
INFORMS—New Orleans 2005 c© 2005 INFORMS | isbn 0000-0000
doi 10.1287/educ.1053.0000

Chapter X

Approximate Dynamic Programming for
Large-Scale Resource Allocation Problems

Warren B. Powell
Department of Operations Research and Financial Engineering,
Princeton University, Princeton, New Jersey 08544, USA,
powell@princeton.edu

Huseyin Topaloglu
School of Operations Research and Industrial Engineering,
Cornell University, Ithaca, New York 14853, USA,
topaloglu@orie.cornell.edu

Abstract We present modeling and solution strategies for large-scale resource allocation prob-
lems that take place over multiple time periods under uncertainty. In general, the
strategies we present formulate the problem as a dynamic program and replace the
value functions with tractable approximations. The approximations of the value func-
tions are obtained by using simulated trajectories of the system and iteratively improv-
ing on (possibly naive) initial approximations; we propose several improvement algo-
rithms for this purpose. As a result, the resource allocation problem decomposes into
time-staged subproblems, where the impact of the current decisions on the future
evolution of the system is assessed through value function approximations. Computa-
tional experiments indicate that the strategies we present yield high-quality solutions.
We also present comparisons with conventional stochastic programming methods.

Keywords dynamic programming; approximate dynamic programming; stochastic approxima-
tion; large-scale optimization

1. Introduction
Many problems in operations research can be posed as managing a set of resources over mul-
tiple time periods under uncertainty. The resources may take on different forms in different
applications; vehicles and containers for fleet management, doctors and nurses for person-
nel scheduling, cash and stocks for financial planning. Similarly, the uncertainty may have
different characterizations in different applications; load arrivals and weather conditions for
fleet management, patient arrivals for personnel scheduling, interest rates for financial plan-
ning. Despite the differences in terminology and application domain, a unifying aspect of
these problems is that we have to make decisions under the premise that the decisions that
we make now will affect the future evolution of the system and the future evolution of the
system is also affected by random factors that are beyond our control.

A classical approach for solving such problems is to use the theory of Markov decision
processes. The fundamental idea is to use a state variable that represents all information
that is relevant to the future evolution of the system. Given the current value of the state
variable, value functions capture the total expected cost incurred by the system over the
whole planning horizon. Unfortunately, time and storage requirements for computing the
value functions through conventional approaches, such as value iteration and policy itera-
tion, increase exponentially with the number of dimensions of the state variable. For the
applications above, these conventional approaches are simply intractable.

1

Powell and Topaloglu: Approximate Dynamic Programming
2 INFORMS—New Orleans 2005, c© 2005 INFORMS

This chapter presents a modeling framework for large-scale resource allocation problems,
along with a fairly flexible algorithmic framework that can be used to obtain good solutions
for them. Our modeling framework is motivated by transportation applications, but it pro-
vides enough generality to capture a variety of other problem settings. We do not focus on
a specific application domain throughout the chapter, although we use the transportation
setting to give concrete examples. The idea behind our algorithmic framework is to formu-
late the problem as a dynamic program and to use tractable approximations of the value
functions, which are obtained by using simulated trajectories of the system and iteratively
improving on (possibly naive) initial value function approximations.

The organization of the chapter is as follows. Sections 2 and 3 respectively present our
modeling and algorithmic frameworks for describing and solving resource allocation prob-
lems. Section 4 describes a variety of methods that one can use to improve on the initial
value function approximations. Section 5 focuses on the stepsize choices for the methods
described in Section 4. In Section 6, we review other possible approaches for solving resource
allocation problems, most of which are motivated by the field of stochastic programming.
Section 7 presents some computational experiments. We conclude in Section 8 with possible
extensions and unresolved issues.

2. Modeling Framework
This section describes a modeling framework for resource allocation problems. Our approach
borrows ideas from mathematical programming, probability theory and computer science.
This modeling framework has been beneficial to us for several reasons. First, it offers a
modeling language that is independent of the problem domain; one can use essentially the
same language to describe a problem that involves assigning trucks to loads or a problem
that involves scheduling computing tasks on multiple servers. Second, it extensively uses
terminology, such as resources, decisions, transformation and information, that is familiar to
nonspecialists. This enables us to use our modeling framework as a communication tool when
talking to a variety of people. Third, it is software-friendly; the components of our modeling
framework can easily be mapped to software objects. This opens the door for developing
general purpose software that can handle a variety of resource allocation problems.

We present our modeling framework by summarizing the major elements of a Markov
decision process, ending with a formal statement of our objective function. However, working
with this objective function is computationally intractable and we focus on an approximation
strategy in Section 3.

2.1. Modeling Time
Perhaps one of the most subtle dimensions of modeling a stochastic optimization problem
is the modeling of time. In a stochastic model of a resource allocation problem, there are
two processes taking place; the flow of physical resources and the flow of information. The
flow of information can be further divided between the flow of exogenous information and
the flow of decisions.

For computational reasons, we assume that decisions are made at discrete points in time.
These points in time, known as decision epochs, might be once every week, once every four
hours or once every second. They may also be determined by exogenous events, such as
phone calls or arrivals of customers, in which case the time interval between the decision
epochs is not constant.

In contrast, the arrival of exogenous information and the movement of resources occurs in
continuous time. We might, for example, approximate a transportation problem by assuming
that the decisions are made once every four hours, but the actual movements of the physi-
cal resources still occurs in continuous time between the decision epochs. It is notationally
convenient to represent the decision epochs with the integers T = {0,1, . . . , T} where T is

Powell and Topaloglu: Approximate Dynamic Programming
INFORMS—New Orleans 2005, c© 2005 INFORMS 3

the end of our planning horizon. Physical activities, such as arrivals of customers, depar-
tures of aircraft, job completions, and the arrival of information, such as customer requests,
equipment failures, notifications of delays, can occur at continuous points in time between
these decision epochs.

2.2. Resources
We use a fairly general notation to model resources which handles both simple resources, such
as oil, money, agricultural commodities, and complex resources, such as people, specialized
machinery. We represent resources using

A = Attribute space of the resources. We usually use a to denote a generic
element of the attribute space and refer to a = (a1, a2, . . . , aI) as an attribute
vector.

Rta = Number of resources with attribute vector a at time period t just before a
decision is made.

Rt = (Rta)a∈A.

Roughly speaking, the attribute space represents the set of all possible states that a partic-
ular resource can be in. For example, letting I be the set of locations in the transportation
network and V be the set of vehicle types, and assuming that the maximum travel time
between any origin-destination pair is τ time periods, the attribute space of the vehicles in
the fleet management setting is A= I ×{0,1, . . . , τ}×V. A vehicle with the attribute vector

a =




a1

a2

a3


 =




inbound/current location
time to reach inbound location

vehicle type


 (1)

is a vehicle of type a3 that is inbound to (or at) location a1 and that will reach location
a1 at time a2 (it is in the attribute a2 that we model time continuously). The attribute a2

might also be the time remaining until the vehicle is expected to arrive, or it might even be
the departure time from the origin (this might be needed if the travel time is random). We
note that certain attributes can be dynamic, such as inbound/current location, and certain
attributes can be static, such as vehicle type. We access the number of vehicles with attribute
vector a at time period t by referring to Rta. This implies that we can “put” the vehicles
with the same attribute vector in the same “bucket” and treat them as indistinguishable.

We assume that our resources are being used to serve demands; for example demands for
finishing a job, moving a passenger or carrying a load of freight. We model the demands
using

B = Attribute space of the demands. We usually use b to denote a generic ele-
ment of the attribute space.

Dtb = Number of demands with attribute vector b waiting to be served at time
period t.

Dt = (Dtb)b∈B.

To keep the notation simple, we assume that any unserved demands are immediately lost.
Although we mostly consider the case where the resources are indivisible and Rta takes

integer values, Rta may in fact be allowed to take fractional values. For example, Rta may
represent the inventory level of a certain type of product at time period t measured in
kilograms. Also, we mostly consider the case where the attribute space is finite. Finally, the
definition of the attribute space implies that the resources we are managing are uniform;
that is, the attribute vector for each resource takes values in the same space. However,

Powell and Topaloglu: Approximate Dynamic Programming
4 INFORMS—New Orleans 2005, c© 2005 INFORMS

by defining multiple attribute spaces, say A1, . . . ,AN , we can deal with multiple types of
resources. For example, A1 may correspond to the drivers, whereas A2 may correspond to
the trucks.

The attribute vector is a flexible object that allows us to model a variety of situations.
In the fleet management setting with single-period travel times and a homogenous fleet, the
attribute space is as simple as I. On the other extreme, we may be dealing with vehicles
with the attribute vector 



inbound/current location
time to reach inbound location

duty time within shift
days away from home

vehicle type
home domicile




. (2)

Based on the nature of the attribute space, we can model a variety of well-known problem
classes.
1. Single-product inventory control problems. If the attribute space is a singleton,
say {a}, then Rta simply gives the inventory count at time period t.
2. Multiple-product inventory control problems. If we have A= {1, . . . ,N} and the
attributes of the resources are static (product type), then Rta gives the inventory count for
product type a at time period t.
3. Single-commodity min-cost network flow problems. If we have A = {1, . . . ,N}
and the attributes of the resources are dynamic, then Rta gives the number of resources
in state a at time period t. For example, this type of a situation arises when one manages
a homogenous fleet of vehicles whose only attributes of interest are their locations. Our
terminology is motivated by the fact that the deterministic versions of these problems can
be formulated as min-cost network flow problems.
4. Multicommodity min-cost network flow problems. If we have A = {1, . . . , I} ×
{1, . . . ,K}, and the first element of the attribute vector is static and the second element is
dynamic, then Rt,[i,k] gives the number of resources of type i that are in state k at time
period t. For example, this type of a situation arises when one manages a heterogeneous
fleet of vehicles whose only attributes of interest are their sizes (i) and locations (k).
5. Heterogeneous resource allocation problems. This is a generalization of the pre-
vious problem class where the attribute space involves more than two dimensions, some of
which are static and some of which are dynamic.

