }, t ≥ 0, where Di(t) is the number of
customers which complete service at station i during
[0, t].

S(t) = {Si(t) : i ∈ J }, t ≥ 0, where Si(t) is the number of
customers station i completes if it spends t units of time
working on such customers.

�(n) = {�iC(n) : i ∈ J ,C ∈P}, n = 0,1,2, . . . , where
�iC(n) is the number of customers, among the first n

who depart station i, which become type-C customers.
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T (t) = {Ti(t) : i ∈ J }, t ≥ 0, where Ti(t) is the amount of
time spent working on customers at station i during
[0, t].

I (t) = {Ii(t) : i ∈ J }, t ≥ 0, where Ii(t) is the amount of
time station i idles during [0, t].

Then, the following equations define the dynamics of a JSQ
network:

Zi(t) = Zi(0) + Ai(t) − Di(t), i ∈ J , t ≥ 0, (17)

Zi(t) ≥ 0, i ∈ J , t ≥ 0, (18)

Ti(·) and Ii(·) are nondecreasing, i ∈ J , (19)

Ti(t) + Ii(t) = t, i ∈ J , t ≥ 0, (20)

If Zi(u) > 0, for u ∈ (s, t) then

Ii(s) = Ii(t), i ∈ J , 0 ≤ s ≤ t, (21)

Di(t) = Si(Ti(t)), i ∈ J , t ≥ 0, (22)
∑

i∈C

(Ai(t) − Ai(s))

≥
∑

B:B⊆C

{

(EB(t) − EB(s))

+
∑

i∈J
(�iB(Di(t)) − �iB(Di(s)))

}

,

C ∈P,0 ≤ s ≤ t. (23)
∑

i∈C

(Ai(t) − Ai(s))

=
∑

B:B⊆C

{

(EB(t) − EB(s))

+
∑

i∈J
(�iB(Di(t)) − �iB(Di(s)))

}

,

C ∈P,0 ≤ s ≤ t,

if Zi(u) > Zj (u) for all i ∈ C,j ∈ J − C and u ∈ (s, t).

(24)

Equations (17–22) are standard equations for generalized
Jackson networks operating under an arbitrary non-idling
policy. The last two equations however, are new, and they
enforce the JSQ routing behavior of the customers.

Using the dynamical equations (17–24) we derive the
corresponding fluid model equations. Our methodology
closely follows a now standard procedure and we only out-
line the general steps. By the strong law of large numbers,
for almost all sample paths ω, we have

lim
n→∞

1

n

n∑

k=1

ξC(k,ω) = λ−1
C , C ∈ E, (25)

lim
n→∞

1

n

n∑

k=1

ηi(k,ω) = μ−1
i , i ∈ J , (26)

lim
n→∞

1

n
�iC(n,ω) = piC, i ∈ J , C ∈ P . (27)

Let X ≡ {(A(t), T (t), I (t),Z(t)), t ≥ 0} be a network
process governed by (17–24), and Xx be such a process with
initial state x = (z, u, v). By taking C = J in (24), one has
for each station k and each 0 ≤ s < t that

Ak(t) − Ak(s) ≤
∑

i∈J
(Ai(t) − Ai(s))

=
∑

B:B⊆J

{

(EB(t) − EB(s))

+
∑

i∈J
(�iB(Di(t)) − �iB(Di(s)))

}

.

It follows from the same argument as in Dai [2] that for
every sample path ω satisfying (25–27) and every collec-
tion {xr : r > 0} of initial states such that {|xr |/r : r > 0}
is bounded, there exists a subsequence rn → ∞ such that
1
rn

Xxrn
(rn·,ω) converges uniformly on any compact sub-

set of [0,∞) to some limit say X̄ = (Ā(·), T̄ (·), Ī (·), Z̄(·)).
Each such limit X̄ is called a fluid limit. In the special case
where the sequence of initial states {xr : r > 0} is indepen-
dent of r , we call the limit a fluid limit with fixed initial state.
Both types of fluid limits are used in our subsequent stability
analysis of the process X.

As shown in Bramson [1], in the analysis of stability via
fluid limits, it is sufficient to consider the so-called unde-
layed fluid limit, i.e. when

lim
r→∞

1

r
(|ur | + |vr |) = 0, (28)

where ur and vr are subvectors of the initial state xr =
(zr , ur , vr). Thus, from now on we only consider undelayed
fluid limits.

Now, let X̄ be a fluid limit obtained from a sequence of
initial states {xr} satisfying (28). It is readily seen that all of
Āi(·), T̄i (·), Īi (·) and Z̄i(·), i ∈ J , are Lipschitz continuous.
Hence they are absolutely continuous and thus differentiable
almost everywhere with respect to the Lebesgue measure.
We say that t is a regular point of X̄ if all components of X̄

are differentiable at t . From now on, we implicitly assume
that t is a regular point whenever the derivative of a compo-
nent of X̄ is involved. Applying fluid limits to (17–28), we
obtain the equations:

Z̄i(t) = Z̄i(0) + Āi(t) − μiT̄i(t), i ∈ J , t ≥ 0, (29)

Z̄i(t) ≥ 0, i ∈ J , t ≥ 0, (30)

T̄i (·) and Īi (·) are nondecreasing, i ∈ J , (31)
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T̄i (t) + Īi (t) = t, i ∈ J , t ≥ 0, (32)

If Z̄i(t) > 0, then ˙̄I i(t) = 0, i ∈ J , t ≥ 0, (33)
∑

i∈C

˙̄Ai(t) ≥ �C +
∑

i∈J
PiCμi

˙̄Ti(t), C ∈P, t ≥ 0, (34)

∑

i∈C

˙̄Ai(t) = �C +
∑

i∈J
PiCμi

˙̄Ti(t), C ∈ P, t ≥ 0,

if Zi(t) > Zj (t) for all i ∈ C and j ∈ J − C, (35)

where

�C ≡
∑

B:φ 	=B⊂C

λB and PiC ≡
∑

B:φ 	=B⊂C

piB.

