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Abstract

We present a stochastic approximation method to compute bid prices in network revenue management
problems. The key idea is to visualize the total expected revenue as a function of the bid prices and
to use sample path-based derivatives to search for a good set of bid prices. We deal with the
discrete nature of the network revenue management setting by formulating a smoothed version of the
problem, which assumes that it is possible to accept a fraction of an itinerary request. We show that
the iterates of our method converge to a stationary point of the total expected revenue function of
the smoothed version. Computational experiments demonstrate that the bid prices obtained by our
method outperform the ones obtained by standard benchmark methods and our method is especially
advantageous when the bid prices are not recomputed frequently.



The notion of bid prices forms a powerful tool to construct good policies for network revenue management
problems. The idea is to associate a bid price with each flight leg that captures the opportunity cost
of a unit of capacity. An itinerary request is accepted if and only if there is enough capacity and the
revenue from the itinerary request exceeds the sum of the bid prices associated with the flight legs in
the requested itinerary; see Williamson (1992) and Talluri and van Ryzin (2004).

Bid prices are traditionally computed by solving a deterministic linear program. However, this linear
program only uses the expected numbers of the itinerary requests that are to arrive until the departure
time and does not attempt to capture the probability distributions or temporal dynamics of the arrivals
of the itinerary requests. In this paper, we propose a new stochastic approximation method to compute
bid prices. The key idea is to visualize the total expected revenue as a function of the bid prices and
to search for a good set of bid prices by using sample path-based derivatives. Since the sample path-
based derivatives of the total revenue function depend on what itinerary requests arrive in what order,
our stochastic approximation method explicitly captures the temporal dynamics of the arrivals of the
itinerary requests.

Focusing on a class of policies characterized by a number of parameters and utilizing stochastic
approximation methods to search for a good set of values for the parameters is a common approach in
stochastic optimization. Nevertheless, this approach, combined with the discrete nature of the decisions
in the network revenue management setting, brings unique challenges. First, if we change the bid price
of a flight leg by an infinitesimal amount, then the number of itinerary requests that we accept can only
change by an integer amount, which implies that the sample path-based derivative of the total revenue
function either does not exist or is equal to zero. We deal with this difficulty by formulating a smoothed
version of the problem. The smoothed version assumes that the leg capacities are continuous and we
can accept a fraction of an itinerary request depending on how much the revenue from the itinerary
request exceeds the sum of the bid prices associated with the flight legs in the requested itinerary. It is,
of course, not realistic to assume that we can accept a fraction of an itinerary request and we drop this
assumption when implementing the seat allocation policy in practice. Second, even in the smoothed
version of the problem, the sample path-based derivative of the total revenue function may not exist
when there are multiple flight legs whose capacities are simultaneously binding. We deal with this
difficulty by perturbing the leg capacities by small random amounts. These two modifications ensure
that the sample path-based derivative of the total revenue function exists with probability one (w.p.1)
and we can develop a convergent stochastic approximation method to search for a good set of bid prices.

Our work draws on two papers in particular. Mahajan and van Ryzin (2001) propose a stochastic
approximation method to choose stocking levels for substitutable products. Since the total profit is
not a concave function of the stocking levels, they formulate a smoothed version of their problem by
assuming that the stocking levels can take fractional values and this allows them to develop a convergent
stochastic approximation method. Our smoothed version is inspired by their work. On the other hand,
van Ryzin and Vulcano (2006) propose a stochastic approximation method to choose protection levels in
network revenue management problems. They show that the sample path-based derivative of the total
revenue function does not exist when the protection level of a virtual class coincides with the capacity
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on the flight leg. They resolve this difficulty by perturbing the leg capacities by small random amounts
whenever they make a decision. Our perturbations of the leg capacities are inspired by their work.

The paper by Bertsimas and de Boer (2005) was the first to use stochastic approximation ideas to
find good protection levels in network revenue management problems. Since the protection levels are
restricted to be integers and the total expected revenue is a nonsmooth and nonconcave function of the
protection levels, the authors in this paper use finite differences instead of sample path-based derivatives
to guide their search. This approach yields good protection levels, but it does not have a convergence
guarantee. Furthermore, it turns out that computing the finite differences can be computationally
intensive. As mentioned above, van Ryzin and Vulcano (2006) resolve these difficulties by perturbing
the leg capacities and by assuming that it is possible to accept a fraction of an itinerary request. Their
approach has a convergence guarantee and is quite efficient since it results in a smooth total expected
revenue function whose sample path-based derivatives are relatively easy to compute.