From a purely mathematical viewpoint, since we can “lump” all information about a
resource into one dynamic attribute, single-commodity min-cost network flow problems
provide enough generality to capture the other four problem classes. However, from the
algorithmic viewpoint, the solution methodology we use and our ability to obtain integer
solutions depend very much on what problem class we work on. For example, we can easily
enumerate all possible attribute vectors in A for the first four problem classes, but this
may not be possible for the last problem class. When obtaining integer solutions is an issue,
we often exploit a network flow structure. This may be possible for the first three problem
classes, but not for the last two.

We emphasize that the attribute space is different than what is commonly referred to
as the state space in Markov decision processes. The attribute space represents the set of
all possible states that a particular resource can be in. On the other hand, the state space
in Markov decision processes refers to the set of all possible values that the resource state
vector Rt can take. For example, in the fleet management setting, the number of elements of
the attribute space A= I×{0,1, . . . τ}×V is on the order of several thousands. On the other
hand, the state space includes all possible allocations of the fleet among different locations,
which is an intractable number even for problems with a small number of vehicles in the
fleet, a small number of locations and a small number of vehicle types.

Powell and Topaloglu: Approximate Dynamic Programming
INFORMS—New Orleans 2005, c© 2005 INFORMS 5

2.3. Evolution of Information
We define

R̂ta(Rt) = Random variable representing the change in the number of resources with
attribute vector a that occurs during time period t.

R̂t(Rt) = (R̂ta(Rt))a∈A.

The random changes in the resource state vector may occur due to new resource arrivals or
changes in the status of the existing resources. For notational brevity, we usually suppress
the dependence on Rt. We model the flow of demands in a similar way by defining

D̂tb(Rt) = Random variable representing the new demands with attribute vector b
that become available during time period t.

D̂t(Rt) = (D̂tb(Rt))b∈B.

From time to time, we need a generic variable to represent all the exogenous information
that become available during time period t. The research community has not adopted a
standard notation for exogenous information; we use

Wt = Exogenous information that become available during time period t.

For our problem, we have Wt = (R̂t, D̂t).

2.4. The State Vector
The state vector captures the information that we need at a certain time period to model the
future evolution of the system. Virtually every textbook on dynamic programming represents
the state vector as the information available just before we make the decisions. If we let St

be the state of the system just before we make the decisions at time period t, then we have

St = (Rt,Dt).

We refer to St as the pre-decision state vector to emphasize that it is the state of the system
just before we make the decisions at time period t. To simplify our presentation, we assume
that any unserved demands are lost, which means that Dt = D̂t. We will also find it useful
to use the state of the system immediately after we make the decisions. We let

Rx
t = The resource state vector immediately after we make the decisions at time

period t.

Since we assume that any unserved demands are lost, the state of the system immediately
after we make the decisions at time period t is given by

Sx
t = Rx

t .

We refer to Sx
t as the post-decision state vector. For notational clarity, we often use Rx

t to
capture the post-decision state vector.

It helps to summarize the sequence of states, decisions and information by using

(S0, x0, S
x
0 ,W1, S1, x1, S

x
1 , . . . ,Wt, St, xt, S

x
t , . . . ,WT , ST , xT , Sx

T),

where xt is the decision vector at time period t.

Powell and Topaloglu: Approximate Dynamic Programming
6 INFORMS—New Orleans 2005, c© 2005 INFORMS

2.5. Decisions
Decisions are the means by which we can modify the attributes of the resources. We represent
the decisions by defining

C = Set of decision classes. We can capture a broad range of resource allocation
problems by using two classes of decisions; D to serve a demand and M to
modify a resource without serving a demand.

DD = Set of decisions to serve a demand. Each element of DD represents a decision
to serve a demand with a particular attribute vector; that is, there is an
attribute vector bd ∈B for each d∈DD.

DM = Set of decisions to modify a resource without serving a demand. In the
transportation setting, this often refers to moving a vehicle from one loca-
tion to another, but it can also refer to repairing the vehicle or changing
its configuration. We assume that one element of DM is a decision that
represents “doing nothing.”

D = DD ∪DM .
xtad = Number of resources with attribute vector a that are modified by using

decision d at time period t.
ctad = Profit contribution from modifying one resource with attribute vector a by

using decision d at time period t.

Using standard terminology, xt = (xtad)a∈A,d∈D is the decision vector at time period t, along
with the objective coefficients ct = (ctad)a∈A,d∈D. If it is infeasible to apply decision d on
a resource with attribute vector a, then we capture this by letting ctad = −∞. Fractional
values may be allowed for xtad, but we mostly consider the case where xtad takes integer
values.

In this case, the resource conservation constraints can be written as
∑

d∈D
xtad = Rta for all a∈A. (3)

These constraints simply state that the total number of resources with attribute vector a
that are modified by using a decision at time period t equals the number of resources with
attribute vector a.

Typically there is a reward for serving a demand, but the number of such decisions is
restricted by the number of demands. Noting that d ∈DD represents a decision to serve a
demand with attribute vector bd, we write the demand availability constraints as

∑

a∈A
xtad ≤ D̂t,bd

for all d∈DD.

We can now write our set of feasible decisions as

X (St) =
{
xt :

∑

d∈D
xtad = Rta for all a∈A (4)

∑

a∈A
xtad ≤ D̂t,bd

for all d∈DD (5)

xtad ∈Z+ for all a∈A, d∈D}
. (6)

Our challenge is to find a policy or decision function that determines what decisions we
should take. We let

Xπ
t (·) = A function that maps the state vector St to the decision vector xt at time

period t; that is, we have Xπ
t (St)∈X (St).

There can be many choices for this function; we dwell on this issue in Section 3.

Powell and Topaloglu: Approximate Dynamic Programming
INFORMS—New Orleans 2005, c© 2005 INFORMS 7

2.6. Transition Function
We capture the result of applying decision d on a resource with attribute vector a by

δa′(a,d) =





1 If applying decision d on a resource with attribute vector a trans-
forms the resource into a resource with attribute vector a′

0 otherwise.
(7)

Using the definition above, the resource dynamics can be written as

Rx
ta =

∑

a′∈A

∑

d∈D
δa(a′, d)xta′d for all a∈A (8)

Rt+1,a = Rx
ta + R̂t+1,a for all a∈A.

It is often useful to represent the system dynamics generically using

St+1 = SM (St, xt,Wt+1),

where Wt+1 = (R̂t+1, D̂t+1) is the new information arriving during time period t+1. There-
fore, SM (·, ·) is a function that maps the decision vector and the new information to a state
vector for the next time period.

2.7. Objective Function
We are interested in finding decision functions {Xπ

t (·) : t ∈ T } that maximize the total
expected profit contribution over the planning horizon. Noting that a set of decision functions
{Xπ

t (·) : t∈ T } define a policy π and letting Π be the set of all possible policies, we want to
solve

max
π∈Π

E

{∑

t∈T
Ct(Xπ

t (St))

}
, (9)

where we let Ct(xt) =
∑

a∈A
∑

d∈D ctad xtad for notational brevity. The problem above is
virtually impossible to solve directly. The remainder of this chapter focuses on describing
how approximate dynamic programming can be used to find high-quality solutions to this
problem.

3. An Algorithmic Framework for Approximate Dynamic Pro-
gramming

It is well-known that an optimal policy that solves problem (9) satisfies the Bellman equation

Vt(St) = max
xt∈X (St)

Ct(xt)+E
{
Vt+1(SM (St, xt,Wt+1)) |St

}
. (10)

It is also well-known that solving problem (10) suffers from the so-called curse of dimen-
sionality. It is typically assumed that we have to solve (10) for every possible value of the
state vector St. When St is a high-dimensional vector, the number of possible values for St

quickly becomes intractably large. For our problems, St may have hundreds of thousands of
dimensions.

Unfortunately, the picture is worse than it seems at the first sight; there are actually
three curses of dimensionality. The first one is the size of the state space, which explodes
when St is a high-dimensional vector. The second one is the size of the outcome space that
becomes problematic when we try to compute the expectation in (10). This expectation is
often hidden in the standard textbook representations of the Bellman equation, which is
written as

Vt(St) = max
xt∈X (St)

Ct(xt)+
∑

s′∈S
p(s′ |St, xt)Vt+1(s′),

Powell and Topaloglu: Approximate Dynamic Programming
8 INFORMS—New Orleans 2005, c© 2005 INFORMS

where S is the set of all possible values for the state vector St+1 and p(s′ |St, xt) is the
probability that SM (St, xt,Wt+1) = s′ conditional on St and xt. Most textbooks on dynamic
programming assume that the transition probability p(s′ |St, xt) is given, but in many prob-
lems such as ours, it can be extremely difficult to compute.

