The problem we are interested in is the following:

\[
\begin{align*}
\max & \sum_{i \in I} \sum_{j \in F} c_{ij} x_{ij} + \mathbb{E}Q(s, D) \\
\text{subject to:} & \sum_{j \in F} x_{ij} \leq p_i, \quad i \in I, \\
& \sum_{i,j \in F} x_{ij} - s_j = 0, \quad j \in I \cup C, \\
& x_{ij}, s_j \geq 0,
\end{align*}
\]

where \(Q(s, D) \) is the optimal value of the second stage problem:

\[
\begin{align*}
\max & \sum_{i \in I \cup C} \sum_{j \in F} d_{ij} y_{ij} + \sum_{i \in C} \sum_{l \in L} r_l^i z^l_j \\
\text{subject to:} & \sum_{j \in F} y_{ij} \leq s_i, \quad i \in I \cup C, \\
& \sum_{i,j \in F} y_{ij} - \sum_{l \in L} z^l_j \geq 0, \quad j \in C, \\
& z^l_j \leq D^l_j, \quad l \in L, \quad j \in C, \\
& y_{ij}, z^l_j \geq 0.
\end{align*}
\]

The problem above can be interpreted as follows. There is a set \(I \) of production facilities (with warehouses) and a set of customers \(C \). The set \(F_i \) is the set of facilities that can receive shipments from location \(i \in I \cup C \), i.e. the set of \(F \)easible moves from location \(i \). At the first stage, an amount \(x_{ij} \) is transported from production facility \(i \) to a warehouse or customer location \(j \), before the demand realizations at customer locations become known. After the realization of the demands at customer locations are observed, we move an amount \(y_{ij} \) from location \(i \) to customer location \(j \). At each customer location we face different types of demands, indexed by \(l \in L \). \(D^l_j \) is the units of demand of type \(l \) at location \(j \). We serve \(z^l_j \) units of demand of type \(l \) at location \(j \); the excess demand, if any, is lost. The production capacity of facility \(i \in I \) is denoted \(p_i \).

For the first stage costs, we set \(c_{ij} = c_0 + c_1 \delta_{ij} \), where \(\delta_{ij} \) is the Euclidean distance between locations \(i \) and \(j \), and \(c_0 \) can be interpreted as the unit production cost (if any) and \(c_1 \) is the transportation cost applied on “per mile” basis. For the second stage costs, we have:

\[
d_{ij} = \begin{cases}
 d_i \delta_{ij} & \text{if } i \in I \\
 d_0 + d_1 \delta_{ij} & \text{if } i \in C.
\end{cases}
\]

\(d_0 \) represents the fixed charge for shipping a unit of the product from one customer location to another customer location, and \(d_i \) are the costs of transportation in the second stage. For every demand type \(l \) occurring in location \(i \), we associate a base revenue \(q^l_i \). We set \(r^l_i = r \cdot q^l_i \). This allows us to scale the revenues of the demands in anyway we like.