Our work differs from the two papers above in two important aspects. First, we focus on bid price
policies, whereas the earlier papers focus on protection level policies. Protection levels are considered
as primal controls where one makes the seat allocation decisions by putting limits on how many seats
can be sold to different virtual classes. On the other hand, bid prices are considered as dual controls
where one makes the seat allocation decisions by assigning opportunity costs to the seats that act as
price barriers. There does not seem to be a consensus in the literature as to whether one class of policies
perform better than the other. At any rate, the relative performance of the two classes of policies is
generally not too crucial from a practical standpoint since the information technology infrastructures
that can support the protection level and bid price policies are quite different. The choice between
the two classes of policies is usually dictated by the legacy information technology infrastructure of a
particular airline. Once one focuses attention to one of the two classes of policies, the goal is to find the
best policy within a particular class. Consequently, it is important to develop methods that can find
good bid prices as well as methods that can find good protection levels. Section 3.1.2 in Talluri and van
Ryzin (2004) provide a detailed discussion of both protection level and bid price policies.

Second, it turns out that we have to deal with two sources of nondifferentiability in the total revenue
function when we visualize it as a function of the bid prices. As mentioned above, the sample path-
based derivative of the total revenue function may not exist when there are multiple flight legs whose
capacities are simultaneously binding. We overcome this difficulty by perturbing the leg capacities. This
is the same source of nondifferentiability that arises when we visualize the total revenue as a function
of the protection levels, and van Ryzin and Vulcano (2006) show that perturbing the leg capacities is
enough to recover the differentiability of the total revenue function with respect to the protection levels.
On the other hand, the total revenue function may still be nondifferentiable with respect to the bid
prices even after perturbing the leg capacities. Specifically, if we change the bid price of a flight leg
by an infinitesimal amount, then the number of itinerary requests that we accept can only change by
an integer amount and the sample path-based derivative of the total revenue function with respect to
the bid prices still either does not exist or is equal to zero. We overcome this difficulty by assuming
that we can accept a fraction of an itinerary request and this fraction is given by a smooth acceptance
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function provided by the user. As a result, one has to smooth the network revenue management problem
twice to compute bid prices by using stochastic approximation methods. This is in contrast with the
work of van Ryzin and Vulcano (2006), where the authors show that only perturbing the leg capacities
is enough to recover the differentiability of the total revenue function with respect to the protection
levels and they do not need a smooth acceptance function. There are also a few algorithmic differences
between our work and the paper by van Ryzin and Vulcano (2006). The most interesting one of these
is that van Ryzin and Vulcano (2006) use projections to ensure the nestedness of the protection levels,
but this is not required when we work with bid price policies. Furthermore, van Ryzin and Vulcano
(2006) establish that the iterates of their algorithm converge in probability, whereas we establish that
the iterates of our algorithm converge w.p.1.

There are many other papers that use stochastic approximation methods to find good policies for
complex stochastic optimization problems. For example, L’Ecuyer and Glynn (1994) focus on queueing,
Fu (1994), Glasserman and Tayur (1995), Bashyam and Fu (1998) and Kunnumkal and Topaloglu (2007)
focus on inventory control and van Ryzin and McGill (2000), Karaesmen and van Ryzin (2004) and
van Ryzin and Vulcano (2004) focus on revenue management settings. Kushner and Clark (1978) and
Bertsekas and Tsitsiklis (1996) cover the theory of stochastic approximation methods.

The literature on computing bid prices in network revenue management problems is also related to
our work. Simpson (1989) and Williamson (1992) were the first to use the aforementioned deterministic
linear program to compute bid prices. Talluri and van Ryzin (1998) give a careful study of the policies
characterized by bid prices and show that these policies are asymptotically optimal as the leg capacities
and the expected numbers of the itinerary requests increase linearly with the same rate. Talluri and
van Ryzin (1999) propose a randomized version of the deterministic linear program that uses actual
samples of the numbers of the itinerary requests as opposed to expected values. Bertsimas and Popescu
(2003) use a method that captures the total opportunity cost of the leg capacities consumed by an
itinerary request more accurately. Adelman (2007) works with the linear programming representation
of the dynamic programming formulation of the network revenue management problem to compute bid
prices. Topaloglu (2006) uses a relaxation strategy to decompose the network revenue management
problem by the flight legs and computes bid prices by concentrating on one flight leg at a time.

We make the following research contributions in this paper. 1) We propose a new method to
compute bid prices that uses sample path-based derivatives of the total revenue function. Our method
does not require computing expectations explicitly and allows having arbitrary nonstationarities and
correlations in the arrivals of the itinerary requests. 2) We show that the iterates of our method converge
to a stationary point of the total expected revenue function. 3) Computational experiments demonstrate
that the bid prices obtained by our method may outperform the ones obtained by standard benchmark
methods. The performance gap becomes particularly noticeable when there are multiple fare classes
with large differences in the fares. In addition, our method is especially advantageous when the bid
prices are not recomputed frequently.

The paper is organized as follows. Section 1 formulates a basic optimization problem that maximizes
the total expected revenue by choosing the bid prices. Section 2 describes a smoothed version of this
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problem that can be solved by using sample path-based derivatives and shows how to compute sample
path-based derivatives in a tractable manner. Section 3 gives an algorithm to solve the smoothed version
and shows that the iterates of this algorithm converge to a stationary point of the total expected revenue
function. Section 4 presents computational experiments.