We call the equations (29–35) the fluid model equations
and call a solution X̄ = {(Ā(t), T̄ (t), Ī (t), Z̄(t)), t ≥ 0}, of
the fluid model equations a fluid model solution. Note that
any fluid limit with fixed initial state necessarily has Z̄(0) =
0. Thus these fluid limits form a subset of fluid solutions
with Z̄(0) = 0. The following definitions and lemmas indi-
cate the usefulness of different types of fluid limits.

Definition 1 (i) The fluid model is stable if there exists
a δ > 0 such that for each fluid model solution X̄, with
|Z̄(0)| ≤ 1, Z̄(t) = 0 for t ≥ δ.

(ii) The fluid model is weakly unstable if there exists
a δ > 0 such that for each fluid model solution X̄, with
Z̄(0) = 0, Z̄(δ) 	= 0.

The same reasoning used in Dai [2, 3], can be applied to
the class of networks we consider here to give the following
criteria.

Lemma 1 (Dai [2]) If the fluid model is stable, then the
Markov process X is positive Harris recurrent.

Lemma 2 (Dai [3]) If the fluid model is weakly unstable,
then the process X is unstable in the sense that, for each
fixed initial state x, |Z(t)| → ∞ as t → ∞ with probabil-
ity 1.

If we assume a priori that the process X is positive recur-
rent, then any fluid limit with fixed initial state must obey an
extra dynamical equation, which augments the fluid model
equations presented in (29–35). It turns out that the aug-
mented set of equations will be quite useful for proving non-
positive recurrence using fluid model analysis.

So, suppose that X is positive Harris recurrent and let
π be its stationary distribution. Since every station is non-
idling, for each fixed initial state x,

lim
t→∞

Ti(t)

t
= lim

t→∞
1

t

∫ t

0
1{Zi(s)>0}ds

= π ({(z, u, v) ∈ S : zi > 0}) Px-a.s., i ∈ J .

Therefore,

T̄i (t) = tπ ({(z, u, v) ∈ S : zi > 0}) , t ≥ 0, i ∈ J , (36)

for every fluid limit X̄, which is a limit of scaled sample
paths with a fixed initial state. Choose a compact set K ⊂ S
such that π(K) > 0. By (2), there exists a t0 > 0 such that
for each (z, u, v) ∈ K,

P(z,u,v)(|Z(t0)| = 0) > 0.

Therefore

π({(z, u, v) ∈ S : |z| = 0})
= Pπ (|Z(0)| = 0) = Pπ (|Z(t0)| = 0)

=
∫

S
P(z,u,v)(|Z(t0)| = 0) dπ(z,u, v)

≥
∫

K
P(z,u,v)(|Z(t0)| = 0) dπ(z,u, v) > 0.

Combining this with (36) yields

˙̄Ti(t) < 1, i ∈ J , (37)

for every fluid limit X̄, which is a limit of scaled sample
paths with fixed initial state.

We call the equations (29–35) plus (37) the augmented
fluid model equations and call a solution X̄, to these equa-
tions an augmented fluid model solution.

Definition 2 The augmented fluid model is weakly unstable
if there exists a δ > 0 such that for each augmented fluid
model solution X̄, with Z̄(0) = 0, Z̄(δ) 	= 0.

Suppose that the augmented fluid model is weakly unsta-
ble but the Markov process X is positive Harris recurrent.
Since the augmented fluid model equations are satisfied by
every fluid limit which is a limit of scaled sample paths with
fixed initial state, the argument in Dai [3] implies that the
process is unstable in the sense that, |Z(t)| → ∞ as t → ∞
with probability 1, which is a contradiction. Therefore we
obtain the following instability criterion.

Lemma 3 If the augmented fluid model is weakly unstable,
then the Markov process {X(t) : t ≥ 0} is not positive Harris
recurrent.

5 Proofs

In this section we prove the main results of the paper.
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5.1 Proof of Theorem 1

Sufficiency: Suppose that X̄ is a fluid model solution. Let
f (t) = |Z̄(t)|. It is readily seen that the fluid model is stable
if there exists an ε > 0 such that

ḟ (t) ≤ −ε if f (t) > 0. (38)

Hence, by Lemma 1, X is positive Harris recurrent if there
exists an ε > 0 satisfying (38). By (29), ḟ (t) can be written
as

ḟ (t) = ˙̄A1(t) + ˙̄A2(t) − μ1
˙̄T1(t) − μ2

˙̄T2(t).

Employing (35) with C = {1,2} we obtain,

ḟ (t) = λ1 + λ2 + λ + (p∗
1 − 1)μ1

˙̄T1(t)

+ (p∗
2 − 1)μ2

˙̄T2(t). (39)

Now we show that (38) holds for some ε > 0 by consid-
ering three cases separately.

Case 1 Suppose Z̄1(t) > 0 and Z̄2(t) > 0. Then by (32) and

(33), ˙̄Ti = 1, i = 1,2. So (39) becomes

ḟ (t) = λ1 + λ2 + λ + (p∗
1 − 1)μ1 + (p∗

2 − 1)μ2,

which is negative by (i).
Case 2 Z̄1(t) > 0 and Z̄2(t) = 0.
By (32) and (33),

˙̄T1(t) = 1. (40)

Substituting (40) into (39) gives,

ḟ (t) = λ1 + λ2 + λ + (p∗
1 − 1)μ1 + (p∗

2 − 1)μ2
˙̄T2(t).