The third curse of dimensionality is the size of the action space X (St), which we refer to as
the feasible region. Classical treatments of dynamic programming assume that we enumerate
all possible elements of X (St) when solving problem (10). When xt is a high-dimensional
vector, this is again intractable.

3.1. An Approximation Strategy Using the Post-Decision State Vector
The standard version of the Bellman equation in (10) is formulated using the pre-decision
state vector. If we write the Bellman equation around the post-decision state vector Rx

t−1,
then we obtain

V x
t−1(R

x
t−1) =E

{
max

xt∈X (Rx
t−1,R̂t,D̂t)

Ct(xt)+ V x
t (SM,x(St, xt))

∣∣Rx
t−1

}
, (11)

where we use the function SM,x(·) to capture the dynamics of the post-decision state vector
given in (8); that is, we have Rx

t = SM,x(St, xt).
Not surprisingly, problem (11) is also computationally intractable. However, we can drop

the expectation to write

Ṽ x
t−1(R

x
t−1, R̂t, D̂t) = max

xt∈X (Rx
t−1,R̂t,D̂t)

Ct(xt)+ V x
t (SM,x(Rx

t−1,Wt(ω), xt)), (12)

where Wt(ω) = (R̂t, D̂t) is a sample realization of the new information that arrived during
time interval t. Ṽ x

t−1(S
x
t−1, R̂t, D̂t) is a place holder. Rather than computing the expectation,

we solve the problem above for a particular realization of (R̂t, D̂t); that is, given Rx
t−1

and (R̂t, D̂t), we compute a single decision xt. Therefore, we can solve the second curse of
dimensionality that arises due to the size of the outcome space by using the post-decision
state vector.

However, we still do not know the value function V x
t (·). To overcome this problem, we

replace the value function with an approximation that we denote by using V̄ x
t (·). In this

case, our decision function is to solve the problem

Xπ
t (Rx

t−1, R̂t, D̂t) = argmax
xt∈X (Rx

t−1,R̂t,D̂t)

Ct(xt)+ V̄ x
t (SM,x(St, xt)). (13)

Therefore, we solve the first curse of dimensionality arising from the size of the state space
by using approximations of the value function. Finally, we pay attention to use specially-
structured value function approximations so that the problem above can be solved by using
standard optimization techniques. This solves the third curse of dimensionality arising from
the size of the action space.

3.2. Approximating the Value Function
Unless we are dealing with a problem with a very special structure, it is difficult to come up
with good value function approximations. The approximate dynamic programming frame-
work we propose solves problems of the form (13) for each time period t, and iteratively
updates and improves the value function approximations. We describe this idea in Figure 1.
We note that solving problems of the form (14) for all t∈ T is equivalent to simulating the
behavior of the policy characterized by the value function approximations {V̄ n−1,x

t (·) : t ∈
T }. In Figure 1, we leave the structure of the value function approximations and the inner

Powell and Topaloglu: Approximate Dynamic Programming
INFORMS—New Orleans 2005, c© 2005 INFORMS 9

Figure 1. An algorithmic framework for approximate dynamic programming.

Step 1. Choose initial value function approximations, say {V̄ 0,x
t (·) : t∈ T }. Initialize the iteration

counter by letting n = 1.
Step 2. Initialize the time period by letting t = 0. Initialize the state vector Rn,x

0 to reflect the
initial state of the resources.

Step 3. Sample a realization of (R̂t, D̂t), say (R̂n
t , D̂n

t). Solve the problem

xn
t = argmax

xt∈X (Rn,x
t−1,R̂n

t ,D̂n
t)

Ct(xt)+ V̄ n−1,x
t (SM,x(St, xt)) (14)

and let Rx,n
t = SM,x(St, xt).

Step 4. Increase t by 1. If t≤ T , then go to Step 3.
Step 5. Use the information obtained at iteration n to update the value function approximations.

For the moment, we denote this by

{V̄ n,x
t (·) : t∈ T }= Update

({V̄ n−1,x
t (·) : t∈ T },{Rn,x

t : t∈ T },{(R̂n
t , D̂n

t) : t∈ T }),

where Update(·) can be viewed as a function that maps the value function approximations,
the resource state vectors and the new information at iteration n to the updated value
function approximations.

Step 6. Increase n by 1 and go to Step 2.

workings of the Update(·) function unspecified. Different strategies to fill in these two gaps
potentially yield different approximate dynamic programming methods.

A generic structure for the value function approximations is

V̄ x
t (Rx

t) =
∑

f∈F
θtf φf (Rx

t), (15)

where {φf (Rx
t) : f ∈ F} are often referred to as features since they capture the impor-

tant characteristics of the resource state vector from the perspective of capturing the total
expected profit contribution in the future. For example, if we are solving a resource alloca-
tion problem, a feature may be the number of resources with a particular attribute vector.
By adjusting the parameters {θtf : f ∈ F}, we obtain different value function approxima-
tions. The choice of the functions {φf (·) : f ∈ F} requires some experimentation and some
knowledge of the problem structure. However, for given {φf (·) : f ∈F}, there exist a variety
of methods to set the values of the parameters {θtf : f ∈ F} so that the value function
approximation in (15) is a good approximation to the value function V x

t (·).
For resource allocation problems, we further specialize the value function approximation

structure in (15). In particular, we use separable value function approximations of the form

V̄ x
t (Rx

t) =
∑

a∈A
V̄ x

ta(Rx
ta), (16)

where {V̄ x
ta(·) : a∈A} are one-dimensional functions. We focus on two cases.

1. Linear value function approximations. For these value function approximations, we
have V̄ x

ta(Rx
ta) = v̄ta Rx

ta, where v̄ta are adjustable parameters. We use the notation {v̄ta :
a ∈ A} for the adjustable parameters since this emphasizes that we are representing the
value function approximation V̄ x

t (·), but {v̄ta : a ∈ A} are simply different representations
of {θtf : f ∈F} in (15).

Powell and Topaloglu: Approximate Dynamic Programming
10 INFORMS—New Orleans 2005, c© 2005 INFORMS

2. Piecewise-linear value function approximations. These value function approxima-
tions assume that V̄ x

ta(·) is a piecewise-linear concave function with points of nondifferen-
tiability being subset of positive integers. In this case, letting Q be an upper bound on the
total number of resources that one can have at any time period, we can characterize V̄ x

ta(·)
by a sequence of numbers {v̄ta(q) : q = 1, . . . ,Q}, where v̄ta(q) is the slope of V̄ x

ta(·) over the
interval (q− 1, q); that is, we have v̄ta(q) = V̄ x

ta(q)− V̄ x
ta(q− 1). Since V̄ x

ta(·) is concave, we
have v̄ta(1)≥ v̄ta(2)≥ . . .≥ v̄ta(Q).

4. Monte Carlo Methods for Updating the Value Function Approx-
imations

In this section, our goal is to propose alternatives for the Update(·) function in Step 5 in
Figure 1.

Whether we use linear or piecewise-linear value function approximations of the form
V̄ n,x

t (Rx
t) =

∑
a∈A V̄ n,x

ta (Rx
ta), each of the functions {V̄ n,x

ta (·) : a ∈A} is characterized either
by a single slope (for the linear case) or by a sequence of slopes (for the piecewise-linear case).
Using ea to denote the |A|-dimensional unit vector with a 1 in the element corresponding
to a∈A, we would like to use V x

t (Rn,x
t + ea)−V x

t (Rn,x
t) to update and improve the slopes

that characterize the function V̄ n,x
ta (·). However, this requires knowledge of the exact value

function. Instead, letting Ṽ n,x
t (Rn,x

t , R̂n
t , D̂n

t) be the optimal objective value of problem (14),
we propose using

ϑn
ta = Ṽ n,x

t (Rn,x
t + ea, R̂n

t , D̂n
t)− Ṽ n,x

t (Rn,x
t , R̂n

t , D̂n
t). (17)

We begin by describing a possible alternative for the Update(·) function when the value
function approximations are linear. After that, we move on to piecewise-linear value function
approximations.

4.1. Updating Linear Value Function Approximations
The method that we use for updating the linear value function approximations is straight-
forward. Assuming that the value function approximation at iteration n is of the form
V̄ n,x

t (Rx
t) =

∑
a∈A v̄n

ta Rx
ta, we let

v̄n
ta = [1−αn−1] v̄n−1

ta + αn−1 ϑn
ta (18)

for all a∈A, where αn ∈ [0,1] is the smoothing constant at iteration n. In this case, the value
function approximation to be used at iteration n +1 is given by V̄ n,x

t (Rx
t) =

∑
a∈A v̄n

ta Rx
ta.

Linear value function approximations can be unstable and experimental work shows that
they do not perform as well as piecewise-linear value function approximations. Linear value
function approximations are especially well suited to problems where the resources being
managed are fairly complex producing a very large attribute space. In these problems, we
typically find that Rx

ta is 0 or 1 and using piecewise-linear value function approximations
provides little value. In addition, linear value functions are much easier to work with and
generally are a good starting point.