1 Problem Formulation

We have a set of flight legs that can be used to satisfy the itinerary requests that arrive randomly
over time. Whenever an itinerary request arrives, we have to decide whether to accept or reject it. An
accepted itinerary request generates a revenue and consumes the capacities on the relevant flight legs. A
rejected itinerary request simply leaves the system. We are interested in maximizing the total expected
revenue from the accepted itinerary requests.

We use L to denote the set of flight legs in the airline network and J to denote the set of possible
itineraries. If we accept a request for itinerary j, then we generate a revenue of r̃j and consume ãij

units of capacity on flight leg i. If flight leg i is not in itinerary j, then we naturally have ãij = 0.
The itinerary requests arrive sequentially and we index them by t = 1, 2, . . .. We use xit to denote the
remaining capacity on flight leg i just before making the decision for itinerary request t. Therefore, the
initial capacity on flight leg i is xi1 and x1 = {xi1 : i ∈ L} is a part of the problem data.

We assume that the total number of itinerary requests is bounded by a finite integer τ . In this case,
we can characterize the arrivals of the itinerary requests by the stochastic process ω̃ = {Jt : t = 1, . . . , τ}
with the interpretation that itinerary request t is for itinerary Jt and the value of the random variable
Jt becomes known just before making the decision for itinerary request t. If we let rt = r̃Jt and
ait = ãiJt for notational brevity, then the random variables rt and at = {ait : i ∈ L} capture all of
the information related to itinerary request t and we can alternatively characterize the arrivals of the
itinerary requests by the stochastic process ω = {(rt, at) : t = 1, . . . , τ}. Throughout the paper, we work
with the stochastic process ω rather than ω̃, although these two stochastic processes are equivalent for
our purposes. As far as ω is concerned, we only assume that |rt| ≤ Br and ait ∈ {0, . . . , Ba} w.p.1 for
a finite scalar Br and a finite integer Ba. Other than these assumptions, ω can be a general stochastic
process involving arbitrary nonstationarities and correlations among the itinerary requests. Since ait

can take values larger than one, our problem formulation allows having group requests. We also note
that since we do not necessarily have exactly τ itinerary requests in all sample paths of ω, we allow
having (rt, at) = (0, 0) for all t = τ0 + 1, . . . , τ for some random variable τ0 taking values in {1, . . . , τ}.
In this case, accepting the last τ − τ0 itinerary requests would neither generate revenue nor consume
the leg capacities.

The policy characterized by bid prices λ = {λi : i ∈ L} accepts an itinerary request if and only if
there is enough capacity and the revenue from the itinerary request exceeds the sum of the bid prices
associated with the flight legs in the requested itinerary. Therefore, as a function of the remaining leg
capacities and itinerary requests, the decision function of this policy can be written as

ũt(xt, ω, λ) = 1(xt ≥ at, rt ≥
∑

i∈L ait λi), (1)
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where 1(·) is the indicator function and xt = {xit : i ∈ L} are the remaining leg capacities just before
making the decision for itinerary request t. If the policy accepts itinerary request t, then we have
ũt(xt, ω, λ) = 1. Otherwise, we have ũt(xt, ω, λ) = 0.

As a function of the remaining leg capacities and itinerary requests, the cumulative revenue function
of the policy characterized by bid prices λ can be written recursively as

R̃t(xt, ω, λ) = rt ũt(xt, ω, λ) + R̃t+1(xt − ũt(xt, ω, λ) at, ω, λ), (2)

with R̃τ+1(·, ·, λ) = 0. We note that the definition of the cumulative revenue function above is similar
to the one in van Ryzin and Vulcano (2006), but the structure of our decision function is different. If we
use the policy characterized by bid prices λ, then the total revenue that we generate from all itinerary
requests is given by the random variable R̃1(x1, ω, λ). Therefore, we can find a good set of bid prices
by solving the problem

max
λ

E
{
R̃1(x1, ω, λ)

}
. (3)

One approach to solve this problem is to use the sample path-based derivatives of R̃1(x1, ω, λ). However,
the difficulty with using the sample path-based derivatives is that if λi is perturbed by an infinitesimal
amount, then the result of the decision function in (1) either does not change or changes by one. This
implies that the derivative of R̃1(x1, ω, λ) with respect to λi is either equal to zero or does not exist,
in which case it is impossible to obtain useful sample path-based derivatives. In the next section, we
resolve this difficulty by formulating a smoothed version of problem (3).

2 Smoothed Problem and Sample Path-Based Derivatives

In this section, we first formulate a smoothed version of problem (3) that can be solved by using sample
path-based derivatives. The idea behind the smoothed version is to assume that the leg capacities are
continuous and we can accept a fraction of an itinerary request. After this, we show how to compute
the sample path-based derivatives of the cumulative revenue function for the smoothed version.