(41)

Next, evaluating (35) with C = {1,2} and using (40) yields

˙̄A1(t) + ˙̄A2(t) = λ1 + λ2 + λ + p∗
1μ1 + p∗

2μ2
˙̄T2(t). (42)

Similarly, evaluating (35) with C = {1}, along with (40)
yields

˙̄A1(t) = λ1 + p11μ1 + p21μ2
˙̄T2(t). (43)

We subtract (43) from (42) to obtain

˙̄A2(t) = λ2 + λ + (p∗
1 − p11)μ1 + (p∗

2 − p21)μ2
˙̄T2(t).

(44)

By assumption Z̄2(t) = 0 which implies ˙̄Z2(t) = 0. Hence
by (29),

˙̄A2(t) = μ2
˙̄T2(t). (45)

Therefore, substituting (45) into (44) gives

μ2(1 − p∗
2 + p21)

˙̄T2(t) = λ2 + λ + (p∗
1 − p11)μ1. (46)

Now, if 1 − p∗
2 + p21 = 0 then p∗

2 = 1 and so, by (41),

ḟ (t) = λ1 + λ2 + λ + (p∗
1 − 1)μ1,

which is negative by (i).
Otherwise, suppose 1 − p∗

2 + p21 > 0. Then, by (46),

˙̄T2(t) = λ2 + λ + (p∗
1 − p11)μ1

μ2(1 − p∗
2 + p21)

. (47)

In this case, (47) and (41) imply

ḟ (t) = p21[λ1 + λ2 + λ + μ1(p
∗
1 − 1)]

1 − p∗
2 + p21

+ (1 − p∗
2)[λ1 + μ1(p11 − 1)]
1 − p∗

2 + p21
,

which by (i) is negative when p∗
2 = 1 and by (ii) is negative

when p∗
2 < 1.

Case 3 Z̄1(t) = 0 and Z̄2(t) > 0. The argument in this case
is analogous to that of case 2.

Necessity: Lemma 3 implies that we need only show that the
augmented fluid model is weakly unstable if any of (i)–(iii)
of Theorem 1 does not hold. By symmetry, it is sufficient to
analyze the three cases examined below. Let X̄ be an aug-
mented fluid model solution with Z̄(0) = 0 and let

f (t) = |Z̄(t)|, t ≥ 0.

Considering three cases separately, we show that ḟ (t) > 0
for all regular t > 0, which completes the proof.

Case 1 Suppose (i) does not hold. By (39) and (37),

ḟ (t) > λ1 + λ2 + λ + (p∗
1 − 1)μ1 + (p∗

2 − 1)μ2 ≥ 0,

which proves the result for this case.
Case 2 Suppose (i) holds and (ii) does not hold. If

Z̄2(t) > 0, then by (32) and (33), ˙̄T2(t) = 1, which con-

tradicts (37). Hence Z̄2(t) = 0 and ˙̄Z2(t) = 0. As before,
by (29),

˙̄A2(t) = μ2
˙̄T2(t). (48)

By subtracting (34) evaluated at C = {1} from (35) evalu-
ated at C = {1,2}, we have

˙̄A2(t) ≤ λ2 + λ + (p∗
1 − p11)μ1

˙̄T 1(t)

+ (p∗
2 − p21)μ2

˙̄T2(t).
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Hence by (37) and (48),

˙̄T2(t) <
λ2 + λ + (p∗

1 − p11)μ1

μ2(1 − p∗
2 + p21)

. (49)

Substituting (49) into (39) and applying ˙̄T1(t) < 1 lead to

ḟ (t) >
p21(λ1 + λ2 + λ + μ1p

∗
1 − μ1)

1 − p∗
2 + p21

+ (1 − p∗
2)(λ1 + μ1p11 − μ1)

1 − p∗
2 + p21

.

The numerator above is nonnegative by the negation of (ii),
thus ḟ (t) > 0.

5.2 Proof of Theorem 2

Suppose that X̄ is a fluid model solution with Z̄(0) = 0,
t ≥ 0. Let f (t) = |Z̄(t)|. By Lemma 2, it suffices to show
that ḟ (t) > 0 for all t > 0. We show this by considering
three cases separately.

Case 1 Suppose (3) holds.

Since ˙̄T1(t) ≤ 1 and ˙̄T2(t) ≤ 1, by (39),

ḟ (t) ≥ λ1 + λ2 + λ + (p∗
1 − 1)μ1 + (p∗

2 − 1)μ2 > 0,

for all t > 0.
Case 2 Suppose (3) does not hold and (4) holds.
If p∗

2 = 1, then ḟ (t) ≥ λ1 + λ2 + λ + (p∗
1 − 1)μ1 > 0 by

(39) and (4). Now suppose that p∗
2 < 1. First we show that

Z̄2(t) = 0, t ≥ 0. (50)

To prove (50), it suffices to show that ˙̄Z2(t) ≤ 0 if
Z̄2(t) > 0. Suppose Z̄2(t) > 0. Then by (32) and (33),
˙̄T2(t) = 1. By (29),

˙̄A2(t) = ˙̄Z2(t) + μ2. (51)

By subtracting (34) evaluated at C = {1} from (35) evalu-
ated at C = {1,2}, we have

˙̄A2(t) ≤ λ2 + λ + (p∗
1 − p11)μ1

˙̄T1(t) + (p∗
2 − p21)μ2.

(52)

Substituting (51) into (52) and applying ˙̄T1(t) ≤ 1 lead to

˙̄Z2(t) ≤ λ2 + λ + (p∗
1 − p11)μ1 + (p∗

2 − p21 − 1)μ2.

(53)

Since by assumption, (3) does not hold,

μ2 ≥ λ1 + λ2 + λ + μ1(p
∗
1 − 1)

1 − p∗
2

. (54)

Finally, by (53) and (54),

˙̄Z2(t) ≤ −p21(λ1 + λ2 + λ + μ1p
∗
1 − μ1)

1 − p∗
2

− (1 − p∗
2)(λ1 + μ1p11 − μ1)

1 − p∗
2

.