4.2. Updating Piecewise-Linear Value Function Approximations
We now assume that the value function approximation after iteration n is of the form
V̄ n,x

t (Rx
t) =

∑
a∈A V̄ n,x

ta (Rx
ta), where each V̄ n,x

ta (·) is a piecewise-linear concave function with
points of nondifferentiability being a subset of positive integers. In particular, assuming that
V̄ n,x

ta (0) = 0 without loss of generality, we represent V̄ n,x
ta (·) by a sequence of slopes {v̄n

ta(q) :
q = 1, . . . ,Q} as in Section 3.2, where we have v̄n

ta(q) = V̄ n,x
ta (q)− V̄ n,x

ta (q− 1). Concavity of
V̄ n,x

ta (·) implies that v̄n
ta(1)≥ v̄n

ta(2)≥ . . .≥ v̄n
ta(Q).

Powell and Topaloglu: Approximate Dynamic Programming
INFORMS—New Orleans 2005, c© 2005 INFORMS 11

We update V̄ n,x
ta (·) by letting

θn
ta(q) =

{
[1−αn−1] v̄n−1

ta (q)+ αn−1 ϑn
ta if q = Rn,x

ta +1
v̄n−1

ta (q) if q ∈ {1, . . . ,Rn,x
ta ,Rn,x

ta +2, . . . ,Q}. (19)

The expression above is similar to (18), but the smoothing operation applies only to the
“relevant” part of the domain of V̄ n,x

ta (·). However, we note that we may not have θn
ta(1)≥

θn
ta(2) ≥ . . . ≥ θn

ta(Q), which implies that if we let V̄ n,x
ta (·) be the piecewise-linear function

characterized by the sequence of slopes θn
ta = {θn

ta(q) : q = 1, . . . ,Q}, then V̄ n,x
ta (·) is not

necessarily concave. To make sure that V̄ n,x
ta (·) is concave, we choose a sequence of slopes

v̄n
ta = {v̄n

ta(q) : q = 1, . . . ,Q} such that v̄n
ta and θn

ta are not too “far” from each other and the
sequence of slopes v̄n

ta satisfy v̄n
ta(1)≥ v̄n

ta(2)≥ . . .≥ v̄n
ta(Q). In this case, we let V̄ n,x

ta (·) be
the piecewise-linear concave function characterized by the sequence of slopes v̄n

ta.
There are several methods for choosing the sequence of slopes {v̄n+1

ta (q) : q = 1, . . . ,Q}.
One possible method is to let v̄n

ta be as follows

v̄n
ta = argmin

Q∑
q=1

[
zq − θn

ta(q)
]2 (20)

subject to zq−1− zq ≥ 0 for all q = 2, . . . ,Q.

Therefore, this method chooses the vector v̄n
ta as the projection of the vector θn

ta onto the
set W = {z ∈RQ : z1 ≥ z2 ≥ . . .≥ zQ}; that is, we have

v̄n
ta = argmin

z∈W
‖z− θn

ta‖2. (21)

Using the Karush-Kuhn-Tucker conditions for problem (20), we can come up with a closed-
form expression for the projection in (21). We only state the final result here. Since the
vector θn

ta differs from the vector v̄n
ta in one component and we have v̄n

ta(1)≥ v̄n
ta(2)≥ . . .≥

v̄n
ta(Q), there are three possible cases to consider; either θn

ta(1) ≥ θn
ta(2) ≥ . . . ≥ θn

ta(Q), or
θn

ta(Rn,x
ta) < θn

ta(Rn,x
ta +1), or θn

ta(Rn,x
ta +1) < θn

ta(Rn,x
ta +2) should hold. If the first case holds,

then we can choose v̄n+1
ta in (21) as θn

ta and we are done. If the second case holds, then we
find the largest q∗ ∈ {2, . . . ,Rn,x

ta +1} such that

θn
ta(q∗− 1)≥ 1

Rn,x
ta +2− q∗

Rn,x
ta +1∑
q=q∗

θn
ta(q).

If such q∗ cannot be found, then we let q∗ = 1. It is straightforward to check that the vector
v̄n

ta given by

v̄n
ta(q) =





1
Rn,x

ta +2− q∗

Rn,x
ta +1∑
q=q∗

θn
ta(q) if q ∈ {q∗, . . . ,Rn,x

ta +1}

θn
ta(q) if q 6∈ {q∗, . . . ,Rn,x

ta +1}
(22)

satisfies the Karush-Kuhn-Tucker conditions for problem (20). If the third case holds, then
one can apply a similar argument. Figure 2.a shows how this method works. The black circles
in the top portion of this figure show the sequence of slopes {θn

ta(q) : q = 1, . . . ,Q}, whereas
the white circles in the bottom portion show the sequence of slopes {v̄n+1

ta (q) : q = 1, . . . ,Q}
computed through (22).

Powell and Topaloglu: Approximate Dynamic Programming
12 INFORMS—New Orleans 2005, c© 2005 INFORMS

Figure 2. Three possible methods for choosing the vector v̄n+1
ta .

)1(n
atθ

)2(n
atθ

)3(n
atθ

)4(n
atθ

)5(n
atθ

)6(n
atθ

)1(ˆ 1+n
atv

3

)5()4()3(n
at

n
at

n
at θθθ ++

)2(ˆ 1+n
atv

)3(ˆ 1+n
atv

)4(ˆ 1+n
atv

)5(ˆ 1+n
atv

)6(ˆ 1+n
atv

)1(n
atθ

)2(n
atθ

)3(n
atθ

)4(n
atθ

)5(n
atθ

)6(n
atθ

2

)5()4(n
at

n
at θθ +

)1(ˆ 1+n
atv

)2(ˆ 1+n
atv

)3(ˆ 1+n
atv

)4(ˆ 1+n
atv

)5(ˆ 1+n
atv

)6(ˆ 1+n
atv

)1(n
atθ

)2(n
atθ

)3(n
atθ

)4(n
atθ

)5(n
atθ

)6(n
atθ

)1(ˆ 1+n
atv

)2(ˆ 1+n
atv

)3(ˆ 1+n
atv

)4(ˆ 1+n
atv

)5(ˆ 1+n
atv

)6(ˆ 1+n
atv

(a) (b) (c)

Note. In this figure, we assume that Q = 6, Rn,x
ta +1 = 5 and q∗ = 3.

Recalling the three possible cases considered above, a second possible method first com-
putes

M∗ =





θn
ta(Rn,x

ta +1) if θn
ta(1)≥ θn

ta(2)≥ . . .≥ θn
ta(Q)

θn
ta(Rn,x

ta)+ θn
ta(Rn,x

ta +1)
2

if θn
ta(Rn,x

ta) < θn
ta(Rn,x

ta +1)
θn

ta(Rn,x
ta +1) + θn

ta(Rn,x
ta +2)

2
if θn

ta(Rn,x
ta +1) < θn

ta(Rn,x
ta + 2),

(23)

and lets

v̄n
ta(q) =





max
{
θn

ta(q), M∗} if q ∈ {1, . . . ,Rn,x
ta }

M∗ if q = Rn,x
ta +1

min
{
θn

ta(q), M∗} if q ∈ {Rn,x
ta +2, . . . ,Q}.

(24)

Interestingly, it can be shown that (23) and (24) are equivalent to letting

v̄n+1
ta = argmin

z∈W
‖z− θn

ta‖∞.

Therefore, the first method is based on a Euclidean-norm projection, whereas the second
method is based on a max-norm projection. Figure 2.b shows how this method works.

A slight variation on the second method yields a third method, which computes M∗ =
θn

ta(Rn,x
ta + 1) and lets the vector v̄n+1

ta be as in (24). This method does not have an inter-
pretation as a projection. Figure 2.c shows how this method works.

Powell and Topaloglu: Approximate Dynamic Programming
INFORMS—New Orleans 2005, c© 2005 INFORMS 13

Figure 3. Performances of linear and piecewise-linear value function approximations on a resource
allocation problem with deterministic data.

70

80

90

100

0 25 50 75

iteration number

%
 o

f o
pt

im
al

 o
bj

ec
tiv

e
va

lu
e

linear
piecewise-linear

There are convergence results for the three methods described above. All of these results
are in limited settings that assume that the planning horizon contains two time periods and
the state vector is one-dimensional. Roughly speaking, they show that if the state vector
Rn,x

1 generated by the algorithmic framework in Figure 1 satisfies
∑∞

n=1 1(Rn,x
1 = q) =∞

with probability 1 for all q = 1, . . . ,Q and we use one of the three methods described above to
update the piecewise-linear value function approximations, then we have limn→∞ v̄n

1 (Rx
1) =

V1(Rx
1) − V1(Rx

1 − 1) for all Rx
1 = 1, . . . ,Q with probability 1. Throughout, we omit the

subscript a because the state vector is one-dimensional and use 1(·) to denote the indicator
function. When we apply these methods to large resource allocation problems with multi-
dimensional state vectors, they are only approximate methods that seem to perform quite
well in practice.