2.1 Smoothing the Revenue Function

We consider a policy that accepts a fraction of an itinerary request depending on how much the revenue
from the itinerary request exceeds the sum of the bid prices associated with the flight legs in the
requested itinerary. For this purpose, we let θ(·) be an increasing and differentiable function that
satisfies limp→∞ θ(p) = 1 and limp→−∞ θ(p) = 0. The policy characterized by bid prices λ accepts
θ(rt −

∑
i∈L ait λi) units of itinerary request t as long as there is enough capacity. Therefore, the

decision function of this policy can be written as

ût(xt, ω, λ) = min

{
min
i∈L+

t

{xit/ait} , θ(rt −
∑

i∈L ait λi)

}
, (4)

where we let L+
t = {i ∈ L : ait > 0}. It is easy to see that we have ût(xt, ω, λ) ait ≤ xit for all i ∈ L and

the decision function above does not violate the leg capacities. We assume that θ(·) and its derivative
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θ̇(·) are Lipschitz. That is, there exist finite scalars Lθ and Lθ̇ such that we have |θ(p)−θ(q)| ≤ Lθ |p−q|
and |θ̇(p)− θ̇(q)| ≤ Lθ̇ |p− q| for all p, q ∈ R. We discuss possible choices for θ(·) in Section 4.

Unfortunately, the decision function in (4) is still not differentiable with respect to λ whenever we
have mini∈L+

t
{xit/ait} = θ(rt −

∑
i∈L ait λi). To overcome this difficulty, we use an approach proposed

by van Ryzin and Vulcano (2006). In particular, we let α = {αit : i ∈ L, t = 1, . . . , τ} be uniformly
distributed random variables over a small interval [0, ε] and perturb the leg capacities by αt = {αit : i ∈
L} just before making the decision for itinerary request t. Therefore, we use the decision function

ut(xt, ω, α, λ) = min

{
min
i∈L+

t

{[xit + αit]/ait}, θ(rt −
∑

i∈L ait λi)

}
. (5)

Assuming that α is independent of ω and {αit : i ∈ L, t = 1, . . . , τ} are independent of each other, the
event that mini∈L+

t
{[xit + αit]/ait} = θ(rt −

∑
i∈L ait λi) occurs with probability zero and the decision

function above is differentiable with respect to λ w.p.1.

Similar to (2), the cumulative revenue function of the policy characterized by bid prices λ becomes

Rt(xt, ω, α, λ) = rt ut(xt, ω, α, λ) + Rt+1(xt + αt − ut(xt, ω, α, λ) at, ω, α, λ), (6)

with Rτ+1(·, ·, ·, λ) = 0. In this case, the smoothed version of the problem that we want to solve is

max
λ

E
{
R1(x1, ω, α, λ)

}
. (7)

Using the fact that the decision function in (5) is differentiable with respect to λ w.p.1, one can check
by backward induction on (6) that R1(x1, ω, α, λ) is differentiable with respect to λ w.p.1 and it may
be possible to solve problem (7) by using the sample path-based derivatives of R1(x1, ω, α, λ).

2.2 Computing the Sample Path-Based Derivatives

We can compute the sample path-based derivatives of R1(x1, ω, α, λ) by using a simple recursion. We
begin by introducing some new notation. We let ∂Λ

i Rt(xt, ω, α, λ) be the derivative of Rt(·, ω, α, ·) with
respect to the bid price of flight leg i evaluated at remaining leg capacities xt and bid prices λ. Similarly,
we let ∂X

i Rt(xt, ω, α, λ) be the derivative of Rt(·, ω, α, ·) with respect to the remaining capacity on flight
leg i evaluated at remaining leg capacities xt and bid prices λ. That is, we have

∂Λ
i Rt(xt, ω, α, λ) =

∂Rt(zt, ω, α, γ)
∂γi

∣∣∣∣
(zt,γ)=(xt,λ)

∂X
i Rt(xt, ω, α, λ) =

∂Rt(zt, ω, α, γ)
∂zit

∣∣∣∣
(zt,γ)=(xt,λ)

.

We also use ∂Λ
i ut(xt, ω, α, λ) and ∂X

i ut(xt, ω, α, λ) with similar interpretations.