Hence, ˙̄Z2(t) < 0 by (4). Thus (50) holds.
Next, subtracting (34) evaluated at C = {1} from (35) eval-
uated at C = {1,2}, we obtain

˙̄A2(t) ≤ λ2 + λ + (p∗
1 − p11)μ1

˙̄T 1(t)

+ (p∗
2 − p21)μ2

˙̄T2(t)

≤ λ2 + λ + (p∗
1 − p11)μ1

+ (p∗
2 − p21)μ2

˙̄T 2(t). (55)

By (50), ˙̄Z2(t) = 0 and so ˙̄A2(t) = μ2
˙̄T2(t) by (29). Hence,

employing (55), we have

˙̄T2(t) ≤ λ2 + λ + (p∗
1 − p11)μ1

μ2(1 − p∗
2 + p21)

. (56)

Substituting (56) into (39) and applying ˙̄T1(t) ≤ 1 lead to

ḟ (t) ≥ p21(λ1 + λ2 + λ + μ1p
∗
1 − μ1)

1 − p∗
2 + p21

+ (1 − p∗
2)(λ1 + μ1p11 − μ1)

1 − p∗
2 + p21

.

Thus (4) now implies ḟ (t) > 0.
Case 3 Suppose (3) does not hold and (5) holds. By sym-

metry this case is completely analogous to Case 2.

5.3 Proof of Theorem 3

We first need to prove the following lemma.

Lemma 4 Let X̄ be a fluid model solution. Consider a fixed
regular t > 0 and let C ≡ C(t) = {i ∈ J : Z̄i(t) > 0}. Then

∑

i∈C

˙̄Zi(t) = 1 − p∗

1 − p∗ + PC

(

�C + λ∗

1 − p∗ PC − μC

)

. (57)

Proof Using (35), we have

∑

i∈J
˙̄Ai(t) = λ∗ + p∗ ∑

i∈J
μi

˙̄Ti(t) (58)

and
∑

i∈C

˙̄Ai(t) = �C + PC

∑

i∈J
μi

˙̄Ti(t). (59)
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Subtracting (59) from (58), yields

∑

i∈J−C

˙̄Ai(t) = λ∗ − �C + (p∗ − PC)
∑

i∈J
μi

˙̄Ti(t). (60)

Since Z̄i(t) = 0 for i ∈ J − C, ˙̄Zi(t) = 0 for i ∈ J − C.
Hence, by (29),

˙̄Ai(t) = μi
˙̄Ti(t), i ∈ J − C. (61)

Then (60) and (61) give

∑

i∈J−C

μi
˙̄Ti(t) = λ∗ − �C + (p∗ − PC)

∑
i∈C μi

˙̄T i(t)

1 − p∗ + PC

.

(62)

Since Z̄i(t) > 0, (32) and (33) imply

˙̄Ti(t) = 1, i ∈ C. (63)

Substituting (62) and (63) into (59) leads to

∑

i∈C

˙̄Ai(t) = (1 − p∗)�C + λ∗PC + μCPC

1 − p∗ + PC

. (64)

Next, (29) and (63) give us

∑

i∈C

˙̄Zi(t) =
∑

i∈C

˙̄Ai(t) − μC. (65)

Finally, substituting (64) into (65) yields (57). �

Proof of Sufficiency of Theorem 3 Suppose X̄ is a fluid
model solution. Let f (t) = |Z̄(t)|. Consider a fixed regular
t > 0 with f (t) > 0 and again let C = {i ∈ J : Z̄i(t) > 0},
t ≥ 0. Since ˙̄Zi(t) = 0 for i ∈ J − C, ḟ (t) = ∑

i∈C
˙̄Zi(t).

Hence, by Lemma 4,

ḟ (t) ≤ −ε, (66)

for any such t , where

ε = min
B∈P

1 − p∗

1 − p∗ + PB

(

μB − �B − λ∗

1 − p∗ PB

)

> 0.

From (66), it is readily seen that the fluid model is stable.
The proof is now completed by applying Lemma 1. �

Proof of Necessity of Theorem 3 By Lemma 3, it suffices
to show that the augmented fluid model is weakly unstable
if (6) does not hold for some C ∈ P . Suppose then that (6)
does not hold for some C ∈P . Let X̄ be an augmented fluid
model solution with Z̄(0) = 0. In light of (29) and (34) we
have
∑

i∈C

˙̄Zi(t) ≥ �C + PC

∑

i∈J
μi

˙̄Ti(t) −
∑

i∈C

μi
˙̄Ti(t). (67)

Next, using (29) and (35),
∑

i∈J
˙̄Zi(t) = λ∗ + (p∗ − 1)

∑
i∈J μi

˙̄Ti(t), which can be rewritten as

∑

i∈J
μi

˙̄Ti(t) = λ∗

1 − p∗ − 1

1 − p∗
∑

i∈J
˙̄Zi(t). (68)

Substituting (68) into (67) yields

∑

i∈C

˙̄Zi(t) ≥ �C + λ∗

1 − p∗ PC

− PC

1 − p∗
∑

i∈J
˙̄Zi(t) −

∑

i∈C

μi
˙̄Ti(t).

Equation (37) then implies that

1 − p∗ + PC

1 − p∗
∑

i∈C

˙̄Zi(t) + PC

1 − p∗
∑

i∈J−C

˙̄Zi(t)

> �C + λ∗

1 − p∗ PC − μC. (69)

Now, let

f (t) = 1 − p∗ + PC

1 − p∗
∑

i∈C

Z̄i(t) + PC

1 − p∗
∑

i∈J−C

Z̄i(t).