Experimental work indicates that piecewise-linear value function approximations can pro-
vide better objective values and more stable behavior than linear value function approx-
imations. Figure 3 shows the performances of linear and piecewise-linear value function
approximations on a resource allocation problem with deterministic data. The horizontal
axis is the iteration number in the algorithmic framework in Figure 1. The vertical axis
is the performance of the policy that is obtained at a particular iteration, expressed as a
percentage of the optimal objective value. We obtain the optimal objective value by formu-
lating the problem as a large integer program. Figure 3 shows that the policies characterized
by piecewise-linear value function approximations may perform almost as well as the opti-
mal solution, whereas the policies characterized by linear value function approximations lag
behind significantly. Furthermore, the performances of the policies characterized by linear
value function approximations at different iterations can fluctuate. Nevertheless, linear value
function approximations may be used as prototypes before moving on to more sophisticated
approximation strategies or we may have to live with them simply because the resource
allocation problem we are dealing with is too complex.

5. Stepsizes
Approximate dynamic programming depends heavily on using information from the latest
iteration to update a value function approximation. This results in updates of the form

v̄n
ta = [1−αn−1] v̄n−1

ta + αn−1 ϑn
ta, (25)

Powell and Topaloglu: Approximate Dynamic Programming
14 INFORMS—New Orleans 2005, c© 2005 INFORMS

where αn−1 is the stepsize used in iteration n. This intuitive updating formula is known
variously as exponential smoothing, a linear filter or a stochastic approximation procedure.
The equation actually comes from the optimization problem

min
θ
E{F (θ, R̂)},

where F (θ, R̂) is a function of θ and random variable R̂. Further, we assume that we cannot
compute the expectation either because the function is too complicated or because we do
not know the distribution of R̂. We can still solve the problem using an algorithm of the
form

θn = θn−1−αn−1∇F (θn−1, R̂n), (26)

where θn−1 is our estimate of the optimal solution after iteration n− 1 and R̂n is a sample
of the random variable R̂ at iteration n. If F (·, R̂n) is not differentiable, then we assume
that ∇F (θn−1, R̂n) is a subgradient of the function. The updating in equation (26) is known
as a stochastic gradient algorithm, since we are taking a gradient of F (·, R̂n) with respect
to θ at a sample realization of the random variable R̂.

Assume that our problem is to estimate the mean of the random variable R̂. We assume
that the distribution of the random variable R̂ is unknown, but we can obtain samples
R̂1, R̂2, Since we have E{R̂}= argminθ E{(θ− R̂)2}, a reasonable approach is to let

F (θ, R̂) =
1
2
(θ− R̂)2

and use (26). Letting θn be the estimate of E{R̂} obtained after iteration n, since we have
∇F (θ, R̂) = (θ− R̂), we obtain

θn = θn−1−αn−1∇F (θn−1, R̂n)
= θn−1−αn−1 (θn−1− R̂n) = (1−αn−1)θn−1 + αn−1 R̂n.

Among the last two equalities above, the first one has the same form as the stochastic
gradient algorithm and the second one has the same form as exponential smoothing.

There is an elegant theory that tells us that this method works, but there are some simple
restrictions on the stepsizes. In addition to the requirement that αn−1 ≥ 0 for n = 1,2, . . .,
the stepsizes must also satisfy

∞∑
n=1

αn−1 =∞
∞∑

n=1

(αn−1)2 <∞.

The first condition ensures that the stepsizes do not decline too quickly; otherwise the
algorithm may stall out prematurely. The second ensures that they do not decline too slowly,
which ensures that the algorithm actually converges in the limit. One stepsize rule that
satisfies this condition is αn−1 = 1/(n−1). This rule is special because it produces a simple
averaging of all the observations, which is to say that

θn =
1
n

n∑
m=1

R̂m.

If we are getting a series of observations of R̂ from a stationary distribution, this would be
fine; in fact, this is the best we can do. However, in dynamic programming, our updates
of the value function are changing over the iterations as we try to converge on an optimal
policy. As a result, the values ϑn

ta are coming from a distribution that is changing over the

Powell and Topaloglu: Approximate Dynamic Programming
INFORMS—New Orleans 2005, c© 2005 INFORMS 15

iterations. For this reason, it is well known that the so-called “1/n” stepsize rule produces
stepsizes that decline much too quickly.

A variety of strategies have evolved over the years to counter this effect. One fairly general
class of formulas is captured by

αn =





α0 if n = 0

α0
(b

n +a)
(b

n +a+nβ−1) if n > 0.

If b = 0, α0 = 1, β = 1 and a = 1, then we obtain the “1/n” stepsize rule. As a is increased
(values in the 5 to 20 range work quite well) or β is decreased (for theoretical reasons, it
should stay above 0.5), the rate at which the stepsize decreases slows quite a bit. Raising the
parameter b has the effect of keeping the stepsize very close to the initial value for a while
before allowing the stepsize to decrease. This is useful for certain classes of delayed learning,
where a number of iterations must occur before the system starts to obtain meaningful
results. We have found that a = 8, b = 0 and β = 0.7 works quite well for many dynamic
programming applications.

Another useful rule is McClain’s formula, given by

αn =

{
α0 if n = 0

αn−1
1+αn−1−ᾱ if n≥ 1.

If ᾱ = 0 and α0 = 1, then this formula gives αn = 1/n. For 0 < ᾱ < 1, the formula produces
a sequence of decreasing stepsizes that initially behaves like 1/n, but decreases to ᾱ instead
of 0. This is a way of ensuring that the stepsize does not get too small.

The challenge with stepsizes is that if we are not careful, then we may design an algorithm
that works poorly when, in fact, the only problem is the stepsize. It may be quite frustrating
tuning the parameters of a stepsize formula; we may be estimating many thousands of
parameters and the best stepsize formula may be different for each parameter.

For this reason, researchers have studied a number of stochastic stepsize formulas. These
are stepsize rules where the size of the stepsize depends on what is happening over the course
of the algorithm. Since the stepsize at iteration n depends on the data, the stepsize itself is
a random variable. One of the earliest and most famous of the stochastic stepsize rules is
known as Kesten’s rule given by

αn = α0
a

a+ Kn
, (27)

where α0 is the initial stepsize and a is a parameter to be calibrated. Letting

εn = θn−1− R̂n

be the error between our previous estimate of the random variable and the latest observation,
if θn−1 is far from the true value, then we expect to see a series of errors with the same sign.
The variable Kn counts the number of times that the sign of the error has changed by

Kn =

{
n if n = 0,1
Kn−1 +1(εnεn−1 < 0) otherwise.

(28)

Thus, every time the sign changes, indicating that we are close to the optimal solution, the
stepsize decreases.

Ideally, a stepsize formula should decline as the level of variability in the observations
increase and should increase when the underlying signal is changing quickly. A formula that
does this is

αn = 1− σ2

(1+ λn−1) σ2 +(βn)2
,

Powell and Topaloglu: Approximate Dynamic Programming
16 INFORMS—New Orleans 2005, c© 2005 INFORMS

Figure 4. The optimal stepsize algorithm.

Step 0. Choose an initial estimate θ̄0 and an initial stepsize α0. Assign initial values to the para-
meters by letting β̄0 = 0 and δ̄0 = 0. Choose an initial value for the error stepsize γ0 and
a target value for the error stepsize γ̄. Set the iteration counter n = 1.

Step 1. Obtain the new observation R̂n.
Step 2. Update the following parameters by letting

γn =
γn−1

1+ γn−1− γ̄
β̄n = (1− γn) β̄n−1 + γn(R̂n− θ̄n−1)
δ̄n = (1− γn) δ̄n−1 + γn(R̂n− θ̄n−1)2

(σ̄n)2 =
δ̄n− (β̄n)2

1+ λ̄n−1
.

Step 3. If n > 1, then evaluate the stepsizes for the current iteration by

αn = 1− (σ̄n)2

δ̄n
.

Step 4. Update the coefficient for the variance of the smoothed estimate by

λ̄n =
{

(αn)2 if n = 1
(1−αn)2λ̄n−1 +(αn)2 if n > 1.

Step 5. Smooth the estimate by

θ̄n = (1−αn−1) θ̄n−1 +αn−1 R̂n.

Step 6. If θ̄n satisfies some termination criterion, then stop. Otherwise, set n = n + 1 and go to
Step 1.

where

λn =

{
(αn)2 if n = 1
(αn)2 +(1−αn)2λn−1 if n > 1.

In the expression above, σ2 is the noise in the observations and βn is the difference between
the true value and the estimated value, which we refer to as the bias. It can be shown that
if σ2 = 0, then αn = 1, whereas if βn = 0, then αn = 1/n. The problem is that neither of
these quantities would normally be known; in particular, if we knew the bias, then it means
we know the true value function.

Figure 4 presents an adaptation of this formula for the case where the noise and bias are
not known. This formula has been found to provide consistently good results for a broad
range of problems, including those with delayed learning.

6. Other Approaches for Dynamic Resource Allocation Problems
To understand the relative simplicity of approximate dynamic programming and to provide
benchmarks to measure solution quality, it is useful to review other methods for solving
resource allocation problems.

Powell and Topaloglu: Approximate Dynamic Programming
INFORMS—New Orleans 2005, c© 2005 INFORMS 17

6.1. A Deterministic Model
A common strategy to deal with randomness is to assume that the future random quantities
take on their expected values and to formulate a deterministic optimization problem. For
the resource allocation setting, this problem takes the form

max
∑

a∈A

∑

d∈D
c0ad x0ad (29)

subject to
∑

d∈D
x0ad = R0a for all a∈A

−
∑

a′∈A

∑

d∈D
δa(a′d)x0a′d +

∑

d∈D
x0ad =E

{
R̂ta

}
for all a∈A

x0ad ∈Z+ for all a∈A, d∈D,

It is important to keep in mind that the time at which flows happen is imbedded in the
attribute vector. This makes for a very compact model, but one which is less transparent. In
practice, we use problem (29) on a rolling horizon basis; we solve this problem to make the
decisions at the first time period and implement these decisions. When it is time to make
the decisions at the second time period, we solve a similar problem that involves the known
resource state vector and the demands at the second time period.