Differentiating (6) with respect to the bid price of flight leg i and using the chain rule, we have

∂Λ
i Rt(xt, ω, α, λ) = rt ∂Λ

i ut(xt, ω, α, λ) + ∂Λ
i Rt+1(xt + αt − ut(xt, ω, α, λ) at, ω, α, λ)

−
∑

j∈L
ajt ∂Λ

i ut(xt, ω, α, λ) ∂X
j Rt+1(xt + αt − ut(xt, ω, α, λ) at, ω, α, λ). (8)
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To compute the terms on the right side above, we differentiate (6) with respect to the remaining capacity
on flight leg i to obtain

∂X
i Rt(xt, ω, α, λ) = rt ∂X

i ut(xt, ω, α, λ)

+
∑

j∈L

[
1(j = i)− ajt ∂X

i ut(xt, ω, α, λ)
]
∂X

j Rt+1(xt + αt − ut(xt, ω, α, λ) at, ω, α, λ). (9)

On the other hand, differentiating (5) with respect to the bid price of flight leg i, we have

∂Λ
i ut(xt, ω, α, λ) =





−ait θ̇(rt −
∑

j∈L ajt λj) if θ(rt −
∑

j∈L ajt λj) < min
j∈L+

t

{[xjt + αjt]/ajt}

may not exist if θ(rt −
∑

j∈L ajt λj) = min
j∈L+

t

{[xjt + αjt]/ajt}

0 otherwise.

(10)

As discussed above, the event that θ(rt−
∑

j∈L ajt λj) = minj∈L+
t
{[xjt+αjt]/ajt} occurs with probability

zero. For notational brevity, we arbitrarily set ∂Λ
i ut(xt, ω, α, λ) to −ait θ̇(rt−

∑
j∈L ajt λj) whenever the

second case above holds, in which case we can write (10) as

∂Λ
i ut(xt, ω, α, λ) =




−ait θ̇(rt −

∑
j∈L ajt λj) if θ(rt −

∑
j∈L ajt λj) ≤ min

j∈L+
t

{[xjt + αjt]/ajt}

0 otherwise.
(11)

The expressions in (10) and (11) agree w.p.1 and we can simply use (11) instead of (10). This makes
our proofs considerably shorter. Finally, differentiating (5) with respect to the remaining capacity on
flight leg i, we have

∂X
i ut(xt, ω, α, λ)

=





1/ait if i ∈ L+
t and

[xit + αit]/ait < min

{
min

j∈L+
t \{i}

{[xjt + αjt]/ajt}, θ(rt −
∑

j∈L ajt λj)

}

does not exist if i ∈ L+
t and

[xit + αit]/ait = min

{
min

j∈L+
t \{i}

{[xjt + αjt]/ajt}, θ(rt −
∑

j∈L ajt λj)

}

0 otherwise.

(12)

Since {αit : i ∈ L, t = 1, . . . , τ} are continuous random variables and are independent of each other and
ω, the event that i ∈ L+

t and [xit + αit]/ait = min
{

minj∈L+
t \{i}{[xjt + αjt]/ajt}, θ(rt −

∑
j∈L ajt λj)

}

occurs with probability zero. Similar to (11), we arbitrarily set ∂X
i ut(xt, ω, α, λ) to 1/ait whenever the

second case above holds, in which case we can write (12) as

∂X
i ut(xt, ω, α, λ)

=





1/ait if i ∈ L+
t and

[xit + αit]/ait ≤ min

{
min

j∈L+
t \{i}

{[xjt + αjt]/ajt}, θ(rt −
∑

j∈L ajt λj)

}

0 otherwise.

(13)
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Once again, the expressions in (12) and (13) agree w.p.1 and we can simply use (13) instead of (12).

To compute ∂Λ
i R1(x1, ω, α, λ), all we need to do is to simulate the decisions of the policy characterized

by bid prices λ under itinerary requests ω and perturbation random variables α. In this case, the leg
capacities just before making the decision for itinerary request t + 1 are given recursively by

Xt+1(x1, ω, α, λ) = Xt(x1, ω, α, λ) + αt − ut(Xt(x1, ω, α, λ), ω, α, λ) at, (14)

with X1(x1, ω, α, λ) = x1. Using (11) and (13), we can compute ∂Λ
i ut(Xt(x1, ω, α, λ), ω, α, λ) and

∂X
i ut(Xt(x1, ω, α, λ), ω, α, λ) for all i ∈ L, t = 1, . . . , τ . We can compute ∂X

i Rt(Xt(x1, ω, α, λ), ω, α, λ)
for all i ∈ L, t = 1, . . . , τ by using (9) and moving backwards through the itinerary requests. Finally, we
can compute ∂Λ

i Rt(Xt(x1, ω, α, λ), ω, α, λ) for all i ∈ L, t = 1, . . . , τ by using (8) and moving backwards
through the itinerary requests. All of these sample path-based derivatives exist in w.p.1 sense.