Then by (69) and the negation of (6), ḟ (t) > 0 for all t > 0,
which proves that the augmented fluid model is weakly un-
stable. �

5.4 Proof of Theorem 4

We first need the following lemma.

Lemma 5 Let X̄ be a fluid model solution. Then, for any
C ∈ P ,

1 − p∗ + PC

1 − p∗
∑

i∈C

˙̄Zi(t) + PC

1 − p∗
∑

i∈J−C

˙̄Zi(t)

≥ �C + λ∗

1 − p∗ PC − μC. (70)

Proof Equations (29) and (34) imply,

∑

i∈C

˙̄Zi(t) ≥ �C + PC

∑

i∈J
μi

˙̄Ti(t) −
∑

i∈C

μi
˙̄Ti(t). (71)

Now (29) and (35) give
∑

i∈J
˙̄Zi(t) = λ∗ + (p∗ − 1)

∑
i∈J μi

˙̄Ti(t), which can be rewritten as

∑

i∈J
μi

˙̄Ti(t) = λ∗

1 − p∗ − 1

1 − p∗
∑

i∈J
˙̄Zi(t). (72)
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By substituting (72) into (71), we get

∑

i∈C

˙̄Zi(t) ≥ �C + λ∗

1 − p∗ PC

− PC

1 − p∗
∑

i∈J
˙̄Zi(t) −

∑

i∈C

μi
˙̄Ti(t).

Since ˙̄Ti(t) ≤ 1, i ∈ C, (70) is obtained. �

Proof of Theorem 4 Suppose X̄ is a fluid model solution
with Z̄(0) = 0, and let C ∈ P be such that it satisfies (7).
Let

f (t) = 1 − p∗ + PC

1 − p∗
∑

i∈C

Z̄i(t) + PC

1 − p∗
∑

i∈J−C

Z̄i(t).

By Lemma 5, ḟ (t) > 0 for all t > 0. Thus f (t) > 0
and so |Z̄(t)| > 0 for all t > 0. Hence the fluid model is
weakly unstable and the proof is completed by applying
Lemma 2. �

Appendix 1: Proofs of propositions

To prove Proposition 2, we first state and prove the follow-
ing lemma, as applied to the network in Fig. 1. Clearly,
the lemma can be extended to a general setting like mul-
ticlass queueing networks with general distributions as in
Dai [2] or stochastic processing networks as in Dai and
Lin [5].

Lemma 6 Assume that the continuous time Markov chain
X = {(Z1(t),Z2(t),Z3(t), Y (t)) : t ≥ 0} is positive recur-
rent with stationary distribution π = {πi1,i2,i3,i4 :
(i1, i2, i3, i4) ∈ Z

4+}. Let the initial state X(0) = x be fixed.
Then, Px -a.s., for each fluid limit (X̄, T̄ ),

T̄j (t) =
(

1 −
∑

(i1,i2,i3,i4)∈Bj

π(i1,i2,i3,i4)

)

t

for each j = 1,2,3 and each t ≥ 0, (73)

where Bj = {(i1, i2, i3, i4) ∈ Z
4+ : ij = 0}.

Proof For notational convenience, we prove the case for
j = 1. The proofs for other cases are identical.

Since a nonidling service policy is assumed, we have for
each s ≥ 0

T1(s)

s
= 1

s

∫ s

0
1{Z1(u)>0} du = 1 − 1

s

∫ s

0
1{Z1(u)=0} du.

By the positive recurrence of the Markov chain, we have

Px

{

lim
s→∞

T1(s)

s
= 1 − lim

s→∞
1

s

∫ s

0
1{Z1(u)=0} du

= 1 −
∑

(i1,i2,i3,i4)∈B1

π(i1,i2,i3,i4)

}

= 1. (74)

For each sample path in the event set of (74) and for each
t ≥ 0,

T̄1(t) = lim
n→∞

T1(nt)

n
= t lim

s→∞
T1(s)

s

= t

(

1 −
∑

(i1,i2,i3,i4)∈B1

π(i1,i2,i3,i4)

)

,

thus proving the lemma. �

Proof of Proposition 2 Let X={(Z1(t),Z2(t),Z3(t), Y (t)) :
t ≥ 0} and let r > 0 be fixed. Recall that the 3-dimensional
process {(Z1(t),Z2(t), Y (t)) : t ≥ 0} is an irreducible
CTMC. If λ1 + λ2 + λ4 ≥ μ1 + μ2, then by Theorem 1,
the 3-dimensional CTMC is not positive recurrent, and so
neither is X. This establishes the necessity of the first con-
dition in Proposition 2.

Thus, we assume that λ1 + λ2 + λ4 < μ1 + μ2 through-
out the remainder of this proof. Let {κijk(r) : i, j, k} be the
stationary distribution of the 3-dimensional Markov chain
{(Z1(t),Z2(t), Y (t)) : t ≥ 0}. We now show that X is posi-
tive recurrent if and only if

λ3 + μ1

⎛

⎝1 −
∞∑

j=0

2∑

k=0

κ0jk(r)

⎞

⎠ < μ3. (75)

Fix an initial state X(0), say, X(0) = (0,0,0,0). Let
(X̄, T̄ ) be a fluid limit. It follows that it satisfies the fol-
lowing fluid model equation (see, e.g., Dai [2])

Z̄3(t) = λ3t + μ1T̄1(t) − μ3T̄3(t), t ≥ 0,

Applying Lemma 6 to the 3-dimensional Markov chain, we
have

Z̄3(t) =
[

λ3 + μ1

(

1 −
∑

j,k

κ0jk(r)

)]

t

− μ3T̄3(t), t ≥ 0. (76)

Assume that X is positive recurrent with stationary dis-
tribution π = {π(i1,i2,i3,i4)}, but that condition (75) does not
hold. Since

∑
(i1,i2,i4)∈Z

3+ π(i1,i2,0,i4) > 0, it follows from

Lemma 6 and (76) that Z̄3(t) > 0 for each fluid limit and
each time t > 0. Therefore, the fluid limit model is weakly
unstable as defined in [3]. It follows from Theorem 4.2 of [3]
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that X is transient, and hence not positive recurrent, contra-
dicting the assumption that X is positive recurrent. Thus we
have proved that X is positive recurrent only if (75) holds.