Problem (29) uses only the expected values of the random quantities, disregarding the
distribution information. However, there are certain applications, such as airline fleet assign-
ment, where the uncertainty does not play a crucial role and problem (29) can efficiently be
solved as an integer multicommodity min-cost network flow problem.

6.2. Scenario-Based Stochastic Programming Methods
Stochastic programming emerges as a possible approach when one attempts to use the
distribution information. In the remainder of this section, we review stochastic programming
methods applicable to resource allocation problems. Thus far, we mostly focused on problems
where the decision variables take integer values. There has been much progress in the area
of integer stochastic programming within the last decade, but there does not exist integer
stochastic programming methods to our knowledge that can solve the resource allocation
problems in the full generality that we present here. For this reason, we relax the integrality
constraints throughout this section. To make the ideas transparent, we assume that the
planning horizon contains two time periods, although most of the methods apply to problems
with longer planning horizons.

Scenario-based stochastic programming methods assume that there exist a finite set of
possible realizations for the random vector (R̂1, D̂1), which we denote by {(R̂1(ω), D̂1(ω)) :
ω ∈Ω}. In this case, using p(ω) to denote the probability of realization (R̂1(ω), D̂1(ω)), the
exact value function at the second time period can be computed by solving

V0(Rx
0) = max

∑

ω∈Ω

∑

a∈A

∑

d∈D
p(ω) c1ad x1ad(ω) (30)

subject to
∑

d∈D
x1ad(ω) = Rx

0a + R̂1a(ω) for all a∈A, ω ∈Ω (31)
∑

a∈A
x1ad ≤ D̂1,bd

(ω) for all d∈DD, ω ∈Ω,

where we omit the nonnegativity constraints for brevity. This approach allows complete
generality in the correlation structure among the elements of the random vector (R̂1, D̂1),
but it assumes that this random vector is independent of R1. Since the decision variables
are {x1ad(ω) : a∈A, d∈D, ω ∈Ω}, problem (30) can be large for practical applications.

Powell and Topaloglu: Approximate Dynamic Programming
18 INFORMS—New Orleans 2005, c© 2005 INFORMS

6.3. Benders Decomposition-Based Methods
Since the resource state vector Rx

0 appears on the right side of constraints (31), V0(Rx
0) is

a piecewise-linear concave function of Rx
0 . Benders decomposition-based methods refer to a

class of methods that approximate the exact value function V0(·) by a series of cuts that
are constructed iteratively. In particular, letting {λi

1 : i = 1, . . . , n− 1} and {βi
1a : a∈A, i =

1, . . . , n− 1} be the sets of coefficients characterizing the cuts that have been constructed
up to iteration n, the function

V̄ n
0 (Rx

0) = min
i∈{1,...,n−1}

λi
1 +

∑

a∈A
βi

1a Rx
0a (32)

is the approximation to the exact value function V0(·) at iteration n. The details of how to
generate the cuts are beyond our presentation.

6.4. Auxiliary Functions
As a last possible stochastic programming method, we describe an algorithm called the
stochastic hybrid approximation procedure (SHAPE). This method is similar to the methods
described in Section 4; it iteratively updates an approximation to the value function by
using a formula similar to (18).

SHAPE uses value function approximations of the form

V̄ n,x
0 (Rx

0) = W̄0(Rx
0)+

∑

a∈A
v̄n
0a Rx

0a, (33)

where W̄0(·) is a function specified in advance. In general, W̄0(·) is chosen so that it is easy
to work with; for example, a polynomial. However, the procedure works best when W̄0(·)
approximately captures the general shape of the value function. The second term on the right
side of (33) is a linear value function approximation component that is adjusted iteratively.
Consequently, the first nonlinear component of the value function approximation does not
change over the iterations, but the second linear component is adjustable. We assume that
W̄0(·) is a differentiable concave function with the gradient ∇W̄0(Rx

0) = (∇aW̄0(Rx
0))a∈A.

Using the value function approximation in (33), we first solve the approximate subproblem
at the first time period to obtain

xn
0 = argmax

x0∈X (R0)

C0(x0)+ V̄ n−1,x
0 (RM,x(R0, x0)). (34)

Letting Rn,x
0 = SM,x(S0, x

n
0) and (R̂n

1 , D̂n
1) be a sample of (R̂1, D̂1), we then solve

argmax
x1∈X (Rn,x

0 ,R̂n
1 ,D̂n

1)

C1(x1).

In this case, using {πn
1a : a∈A} to denote the optimal values of the dual variables associated

with constraints (4) in the problem above, we let

v̄n
0a = [1−αn−1] v̄n−1

0a + αn−1 [πn
1a−∇aV̄ n−1

0 (R0, x0)],

where αn−1 ∈ [0,1] is the smoothing constant at iteration n. Therefore, the value function
approximation at iteration n is given by V̄ n,x

0 (Rx
0) = W̄0(Rx

0)+
∑

a∈A v̄n
0a Rx

0a. It is possible
to show that this algorithm produces the optimal solution for two-period problems.

This method is simple to implement. Since we only update the linear component of the
value function approximation, the structural properties of the value function approximation
do not change. For example, if we choose W̄0(·) as a separable quadratic function, then the
value function approximation is a separable quadratic function at every iteration. Neverthe-
less, SHAPE has not seen much attention from the perspective of practical implementations.

Powell and Topaloglu: Approximate Dynamic Programming
INFORMS—New Orleans 2005, c© 2005 INFORMS 19

Figure 5. Performances of SHAPE, and linear and piecewise-linear value function approximations.

70

80

90

100

0 25 50 75

iteration number

%
 o

f o
pt

im
al

 o
bj

ec
tiv

e
va

lu
e

linear
piecewise-linear
stoch. hyb. app. proc.

The first reason for this is that V̄ n,x
0 (·) is a differentiable function and the approximate

subproblem in (34) is a smooth optimization problem. Given the surge in quadratic pro-
gramming packages, we do not think this is a major issue any more. The second reason is
that the practical performance of the procedure can depend on the choice of W̄0(·) and there
is no clear guideline for this choice. We believe that the methods described in Section 4 can
be used for this purpose. We can use these methods to construct a piecewise-linear value
function approximation, fit a strongly separable quadratic function to the piecewise-linear
value function approximation and use this fitted function for W̄0(·).

Figure 5 shows the performances of SHAPE, linear value function approximations and
piecewise-linear value function approximations on a resource allocation problem with deter-
ministic data. The objective values obtained by SHAPE at the early iterations fluctuate
but they quickly stabilize, whereas the objective values obtained by linear value function
approximations continue to fluctuate. The concave “auxiliary” function that SHAPE uses
prevents the “bang-bang” behavior of linear value function approximations and provides
more stable performance.

7. Computational Results
This section presents computational experiments on a variety of resource allocation prob-
lems. We begin by considering two-period problems and move on to multiple-period problems
later. The primary reason that we consider two-period problems is that there exist a variety
of solution methods for them, some of which are described in Section 6, that we can use
as benchmarks. This gives us a chance to carefully test the performance of the algorithmic
framework in Figure 1.

7.1. Two-Period Problems
In this section, we present computational experiments on two-period problems arising from
the fleet management setting. We assume that there is a single vehicle type and it takes
one time period to move between any origin-destination pair. In this case, the attribute
vector in (1) is of the form a = [inbound/current location] and the attribute space A is
simply the set of locations in the transportation network. There are two decision types with
C = {D,M}, where DD and DM have the same interpretations as in Section 2.5. We use
piecewise-linear value function approximations and update them by using (19) and (20) with
αn = 20/(40+ n).

We generate a certain number of locations over a 100× 100 region. At the beginning of
the planning horizon, we spread the fleet uniformly over these locations. The loads between

Powell and Topaloglu: Approximate Dynamic Programming
20 INFORMS—New Orleans 2005, c© 2005 INFORMS

Figure 6. Performances of ADP and CUPPS for different numbers of training iterations.

95

97.5

100

25 50 100 200 350 950

number of training iterations

%
 o

f o
pt

im
al

 o
bj

ec
tiv

e
va

lu
e ADP

CUPPS

different origin-destination pairs and at different time periods are sampled from the Poisson
distributions with the appropriate means. We pay attention to work on problems where the
number of loads that are inbound to a particular location is negatively correlated with the
number of loads that are outbound from that location. We expect that these problems require
plenty of empty repositioning movements in their optimal solutions and naive methods
should not provide good solutions for them.