To give a feel for the number of operations required to compute ∂Λ
i Rt(Xt(x1, ω, α, λ), ω, α, λ) for

all i ∈ L, t = 1, . . . , τ , we assume that |L+
t | ≤ M ≤ |L| w.p.1 for a finite scalar M . Since we can

compute mini∈L+
t
{[xit + αit]/ait} in O(M) time, we can compute Xt(x1, ω, α, λ) for all t = 1, . . . , τ in

O(τ M + τ |L|) = O(τ |L|) time by using (5) and (14). This can be interpreted as the amount of time
required to simulate the decisions of the policy characterized by bid prices λ. On the other hand, since
we can compute mini∈L+

t
{[xit + αit]/ait} in O(M) time, we can compute ∂Λ

i ut(Xt(x1, ω, α, λ), ω, α, λ)
for all i ∈ L, t = 1, . . . , τ in O(τ M + τ |L|) = O(τ |L|) time by using (11). Noting that (13) can
equivalently be written as

∂X
i ut(xt, ω, α, λ) =





1/ait if i ∈ argminj∈L+
t
{[xjt + αjt]/ajt}
and [xit + αit]/ait ≤ θ(rt −

∑
j∈L ajt λj)

0 otherwise,

(15)

we can also compute ∂X
i ut(Xt(x1, ω, α, λ), ω, α, λ) for all i ∈ L, t = 1, . . . , τ in O(τ M +τ |L|) = O(τ |L|)

time. These imply that we can compute ∂Λ
i Rt(Xt(x1, ω, α, λ), ω, α, λ) and ∂X

i Rt(Xt(x1, ω, α, λ), ω, α, λ)
for all i ∈ L, t = 1, . . . , τ in O(τ |L| + τ |L| + τ |L|M) = O(τ |L|M) time by using (8) and (9). In
contrast, Section 2.4 in van Ryzin and Vulcano (2006) shows that the sample path-based derivatives
used by these authors can be computed in O(K + τ) time, where K is a constant that is significantly
smaller than |L|. Therefore, the computational complexity of the method proposed by van Ryzin and
Vulcano (2006) is more favorable than the computational complexity of our method.

We note that ∂X
i E

{
R1(x1, ω, α, λ)

}
captures the change in the total expected revenue of the policy

characterized by bid prices λ when we perturb the remaining capacity on flight leg i by an infinitesimal
amount. Therefore, ∂X

i E
{
R1(x1, ω, α, λ)

}
captures the opportunity cost of a unit of capacity and it

is tempting to use ∂X
i E

{
R1(x1, ω, α, λ)

}
as the bid price associated with flight leg i. Nevertheless,

there is an important problem associated with this approach. The derivative ∂X
i E

{
R1(x1, ω, α, λ)

}

captures the opportunity cost of a unit of capacity on flight leg i under the assumption that the
itinerary acceptance decisions are made by the bid price policy characterized by bid prices λ. However,
if the itinerary acceptance decisions are made by using {∂X

i E
{
R1(x1, ω, α, λ)

}
: i ∈ L} as the bid

prices, then ∂X
i E

{
R1(x1, ω, α, λ)

}
does not capture the opportunity cost of a unit of capacity on flight
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leg i under this new bid price policy. As a result, there does not exist a concrete basis for using
{∂X

i E
{
R1(x1, ω, α, λ)

}
: i ∈ L} as the bid prices. Similarly, van Ryzin and Vulcano (2006) use a

cumulative revenue function of the form Rt(xt, ω, α, y), where the policy parameter y corresponds to the
protection levels, and develop a recursion to compute the sample path-based derivative ∂X

i Rt(xt, ω, α, y).
It is again tempting to use ∂X

i E
{
R1(x1, ω, α, y)

}
as the bid price associated with flight leg i. However,

the derivative ∂X
i E

{
R1(x1, ω, α, y)

}
captures the opportunity cost of a unit of capacity on flight leg i

under the assumption that the itinerary acceptance decisions are made by the protection level policy
characterized by protection levels y. In contrast, if the itinerary acceptance decisions are made by
using {∂X

i E
{
R1(x1, ω, α, y)

}
: i ∈ L} as the bid prices, then ∂X

i E
{
R1(x1, ω, α, y)

}
does not capture

the opportunity cost of a unit of capacity on flight leg i under this new bid price policy. As a result,
there does not exist a concrete basis for using {∂X

i E
{
R1(x1, ω, α, y)

}
: i ∈ L} as the bid prices either.

Despite the lack of a concrete basis, one can, of course, still check the performance of the bid price
policy characterized by bid prices {∂X

i E
{
R1(x1, ω, α, y)

}
: i ∈ L}, but this is not the focus of our paper.

Closing this section, we emphasize that there does not exist a choice for θ(·) that makes the decision
functions in (1) and (5) equivalent. Intuitively, we expect the policy described by the decision function
in (5) to get closer to a conventional bid price policy as θ(·) gets closer to the step function 1(· ≥ 0).
However, the decision functions in (1) and (5) are different even if we choose θ(·) as the step function.
Theoretically characterizing the implications of the difference in the decision functions in (1) and (5) is
a difficult research question and we limit our evaluation to computational experiments.

In the next section, we describe an algorithm that uses the sample path-based derivatives given by
(8), (9), (11) and (13) to search for a stationary point of the objective function of problem (7).

3 Solution Algorithm and Convergence

We propose the following algorithm to solve problem (7).