Now suppose that (75) holds. For each fluid limit (X̄, T̄ ),
Z̄3(t) ≥ 0 for each t ≥ 0. Thus, (76) implies that

T̄3(t) ≤ λ3 + μ1(1 − ∑
j,k κ0jk(r))

μ3
· t = (1 − ε)t, (77)

where

ε = 1 − 1

μ3

(

λ3 + μ1

(

1 −
∑

j,k

κ0jk(r)

))

> 0.

Since (77) holds for every fluid limit, we have, Px -a.s.,

lim sup
t→∞

1

t
T3(t) ≤ 1 − ε.

Therefore, Px -a.s.,

lim inf
t→∞

1

t

∫ t

0
1{Z3(u)=0} du ≥ ε. (78)

Let B be a finite set such that

∑

(i,j,k)/∈B

κijk(r) < ε. (79)

Now, define B̃ ≡ {(i, j,0, k) : (i, j, k) ∈ B}. By (78) and
(79), Px -a.s.,

lim inf
t→∞

1

t

∫ t

0
1{(Z1(u),Z2(u),Z3(u),Y (u))∈B̃} du

≥ lim inf
t→∞

1

t

∫ t

0
1{Z3(u)=0} du

− lim
t→∞

1

t

∫ t

0
1{(Z1(u),Z2(u),Y (u))/∈B} du

= lim inf
t→∞

1

t

∫ t

0
1{Z3(u)=0} du −

∑

(i,j,k)/∈B

κijk(r)

≥ ε −
∑

(i,j,k)/∈B

κijk(r) > 0.

By Fatou’s lemma and Fubini’s theorem,

lim inf
t→∞

1

t

∫ t

0
Px

{
(Z1(u),Z2(u),Z3(u),Y (u)) ∈ B̃

}
du

≥ ε −
∑

(i,j,k)/∈B

κijk(r) > 0. (80)

Since B̃ is a finite set, (80) implies that the Markov chain
{(Z1(t),Z2(t),Z3(t), Y (t)) : t ≥ 0} is positive recurrent. �

Appendix 2: An equivalent form of the stability
condition in Theorem 1

In order to facilitate a comparison of our results with
Kurkova’s results [11] for a special case, we now show that
“(i)–(iii) in Theorem 1” is equivalent to the following:
⎧
⎨

⎩

λ1 + μ2p21 + μ1p11 < μ1,

λ2 + μ1p12 + μ2p22 < μ2,

λ1 + λ2 + λ + μ1p
∗
1 + μ2p

∗
2 < μ1 + μ2,

(81)

or
⎧
⎨

⎩

λ1 + μ2p21 + μ1p11 ≥ μ1,

p21(λ1 + λ2 + λ + μ1p
∗
1 − μ1)

+ (1 − p∗
2)(λ1 + μ1p11 − μ1) < 0,

(82)

or
⎧
⎨

⎩

λ2 + μ1p12 + μ2p22 ≥ μ2,

p12(λ1 + λ2 + λ + μ2p
∗
2 − μ2)

+ (1 − p∗
1)(λ2 + μ2p22 − μ2) < 0.

(83)

It is not difficult to see that “(i)–(iii) in Theorem 1” implies
“(81) or (82) or (83)”. Hence we show the converse of this
only. By symmetry, it suffices to show that

(a) (81) implies (ii) in Theorem 1,
(b) (82) implies (i) in Theorem 1, and
(c) (82) implies (iii) in Theorem 1.

Proof of (a) Suppose that (81) holds and p∗
2 < 1. If

λ2 + λ + (p∗
1 − p11)μ1

1 − p∗
2 + p21

≤ μ2,

then a little algebra shows that this inequality plus the first
inequality in (81) implies (ii) in Theorem 1. If

λ2 + λ + (p∗
1 − p11)μ1

1 − p∗
2 + p21

> μ2,

then this plus the third inequality in (81), implies (ii) in The-
orem 1. �

Proof of (b) Suppose that (82) holds. The second inequality
in (82) implies that either p21 > 0 or p∗

2 < 1. So, 1 − p∗
2 +

p21 is positive and we can then use, respectively, the first
and second inequalities in (82) to obtain

λ1 + μ2p21 + μ1(p11 − 1)

≥ 0

>
p21(λ1 + λ2 + λ + μ1p

∗
1 − μ1)

1 − p∗
2 + p21

+ (1 − p∗
2)(λ1 + μ1p11 − μ1)

1 − p∗
2 + p21

.



Queueing Syst (2007) 57: 129–145 143

A reduction of this yields

λ2 + λ + (p∗
1 − p11)μ1 − p21μ2 − (1 − p∗

2)μ2 < 0. (84)

Next, (84) and the second inequality in (82) give

[λ2 + λ + (p∗
1 − p11)μ1 − p21μ2 − (1 − p∗

2)μ2](1 − p∗
2)

+ [p21(λ1 + λ2 + λ + μ1p
∗
1 − μ1)

+ (1 − p∗
2)(λ1 + μ1p11 − μ1)] < 0,

and a final reduction produces

(1 − p∗
2 + p21)(λ1 + λ2 + λ + μ1p

∗
1 − μ1 + μ2p

∗
2 − μ2)

< 0.