Evaluating the performances of the methods presented in this chapter requires two sets
of iterations. In the first set of iterations, which we refer to as the training iterations, we
follow the algorithmic framework in Figure 1; we sample a realization of the random vector
(R̂t, D̂t) and solve problem (14) for each time period t, and update the value function
approximations. In the second set of iterations, which we refer to as the testing iterations,
we fix the value function approximations and simply simulate the behavior of the policy
characterized by the value function approximations that are obtained during the training
iterations. Consequently, the goal of the testing iterations is to test the quality of the value
function approximations. For Benders decomposition-based methods, the training iterations
construct the cuts that approximate the value functions, whereas the testing iterations
simulate the behavior of the policy characterized by the cuts that are constructed during the
training iterations. We vary the number of training iterations to see how fast we can obtain
good policies through different methods. The particular version of Benders decomposition-
based method that we use in our computational experiments is called cutting plane and
partial sampling method. We henceforth refer to the approximate dynamic programming
framework in Figure 1 as ADP and cutting plane and partial sampling method as CUPPS.

For a test problem that involves 30 locations, Figure 6 shows the average objective values
obtained in the testing iterations as a function of the number of training iterations. The
white and gray bars in this figure respectively correspond to ADP and CUPPS. When
the number of training iterations is relatively small, it appears that ADP provides better
objective values than CUPPS. Since CUPPS eventually solves the problem exactly and ADP
is only an approximation strategy, if the number of training iterations is large, then CUPPS
provides better objective values than ADP. Even after CUPPS obtains the optimal solution,
the performance gap between ADP and CUPPS is a fraction of a percent. Furthermore,
letting {V̄ n,x

t (·) : t ∈ T } be the set of value function approximations obtained by ADP at
iteration n, Figure 7 shows the performance of the policy characterized by the value function
approximations {V̄ n,x

t (·) : t ∈ T } as a function of the iteration number n. Performances of
the policies stabilize after about 1500 training iterations.

For test problems that involve different numbers of locations, Figure 8 shows the average
objective values obtained in the testing iterations. In this figure, the number of training

Powell and Topaloglu: Approximate Dynamic Programming
INFORMS—New Orleans 2005, c© 2005 INFORMS 21

Figure 7. Performances of the policies obtained by ADP as a function of the number of training
iterations.

8.8

8.9

9

9.1

0 1000 2000 3000 4000

iteration number

av
er

ag
e

ob
je

ct
iv

e
va

lu
e

Figure 8. Performances of ADP and CUPPS for problems with different numbers of locations.

6

7

8

9

10

20 locs. 30 locs. 40 locs. 90 locs.

number of locations

av
er

ag
e

ob
je

ct
iv

e
va

lu
e

ADP
CUPPS

iterations is fixed at 200. For problems with small numbers of locations, the objective values
obtained by ADP and CUPPS are very similar. As the number of locations grows, the
objective values obtained by ADP are noticeably better than those obtained by CUPPS.
The number of locations gives the number of dimensions of the value function. Therefore,
for problems that involve high-dimensional value functions, it appears that ADP obtains
good policies faster than CUPPS.

7.2. Multi-Period Problems
This section presents computational experiments on multi-period problems arising from the
fleet management setting. To introduce some variety, we now assume that there are multiple
vehicle and load types. In this case, the attribute space of the resources consists of vectors
of the form (1). We assume that we obtain a profit of rD(o, d)C(l, v) when we use a vehicle
of type v to carry a load of type l from location o to d, where r is the profit per mile,
D(o, d) is the distance between origin-destination pair (o, d) and C(l, v) ∈ [0,1] captures
the compatibility between load type l and vehicle type v. As C(l, v) approaches 0, load
type l and vehicle type v become less compatible. We use piecewise-linear value function
approximations and update them by using (19) and (20) with αn = 20/(40 +n).

We begin by exploring the performance of ADP on problems where {(R̂t, D̂t) : t ∈ T }
are deterministic. These problems can be formulated as integer multicommodity min-cost
network flow problems as in problem (29); we solve their linear programming relaxations

Powell and Topaloglu: Approximate Dynamic Programming
22 INFORMS—New Orleans 2005, c© 2005 INFORMS

Table 1. Performance of ADP on different test problems.

Problem (20,60,200) (20,30,200) (20,90,200) (10,60,200) (40,60,200) (20,60,100) (20,60,400)
% of opt. obj.val. 99.5 99.7 99.3 99.8 99.0 97.2 99.5

Note. The triplets denote the characteristics of the test problems, where the three elements are the number of
locations, the number of time periods and the fleet size.

Figure 9. Performances of ADP and the rolling horizon strategy on different test problems.

6

7

8

9

10

prob. 1 prob. 2 prob. 3 prob. 4

test problem

av
er

ag
e

ob
je

ct
iv

e
va

lu
e

ADP
rolling horizon

to obtain upper bounds on the optimal objective values. Table 1 shows the ratios of the
objective values obtained by ADP and by the linear programming relaxations. ADP obtains
objective values that are within 3% of the upper bounds on the optimal objective values.

We use the so-called rolling horizon strategy as a benchmark for problems where {(R̂t, D̂t) :
t∈ T } are random. The N -period rolling horizon strategy solves an integer multicommodity
min-cost network flow problem to make the decisions at time period t. This problem is
similar to problem (29), but it “spans” only the time periods {t, t+1, . . . , t+N}, as opposed
to “spanning” the time periods {0, . . . , T}. The first time period t in this problem involves
the known realization of (R̂t, D̂t) and the future time periods {t + 1, . . . , t + N} involve the
expected values of {(R̂t+1, D̂t+1), . . . , (R̂t+N , D̂t+N)}. After solving this problem, we only
implement the decisions for time period t and solve a similar problem when making the
decisions for time period t +1. Figure 9 shows the average objective values obtained in the
testing iterations, where the white and the gray bars respectively correspond to ADP and
the rolling horizon strategy. The results indicate that ADP performs noticeably better than
the rolling horizon strategy.

8. Extensions and Final Remarks
In this chapter, we described a modeling framework for large-scale resource allocation prob-
lems, along with a fairly flexible algorithmic framework that can be used to obtain good
solutions for them. There are still important questions, some of which have already been
addressed by the current research and some of which have not, that remain unanswered in
this chapter.

Our modeling framework does not put a restriction on the number of dimensions that we
can include in the attribute space. On the other hand, our algorithmic framework uses value
function approximations of the form V̄ x

t (Rx
t) =

∑
a∈A V̄ x

ta(Rx
ta), which implicitly assumes one

can enumerate all elements of A. This issue is not as serious as the curse of dimensionality
mentioned in Section 3, which is related to the number of possible values that the state
vector St can take, but it can still be a problem. For example, considering the attribute
vector in (2) and assuming that there are 100 locations in the transportation network, 10
possible values for the travel time, 8 possible values for the time on duty, 5 possible values

Powell and Topaloglu: Approximate Dynamic Programming
INFORMS—New Orleans 2005, c© 2005 INFORMS 23

for the number of days away from home and 10 possible vehicle types, we obtain an attribute
space that includes 40,000,000 (=100×10×8×5×10×100) attribute vectors. In this case,
since problem (13) includes at least |A| constraints, solving this problem would be difficult.
We may use the following strategy to deal with this complication. Although A may include
many elements, the number of available resources is usually small. For example, we have
several thousand vehicles in the fleet management setting. In this case, we can solve problem
(13) by including only a subset of constraints (4) whose right side satisfies Rta + R̂ta > 0.
This trick reduces the size of these problems. However, after such a reduction, we are not
able to compute ϑn

ta for all a∈A. This difficulty can be remedied by resorting to aggregation
strategies; we can approximate ϑn

ta in (17) by using ϑn
ta′ for some other attribute vector a′

such that a′ is “similar” to a and Rta′ + R̂ta′ > 0.
Throughout this chapter, we assumed that there is a single type of resource and all

attribute vectors take values in the same attribute space. As mentioned in Section 2,
we can include multiple types of resources in our modeling framework by using multiple
attribute spaces, say A1, . . . ,AN , and the attribute vectors for different types of resources
take values in different attribute spaces. Unfortunately, it is not clear how we can construct
good value function approximations when there are multiple types of resources. Research
shows that straightforward separable value function approximations of the form V̄ x

t (Rx
t) =∑N

n=1

∑
a∈An V̄ x

ta(Rx
ta) do not perform well.

Another complication that frequently arises is the advance information about the realiza-
tions of future random variables. For example, it is common that shippers call in advance for
future loads in the fleet management setting. The conventional approach in Markov decision
processes to address advance information is to include this information in the state vector.
This approach increases the number of dimensions of the state vector and it is not clear how
to approximate the value function when the state vector includes such an extra dimension.

We may face other complications depending on the problem setting. To name a few for
the fleet management setting, the travel times are often highly variable and using expected
values of the travel times does not yield satisfactory results. The load pick up windows are
almost always flexible; we have to decide not only which loads to cover but also when to
cover these loads. The decision-making structure is often decentralized, in the sense that the
decisions for the vehicles located at different locations are made by different dispatchers.

9. Bibliographic Remarks
The approximate dynamic programming framework described in this chapter has its roots
in stochastic programming, stochastic approximation and dynamic programming. [18], [11],
[16], [3] and [27] provide thorough introductions to stochastic programming and stochastic
approximation. [25] covers the classical dynamic programming theory, whereas [2] and [31]
cover the approximate dynamic programming methods that are more akin to the approach
followed in this chapter.

The modeling framework in Section 2 is a simplified version of the one described in [23].
[28] develops a software architecture that maps this modeling framework to software objects.
[24] uses this modeling framework for a driver scheduling problem.

