
Network Revenue Management Models with Cancellations and
Overbooking

1. Linear programming formulation with cancellations and overbooking
We begin by presenting a linear programming formulation of the network revenue management
problem with cancellations and overbooking. After this, we use the Lagrangian relaxation
strategy to show that this linear program is indeed a legitimate approximation of the network
revenue management problem with cancellations and overbooking.

We use the same notation that we used earlier for the network revenue management prob-
lem without overbooking and cancellations. The problem takes place over the time periods
{1, . . . τ}. All flights depart at time period τ + 1. We have m flights and n itineraries. The
capacity on flight leg i is ci. If we accept a request for itinerary j, then we generate a revenue
of fj and consume aij units of capacity on flight leg i. If flight leg i is not in itinerary j, then
we have aij = 0. As before, we assume that exactly one itinerary request arrives at each time
period and the probability that we have a request for itinerary j at time period t is pjt. Since
exactly one itinerary request arrives at each time period, we have

∑n
j=1 pjt = 1.

We assume that the cancellations for different reservations and the cancellations for the
same reservation at different time periods are independent. Furthermore, we assume that the
cancellations occur after the itinerary acceptance decisions at a particular time period. We let
ρjt be the probability that we retain a reservation for itinerary j from time period t to time
period t+1. With this definition, the probability that a reservation for itinerary j is cancelled
at time period t is 1 − ρjt. Furthermore, given that we have a reservation for itinerary j at
time period t, the probability that we retain this reservation until the departure time is

Clearly, Rjt satisfies the recursion

Similarly, given that we have a reservation for itinerary j at time period t, the probabil-
ity that we lose this reservation at some point before the departure time is

Clearly, Ljt satisfies the recursion

We let θj be the penalty cost of denying a reservation for itinerary j at the departure time
and rj be the refund if a reservation for itinerary j is cancelled before the departure time.

To formulate a linear program, we let wjt be the number of reservations for itinerary j that
we plan to accept at time period t and uj be the number of reservations for itinerary j that
we plan to deny boarding. Since Rjt is the probability of retaining a reservation for itinerary
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j at time period t until the departure time, the expected number of reservations for itinerary
j that we plan to retain until the departure time is

These are the number of reservations that are expected to show up at the departure time. In
this case, we can write the capacity availability constraint as

On the other hand, if we accept a reservation for itinerary j at time period t, then we make
a revenue of fj, but we loose a revenue of rj later on with probability Ljt. Therefore, the net
revenue from accepting a reservation for itinerary j at time period t is fj − Ljt rj.

Putting it all together, we obtain the linear program

We note that the number of decision variables in this linear program is many more than the
number of decisions variables in the linear program that does not incorporate cancellations.

The linear program above incorporates cancellations. An interesting question is whether
this linear program incorporates no-shows. The answer to this question depends on how one
interprets the retaining probabilities {ρjτ : j = 1, . . . , n} at the last time period.

Using this linear program, making the acceptance decisions is easy. Assume that we have
sjt reservations for itinerary j at time period t. That is, the state of our reservation system is
{sjt : j = 1, . . . , n}. In this case, the linear program that we solve is
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Assume that we have a request for itinerary j∗ at time period t. Letting {µi : i = 1, . . . ,m}
be the optimal values of the dual variables associated with the first set of constraints, the
decision rule we use is

We shortly elaborate on this decision rule a bit more.

2. Dynamic programming formulation with cancellations and overbooking
We let sjt be the number of reservations that we have for itinerary j at the time period t. These
reservations are counted at the beginning of the time period before we make the acceptance
decisions or before the cancellations occur. In this case, the vector st = {sjt : j = 1, . . . , n}
gives the state of the system at time period t.

Given that we have bjt reservations for itinerary j at time period t after the acceptance
decisions, we let Zjt(bjt) be the number of reservations that we retain from time period t
to time period t + 1. Due to our earlier independence assumptions, Zjt(bjt) has a binomial
distribution with parameters

We use Zt(bt) to denote the vector {Zjt(bjt) : j = 1, . . . , n}.
Given that we reach the departure time with state sτ+1 = {sj,τ+1 : j = 1, . . . , n}, we solve

the problem

to decide which reservations should be denied boarding. This problem gives the terminal
value function. Given that the state of the reservation system at time period t is st and we
have a reservation request for itinerary j, the expected revenue obtained over the time periods
t, . . . , τ + 1 satisfies the optimality equation
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where ej is the unit vector with a 1 in the j-th component and the second term in the ob-
jective function above captures the expected refunds for the cancellations. We shortly clarify
the boundary condition for the optimality equation.