Thus, (i) in Theorem 1 is obtained. �

Proof of (c) Suppose that (82) holds and p∗
1 < 1. The first

inequality in (82) can be used to obtain

λ1 + μ2p21 + μ1p11 + λ + μ1p1{1,2} + μ2p2{1,2} ≥ μ1,

which can be rewritten as

λ1 + λ + (p∗
2 − p22)μ2 + (p∗

1 − p12)μ1 ≥ μ1.

Some algebra yields

λ1 + λ + (p∗
2 − p22)μ2

1 − p∗
1 + p12

≥ μ1. (85)

Note that (i) in Theorem 1 holds by (b). Then combining
(85) with (i) in Theorem 1, we have (iii) in Theorem 1. �

Appendix 3: A network with two queues

We consider the network depicted in Fig. 1. Customers ar-
rive according to a Poisson process with rate λ. These ar-
rivals join the shorter of the two queues 1 and 2. If the
queue lengths are equal at the time of an arrival, the cus-
tomer breaks the tie using an independent Bernoulli(r) ran-
dom variable, with a success indicating that the customer
joins queue 1. Therefore, following the notation in Sect. 1,
we have

γ{1,2},1 = r and γ{1,2},2 = 1 − r.

The service times are all assumed to be independent and ex-
ponentially distributed with mean 1/μ. A customer who fin-
ishes a service by station 1 or station 2 departs from the sys-
tem permanently.

Since all distributions are exponential, Z = {(Z1(t),

Z2(t)) : t ≥ 0} is a Markov chain, where, as before, Zi(t)

is the number of customers that are either waiting in queue i

or being served by station i at time t . By Theorem 1, when
λ < 2μ, the process Z is positive recurrent. For a given
value r , let κij (r) be the probability that Z is in state (i, j)

under the stationary distribution of Z.

Lemma 7 For all r1, r2 such that 0 ≤ r1 < r2 ≤ 1,

(i) If i > j , then κij (r1) < κij (r2).

(ii) If i < j , then κij (r1) > κij (r2).

(iii) If i = j , then κij (r1) = κij (r2).

(iv) κij (r1) + κji(r1) = κij (r2) + κji(r2).

Proof Let Q(r) = (q
(r)

(i,j)(i′j ′)) be the rate matrix governing
Z, i.e.,

q
(r)

(i,j)(i′,j ′) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ if (i′, j ′) = (i − 1, j)

or (i′, j ′) = (i, j − 1),
λ if (i′, j ′) = (i + 1, j), i < j

or (i′j ′) = (i, j + 1), i > j ,
rλ if (i′, j ′) = (i + 1, j), i = j ,
(1 − r)λ if (i′, j ′) = (i, j + 1), i = j ,
−(λ + 2μ) if (i′, j ′) = (i, j), i > 0, j > 0,
−(λ + μ) if (i′, j ′) = (i, j), i + j = 1,
−λ if (i′, j ′) = (i, j) = (0,0),
0 otherwise.

Next, let p
(r)

(i,j)(i′j ′), (i, j), (i′, j ′) ∈ {0,1, . . .}2 be the one-
step transition probabilities of the embedded discrete Mar-
kov chain (in this case we include virtual transitions needed
by the standard uniformization technique). Then we have

p
(r)

(i,j)(i′j ′) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q
(r)

(i,j)(i′,j ′)/(1 + λ + 2μ)

if (i′, j ′) 	= (i, j),

1 + q
(r)

(i,j)(i′,j ′)/(1 + λ + 2μ)

if(i′, j ′) = (i, j).

Define a sequence of probability distributions {κ(n)
ij : i, j =

0,1,2, . . .}, n = 0,1,2, . . . , as follows

κ
(0)
ij = κij (r1), (86)

κ
(n)
ij =

∑

i′j ′
κ

(n−1)

i′j ′ p
(r2)

(i′,j ′)(i,j)
, n = 1,2, . . . . (87)

Since p
(r2)

(i,j)(i′j ′), (i, j), (i′, j ′) ∈ {0,1, . . .}2, are the transi-
tion probabilities of the embedded chain, when r ≡ r2, we
conclude

κij (r2) = lim
n→∞κ

(n)
ij . (88)

The lemma can now be proved using (86), (88) and the fol-
lowing claim: for n ≥ 1,

(a) If i > j , then κ
(n−1)
ij = κ

(n)
ij for n < i − j and κ

(n−1)
ij <

κ
(n)
ij for n ≥ i − j ;
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(b) If i < j , then κ
(n−1)
ij = κ

(n)
ij for n < j − i and κ

(n−1)
ij >

κ
(n)
ij for n ≥ j − i;

(c) If i = j , then κ
(n−1)
ij = κ

(n)
ij ;

(d) κ
(n−1)
ij + κ

(n−1)
j i = κ

(n)
ij + κ

(n)
ji .

We show the claim by induction on n. Since κ
(0)
ij is a

stationary probability of Z when r ≡ r1, we have

κ
(0)
ij =

∑

i′j ′
κ

(0)

i′j ′p
(r1)