The approximate dynamic programming framework in Section 3 captures the essence of
a long line of research documented in [20], [21], [13], [14], [19] and [35]. The idea of using
simulated trajectories of the system and updating the value function approximations through
stochastic approximation-based methods bears close resemblance to temporal differences and
Q-learning, which are treated in detail in [30], [41] and [38]. Numerous methods have been
proposed to choose a good set of values for the adjustable parameters in the generic value
function approximation structure in (15). [2] and [36] propose simulation-based methods,
[10] and [1] utilize the linear programming formulation of the dynamic program and [37]
uses regression.

Powell and Topaloglu: Approximate Dynamic Programming
24 INFORMS—New Orleans 2005, c© 2005 INFORMS

[40] and [4] use piecewise-linear functions to construct bounds on the value functions aris-
ing from multi-stage stochastic programs, whereas [7] and [6] use piecewise-linear functions
to construct approximations to the value functions. The approaches used in these papers are
static; they consider all possible realizations of the random variables simultaneously rather
than using simulated trajectories of the system to iteratively improve the value function
approximations.

In Section 4, the idea of using linear value function approximations is based on [21]. [12]
proposes a method, called concave adaptive value estimation, to update piecewise-linear
value function approximations. This method also uses a “local” update of the form (19). The
methods described in Section 4 to update piecewise-linear value function approximations
are based on [33], [22] and [17].

Scenario-based stochastic programming methods described in Section 6 date back to
[9]. [42] and [43] treat these methods in detail. There are several variants of Benders
decomposition-based methods; L-Shaped decomposition method, stochastic decomposition
method and cutting plane and partial sampling method are three of these. L-shaped decom-
position method is due to [39], stochastic decomposition method is due to [15] and cutting
plane and partial sampling method is due to [5]. [26] gives a comprehensive treatment of
these methods. Stochastic hybrid approximation procedure is due to [8].

Some of the computational results presented in Section 7 are taken from [35].
There is some research that partially answers the questions posed in Section 8. [24] uses

the aggregation idea to solve a large-scale driver scheduling problem. [29] systematically
investigates different aggregation strategies. [34] and [32] propose value function approxima-
tion strategies that allow decentralized decision-making structures. [32] presents a method
to address random travel times.

References
[1] D. Adelman. A price-directed approach to stochastic inventory routing. Operations Research,

52(4):499–514, 2004.

[2] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, Belmont,
MA, 1996.

[3] J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer-Verlag, New
York, 1997.

[4] J. R. Birge and S. W. Wallace. A separable piecewise linear upper bound for stochastic linear
programs. SIAM J. Control and Optimization, 26(3):1–14, 1988.

[5] Z. -L. Chen and W. B. Powell. A convergent cutting-plane and partial-sampling algorithm for
multistage linear programs with recourse. Journal of Optimization Theory and Applications,
103(3):497–524, 1999.

[6] R. K. Cheung and W. B. Powell. An algorithm for multistage dynamic networks with ran-
dom arc capacities, with an application to dynamic fleet management. Operations Research,
44(6):951–963, 1996.

[7] R. K. -M. Cheung and W. B. Powell. Models and algorithms for distribution problems with
uncertain demands. Transportation Science, 30(1):43–59, 1996.

[8] R. K. -M. Cheung and W. B. Powell. SHAPE-A stochastic hybrid approximation procedure
for two-stage stochastic programs. Operations Research, 48(1):73–79, 2000.

[9] G. Dantzig and A. Ferguson. The allocation of aircrafts to routes: An example of linear pro-
gramming under uncertain demand. Management Science, 3:45–73, 1956.

[10] D. P. de Farias and B. Van Roy. The linear programming approach to approximate dynamic
programming. Operations Research, 51(6):850–865, 2003.

[11] Y. Ermoliev and R. J. -B. Wets, editors. Numerical Techniques for Stochastic Optimization.
Springer-Verlag, New York, 1988.

[12] G. A. Godfrey and W. B. Powell. An adaptive, distribution-free approximation for the newsven-
dor problem with censored demands, with applications to inventory and distribution problems.
Management Science, 47(8):1101–1112, 2001.

Powell and Topaloglu: Approximate Dynamic Programming
INFORMS—New Orleans 2005, c© 2005 INFORMS 25

[13] G. A. Godfrey and W. B. Powell. An adaptive, dynamic programming algorithm for stochastic
resource allocation problems I: Single period travel times. Transportation Science, 36(1):21–39,
2002.

[14] G. A. Godfrey and W. B. Powell. An adaptive, dynamic programming algorithm for stochastic
resource allocation problems II: Multi-period travel times. Transportation Science, 36(1):40–54,
2002.

[15] J. L. Higle and S. Sen. Stochastic decomposition: An algorithm for two stage linear programs
with recourse. Mathematics of Operations Research, 16(3):650–669, 1991.

[16] P. Kall and S. W. Wallace. Stochastic Programming. John Wiley and Sons, New York, 1994.

[17] S. Kunnumkal and H. Topaloglu. Stochastic approximation algorithms and max-norm “pro-
jections”. Technical report, Cornell University, School of Operations Research and Industrial
Engineering, 2005.

[18] H. J. Kushner and D. S. Clark. Stochastic Approximation Methods for Constrained and Uncon-
strained Systems. Springer-Verlang, Berlin, 1978.

[19] K. Papadaki and W. B. Powell. An adaptive dynamic programming algorithm for a stochastic
multiproduct batch dispatch problem. Naval Research Logistics, 50(7):742–769, 2003.

[20] W. B. Powell and T. A. Carvalho. Dynamic control of multicommodity fleet management
problems. European Journal of Operations Research, 98:522–541, 1997.

[21] W. B. Powell and T. A. Carvalho. Dynamic control of logistics queueing network for large-scale
fleet management. Transportation Science, 32(2):90–109, 1998.

[22] W. B. Powell, A. Ruszczynski, and H. Topaloglu. Learning algorithms for separable approxima-
tions of stochastic optimization problems. Mathematics of Operations Research, 29(4):814–836,
2004.

[23] W. B. Powell, J. A. Shapiro, and H. P. Simão. A representational paradigm for dynamic
resource transformation problems. In C. Coullard, R. Fourer, and J. H. Owens, editors, Annals
of Operations Research, pages 231–279. J.C. Baltzer AG, 2001.

[24] W. B. Powell, J. A. Shapiro, and H. P. Simão. An adaptive dynamic programming algorithm for
the heterogeneous resource allocation problem. Transportation Science, 36(2):231–249, 2002.

[25] M. L. Puterman. Markov Decision Processes. John Wiley and Sons, Inc., New York, 1994.

[26] A. Ruszczynski. Decomposition methods. In A. Ruszczynski and A. Shapiro, editors, Hand-
book in Operations Research and Management Science, Volume on Stochastic Programming,
Amsterdam, 2003. North Holland.

[27] A. Ruszczynski and A. Shapiro, editors. Handbook in Operations Research and Management
Science, Volume on Stochastic Programming. North Holland, Amsterdam, 2003.

[28] J. A. Shapiro. A Framework for Representing and Solving Dynamic Resource Transforma-
tion Problems. PhD thesis, Department of Operations Research and Financial Engineering,
Princeton University, Princeton, NJ, June 1999.

[29] M. Z. Spivey and W. B. Powell. The dynamic assignment problem. Transportation Science,
38(4):399–419, 2004.

[30] R. S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning,
3:9–44, 1988.

[31] R. S. Sutton and A. G. Barto. Reinforcement Learning. The MIT Press, Cambridge, MA, 1998.

[32] H. Topaloglu. A parallelizable dynamic fleet management model with random travel times.
European Journal of Operational Research, to appear.

[33] H. Topaloglu and W. B. Powell. An algorithm for approximating piecewise linear functions
from sample gradients. Operations Research Letters, 31:66–76, 2003.

[34] H. Topaloglu and W. B. Powell. A distributed decision making structure for dynamic resource
allocation using nonlinear functional approximations. Operations Research, 53(2):281–297,
2005.

[35] H. Topaloglu and W. B. Powell. Dynamic programming approximations for stochastic, time-
staged integer multicommodity flow problems. INFORMS Journal on Computing, 18(1):31–42,
2006.

[36] J. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function approx-
imation. IEEE Transactions on Automatic Control, 42:674–690, 1997.

[37] J. Tsitsiklis and B. Van Roy. Regression methods for pricing complex American-style options.
IEEE Transactions on Neural Networks, 12(4):694–703, 2001.

Powell and Topaloglu: Approximate Dynamic Programming
26 INFORMS—New Orleans 2005, c© 2005 INFORMS

[38] J. N. Tsitsiklis. Asynchronous stochastic approximation and Q-learning. Machine Learning,
16:185–202, 1994.

[39] R. Van Slyke and R. Wets. L-shaped linear programs with applications to optimal control and
stochastic programming. SIAM Journal of Applied Mathematics, 17(4):638–663, 1969.

[40] S. W. Wallace. A piecewise linear upper bound on the network recourse function. Mathematical
Programming, 38:133–146, 1987.

[41] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8:279–292, 1992.

[42] R. Wets. Programming under uncertainty: The equivalent convex program. SIAM Journal of
Applied Mathematics, 14:89–105, 1966.

[43] Roger J. -B. Wets. Stochastic programs with fixed recourse: The equivalent deterministic prob-
lem. SIAM Review, 16:309–339, 1974.