Since we have E{Zjt(bjt)} = ρjt bjt, we can write the optimality equation as

The inner summation on the right side above only depends on z and letting

the optimality equation becomes

Vt(st, j) = max
yjt∈{0,1}

[
fj − rj (1− ρjt)

]
yjt −

n∑

j′=1

rj′ (1− ρj′t) sj′t

+
∑

z∈Zn
+

P{Zt(st + yjt ej) = z} V̄t+1(z)

= max
yjt∈{0,1}

[
fj − rj (1− ρjt)

]
yjt −

n∑

j′=1

rj′ (1− ρj′t) sj′t + EZt{V̄t+1(Zt(st + yjt ej))}.

Taking the expectations of both sides over the itinerary request j, we obtain
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We write the final optimality equation as

with the boundary condition V̄τ+1(sτ+1) as above.

3. Connections between the dynamic programming formulation and the linear
programming approximation
Consider dropping the capacity availability constraints in the problem that we solve at the
departure time, which is given by

V̄τ+1(sτ+1) = max −
n∑

j=1

θj uj

subject to
n∑

j=1

aij (sj,τ+1 − uj) ≤ ci i = 1, . . . , m

0 ≤ uj ≤ sj,τ+1 j = 1, . . . , n.

Furthermore, consider associating the positive Lagrange multipliers {λi : i = 1, . . . , m} with
the capacity availability constraints at the departure time to add these constraints to the
objective function. In particular, we solve the problem

for the departure time, whereas we continue solving the optimality equation

V̄ λ
t (st) = max

yt∈{0,1}n

n∑
j=1

pjt

{[
fj − rj (1− ρjt)

]
yjt + E{V̄ λ

t+1(Zt(st + yjt ej))}
}−

n∑
j=1

rj (1− ρjt) sjt.

We use the superscript λ in the value functions to emphasize that the solution to the optimality
equation above depends on the Lagrange multipliers.

Similar to our earlier results, it can be shown that the Lagrangian relaxation strategy gives
an upper bound on the value functions. That is, we have V̄t(st) ≤ V̄ λ

t (st) for all time periods
and for all reservation levels, as long as the Lagrange multipliers are positive.

Another property of the Lagrangian relaxation strategy is that for a fixed value of the
Lagrange multipliers, the value functions {V̄ λ

t (·) : t = 1, . . . , τ} can easily be computed. In
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particular, we have

V̄ λ
t (st) =

m∑
i=1

λi ci +
n∑

j=1

[Rjt v
λ
j − Ljt rj] sjt +

τ∑

t′=t

n∑
j=1

pjt′
[
fj − Ljt′ rj + Rjt′ v

λ
j

]+
,

where we let vλ
j = −min{∑n

i=1 aij λi, θj}. This result is easy to show by induction. Consider
the problem we solve at the departure time. We have

Therefore, we have V̄ λ
τ+1(st) =

∑m
i=1 λi ci +

∑n
j=1 vλ

j sj,τ+1. Consider the problem that we
solve at time period τ . We have
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Therefore, the result holds for time period τ . Assuming that the result holds for time period
t + 1, we have

This completes the proof.

Similar to our earlier results, since the system starts with no reservations and we have
V̄1(0) ≤ V λ

1 (0), we can solve the problem

min
λ≥0

V λ
1 (0)
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to obtain a good set of Lagrange multipliers. As complicated as it looks, the minimization
problem above can be solved as a linear program.

To see this, we first note that for a fixed value of λ, we have

V̄ λ
1 (0) =

m∑
i=1

λi ci +
τ∑

t=1

n∑
j=1

pjt

[
fj − Ljt rj + Rjt v

λ
j

]+
.

The first thing to note is that for a fixed value of λ, V̄ λ
1 (0) is the optimal solution to the trivial

linear program

If we want to solve the problem minλ≥0 V λ
1 (0), then all we need to do is to treat the La-

grange multipliers in the linear program above as decision variables and solve the problem
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It turns out that solving the linear program above, or equivalently solving the problem
minλ≥0 V λ

1 (0), is equivalent to solving the deterministic linear program that we formulated
at the very beginning. To see this, the dual of the last linear program is
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