(i′,j ′)(i,j)
,

which can be written explicitly as follows

κ
(0)
ij ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
λ+2μ+1 (λκ

(0)
i−1,j + μκ

(0)
i+1,j + μκ

(0)
i,j+1 + κ

(0)
ij ), 1 ≤ i < j − 1,

1
λ+2μ+1 (λκ

(0)
i,j−1 + μκ

(0)
i+1,j + μκ

(0)
i,j+1 + κ

(0)
ij ), 1 ≤ j < i − 1,

1
λ+2μ+1 (μκ

(0)
1,j + μκ

(0)
0,j+1 + (μ + 1)κ

(0)
0j ), i = 0, j ≥ 2,

1
λ+2μ+1 (μκ

(0)
i+1,0 + μκ

(0)
i1 + (μ + 1)κ

(0)
i0 ), i ≥ 2, j = 0,

1
λ+2μ+1 (λκ

(0)
i−1,j + λ(1 − r1)κ

(0)
i,j−1 + μκ

(0)
i+1,j + μκ

(0)
i,j+1 + κ

(0)
ij ), 1 ≤ i = j − 1,

1
λ+2μ+1 (λκ

(0)
i,j−1 + λr1κ

(0)
i−1,j + μκ

(0)
i+1,j + μκ

(0)
i,j+1 + κ

(0)
ij ), 1 ≤ j = i − 1,

1
λ+2μ+1 (λ(1 − r1)κ

(0)
00 + μκ

(0)
11 + μκ

(0)
02 + (μ + 1)κ

(0)
01 ), i = 0, j = 1,

1
λ+2μ+1 (λr1κ

(0)
00 + μκ

(0)
20 + μκ

(0)
11 + (μ + 1)κ

(0)
10 ), i = 1, j = 0,

1
λ+2μ+1 (λκ

(0)
i−1,j + λκ

(0)
i,j−1 + μκ

(0)
i+1,j + μκ

(0)
i,j+1 + κ

(0)
ij ), 1 ≤ i = j ,

1
λ+2μ+1 (μκ

(0)
10 + μκ

(0)
01 + (2μ + 1)κ

(0)
00 ), i = j = 0.

(89)

Next, the recursion (87) can be written out as follows

κ
(n)
ij ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
λ+2μ+1 (λκ

(n−1)
i−1,j + μκ

(n−1)
i+1,j + μκ

(n−1)
i,j+1 + κ

(n−1)
ij ), 1 ≤ i < j − 1,

1
λ+2μ+1 (λκ

(n−1)
i,j−1 + μκ

(n−1)
i+1,j + μκ

(n−1)
i,j+1 + κ

(n−1)
ij ), 1 ≤ j < i − 1,

1
λ+2μ+1 (μκ

(n−1)
1,j + μκ

(n−1)
0,j+1 + (μ + 1)κ

(n−1)
0j ), i = 0, j ≥ 2,

1
λ+2μ+1 (μκ

(n−1)
i+1,0 + μκ

(n−1)
i1 + (μ + 1)κ

(n−1)
i0 ), i ≥ 2, j = 0,

1
λ+2μ+1 (λκ

(n−1)
i−1,j + λ(1 − r2)κ

(n−1)
i,j−1 + μκ

(n−1)
i+1,j + μκ

(n−1)
i,j+1 + κ

(n−1)
ij ), 1 ≤ i = j − 1,

1
λ+2μ+1 (λκ

(n−1)
i,j−1 + λr2κ

(n−1)
i−1,j + μκ

(n−1)
i+1,j + μκ

(n−1)
i,j+1 + κ

(n−1)
ij ), 1 ≤ j = i − 1,

1
λ+2μ+1 (λ(1 − r2)κ

(n−1)
00 + μκ

(n−1)
11 + μκ

(n−1)
02 + (μ + 1)κ

(n−1)
01 ), i = 0, j = 1,

1
λ+2μ+1 (λr2κ

(n−1)
00 + μκ

(n−1)
20 + μκ

(n−1)
11 + (μ + 1)κ

(n−1)
10 ), i = 1, j = 0,

1
λ+2μ+1 (λκ

(n−1)
i−1,j + λκ

(n−1)
i,j−1 + μκ

(n−1)
i+1,j + μκ

(n−1)
i,j+1 + κ

(n−1)
ij ), 1 ≤ i = j ,

1
λ+2μ+1 (μκ

(n−1)
10 + μκ

(n−1)
01 + (2μ + 1)κ

(n−1)
00 ), i = j = 0.

(90)

For n = 1, (89) and (90) yield,

(a′) If i > j + 1, then κ
(0)
ij = κ

(1)
ij ; if i = j + 1, then κ

(0)
ij <

κ
(1)
ij ;

(b′) If i < j − 1, then κ
(0)
ij = κ

(1)
ij ; if i = j − 1, then κ

(0)
ij >

κ
(1)
ij ;

(c′) If i = j , then κ
(0)
ij = κ

(1)
ij ;

(d′) κ
(0)
ij + κ

(0)
j i = κ

(1)
ij + κ

(1)
j i .

Hence the claim holds when n = 1. Now, suppose that the

claim holds for n = k (k ≥ 1). Then, we have

(a′′) If i > j + k, then κ
(k−1)
ij = κ

(k)
ij ; if j < i ≤ j + k, then

κ
(k−1)
ij < κ

(k)
ij ;

(b′′) If i < j − k, then κ
(k−1)
ij = κ

(k)
ij ; if j − k ≤ i < j , then

κ
(k−1)
ij > κ

(k)
ij ;

(c′′) If i = j , then κ
(k−1)
ij = κ

(k)
ij ;
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(d′′) κ
(k−1)
ij + κ

(k−1)
j i = κ

(k)
ij + κ

(k)
ji .

Using the above and (90) with n = k and n = k + 1, we
obtain

(a′′′) If i > j + k +1, then κ
(k)
ij = κ

(k+1)
ij ; if j < i ≤ j + k +

1, then κ
(k)
ij < κ

(k+1)
ij ;

(b′′′) If i < j − k − 1, then κ
(k)
ij = κ

(k+1)
ij ; if j − k − 1 ≤ i <

j , then κ
(k)
ij > κ

(k+1)
ij ;

(c′′′) If i = j , then κ
(k)
ij = κ

(k+1)
ij ;

(d′′′) κ
(k)
ij + κ

(k)
ji = κ

(k+1)
ij + κ

(k+1)
j i .

Hence the claim holds for n = k + 1. Therefore the claim
holds for all n ≥ 1 by induction. �
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