Algorithm 1
Step 1. Initialize the bid prices λ1 = {λ1

i : i ∈ L} arbitrarily and initialize the iteration counter by
letting k = 1.
Step 2. Letting ωk be the itinerary requests and αk be the perturbation random variables at iteration
k, compute ∂Λ

i R1(x1, ω
k, αk, λk) for all i ∈ L by using (8), (9), (11) and (13).

Step 3. Letting σk be a step size parameter, compute the bid prices λk+1 = {λk+1
i : i ∈ L} at the next

iteration as λk+1
i = λk

i + σk ∂Λ
i R1(x1, ω

k, αk, λk) for all i ∈ L.
Step 4. Increase k by 1 and go to Step 2.

We let Fk be the filtration generated by the random variables {λ1, ω1, . . . , ωk−1, α1, . . . , αk−1} in this
algorithm and assume that the joint distribution of (ωk, αk) conditional on Fk is the same as the joint
distribution of (ω, α). We have the next convergence result for Algorithm 1.

Proposition 1 Assume that the sequence of step size parameters {σk}k are Fk-measurable and satisfy
σk ≥ 0 for all k = 1, 2, . . .,

∑∞
k=1 σk = ∞ and

∑∞
k=1[σ

k]2 < ∞ w.p.1. If the sequence of bid prices {λk}k
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are generated by Algorithm 1, then we have limk→∞ E
{
∂Λ

i R1(x1, ω, α, λk)
}

= 0 w.p.1 for all i ∈ L and
every limit point of the sequence of bid prices {λk}k is a stationary point of the objective function of
problem (7) w.p.1.

Proof Propositions 1, 2 and 3 in Section A of the online supplement show that the following statements
hold for all λ, γ ∈ R|L|, i ∈ L.

(A.1) Using ∂Λ
i E

{
R1(x1, ω, α, λ)

}
to denote the derivative of E

{
R1(x1, ω, α, ·)} with respect to the bid

price of flight leg i evaluated at bid prices λ, we have E
{
∂Λ

i R1(x1, ω, α, λ)
}

= ∂Λ
i E

{
R1(x1, ω, α, λ)

}
.

(A.2) There exists a finite scalar BΛ
R such that we have

∣∣∂Λ
i R1(x1, ω, α, λ)

∣∣ ≤ BΛ
R w.p.1.

(A.3) Using ‖ · ‖ to denote the Euclidean norm, there exists a finite scalar LΛ
R such that we have

E
{∣∣∂Λ

i R1(x1, ω, α, λ)− ∂Λ
i R1(x1, ω, α, γ)

∣∣} ≤ LΛ
R ‖λ− γ‖.

In this case, the result follows from Proposition 4.1 in Bertsekas and Tsitsiklis (1996), which we briefly
state in Section D of the online supplement for completeness. In particular, since the joint distribution
of (ωk, αk) conditional on Fk is the same as the joint distribution of (ω, α), (A.1), (A.2) and (A.3)
respectively show that (B.1), (B.2) and (B.3) in Proposition 4.1 in Bertsekas and Tsitsiklis (1996) are
satisfied. 2

(A.1) implies that the expected value of the step direction that we use in Step 3 of Algorithm 1 is
an ascent direction of the objective function of problem (7). (A.2) implies that the norm of the step
direction is uniformly bounded. (A.3) implies that the expected value of the step direction is Lipschitz
when viewed as a function of the bid prices.

We emphasize that the objective function of problem (7) is not necessarily concave and the stationary
point mentioned in Proposition 1 can be a local maximum, a saddle point, or even a local minimum.
To illustrate, we consider a problem instance with large leg capacities (larger than Ba is enough) and
τ = 1. In this case, it is easy to see that R1(x1, ω, α, λ) = r1 θ(r1 −

∑
i∈L ai1 λi) and the objective

function of problem (7) inherits the properties of θ(·) when, for example, (r1, a1) is deterministic. Some
practical choices for θ(·) may have local minima or inflection points.

4 Computational Experiments

In this section, we compare the performances of the bid prices obtained by solving problem (7) with
the performances of the bid prices obtained by using other benchmark strategies.

4.1 Experimental Setup

In our test problems, we consider two types of airline networks that serve N spokes out of a single hub.
In the first airline network, there are two flights associated with each spoke. One of these flights is out
of the hub and the other one is to the hub. There is a high-fare and a low-fare itinerary that connect
every possible origin-destination pair. Therefore, the first airline network involves 2N flight legs and
2N(N +1) itineraries, 4N of which include one flight leg and 2N(N−1) of which include two flight legs.
Figure 1.a shows the first airline network for the case where N = 6. In the second airline network, there
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is one flight associated with each spoke. For the first half of the spokes, this flight is to the hub and for
the second half of the spokes, this flight is from the hub. Similar to the first airline network, there is
a high-fare and a low-fare itinerary that connect every possible origin-destination pair. Therefore, the
second airline network involves N flight legs and N(N/2 + 2) itineraries, 2N of which include one flight
leg and 2(N/2)2 of which include two flight legs. Figure 1.b shows the second airline network for the
case where N = 6. For both airline networks, the revenues associated with the high-fare itineraries are
ρ times larger than the revenues associated with the low-fare itineraries. The probability of having a
request for a high-fare itinerary increases over time, whereas the probability of having a request for a
low-fare itinerary decreases over time. Since the total expected demand for the capacity on flight leg i

is
∑τ

t=1 E{ait}, we measure the tightness of the leg capacities by

κ =
∑

i∈L
∑τ

t=1 E{ait}∑
i∈L xi1

.

We vary N , κ and ρ in our test problems and label them by (T,N, κ, ρ) ∈ {I, II}×{6, 12}×{1.0, 1.2, 1.6}×
{2, 4, 8}, where the first component describes whether the problem takes place over the first or second
airline network and the other three components are as described above. In our test problems, the initial
capacities on the flight legs range over the interval [25, 50], the total expected numbers of itinerary
requests range over the interval [250, 500] and the fares range over the interval [50, 750].

4.2 Benchmark Strategies

We compare the performances of the bid prices obtained by the following five strategies.

Sample path-based derivatives with randomized decision rule (SDR) This is the strategy that
we develop in this paper but our implementation deviates from the previous discussion in two important
aspects. First, since it is not realistic to assume that we can accept a fraction of an itinerary request,
our implementation assumes that θ(·) characterizes the probability of accepting an itinerary request.
In particular, SDR computes the bid prices by solving problem (7). Letting λ∗ be these bid prices,
if there is enough capacity, then SDR accepts itinerary request t with probability θ(rt −

∑
i∈L ait λ∗i ).

Otherwise, it rejects the itinerary request. In our computational experiments, we use

θ(p) =

{
1− a e−

(1−a)
b

p if p ≥ 0
(1− a) e

a
b

p if p < 0,
(16)

with a ∈ (0, 1) and b > 0. Figure 2 plots the function in (16) and shows that this function looks
like the step function as b approaches to zero. Therefore, the distinction between assuming that θ(·)
characterizes a fraction or a probability diminishes as b approaches to zero. It turns out that our results
are relatively insensitive to the choice of (a, b) and we use (a, b) = (1/2, 20/3) in our computational
experiments. Nevertheless, we emphasize that choosing b too small may create numerical difficulties.
Specifically, as b approaches to zero, the derivative of θ(·) at any point away from zero gets arbitrarily
small. Noting (8) and (11), this implies that the sample path-based derivative of the cumulative revenue
function also gets arbitrarily small. This slows down the progress of Algorithm 1 extensively.

Second, SDR recomputes the bid prices n times over the decision horizon by resolving problem (7)
after every τ/n itinerary requests. Given the remaining leg capacities just before making the decision for
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itinerary request t, we compute the bid prices by solving the problem minλ E
{
Rt(xt, ω, α, λ)

}
and use

these bid prices until we resolve problem (7). We use n ∈ {1, 3, 6} in our computational experiments.

In all of our computational experiments, we use the step size parameter σk = 20/(40+k) in Algorithm
1 and terminate the algorithm after 20,000 iterations.

Sample path-based derivatives with deterministic decision rule (SDD) In certain practical
settings, it may not be realistic to use the randomized decision rule prescribed by SDR. In particular,
the managers may not be comfortable with the idea of flipping a coin to decide whether to accept or
reject an itinerary request or to decide which itineraries should remain open. As a remedy, SDD simply
uses the bid prices obtained by solving problem (7) in the decision function in (1). In other words,
SDD computes the bid prices by solving problem (7). Letting λ∗ be these bid prices, if there is enough
capacity and we have rt ≥

∑
i∈L ait λ∗i , then SDD accepts itinerary request t. Otherwise, it rejects the

itinerary request. Similar to SDR, SDD recomputes the bid prices n times over the decision horizon.

We emphasize that the results in Section 3 are under the assumption that we can accept a fraction
of an itinerary request. Therefore, SDR and SDD should be visualized only as practical extensions of
the results in Section 3.

Deterministic linear program (DLP) Using the notation at the beginning of Section 1 and noting
that

∑τ
t=1 1(Jt = j) is the number of requests for itinerary j over the decision horizon, DLP computes

the bid prices by solving the linear program

max
∑

j∈J
r̃j zj (17)

subject to
∑

j∈J
ãij zj ≤ xi1 for all i ∈ L (18)

0 ≤ zj ≤
τ∑

t=1

E{1(Jt = j)} for all j ∈ J ; (19)

see Talluri and van Ryzin (2004). The decision variable zj in the problem above is the number of
requests for itinerary j that we plan to accept over the decision horizon. Constraints (18) ensure that
the itinerary requests that we plan to accept do not violate the leg capacities, whereas constraints
(19) ensure that the itinerary requests that we plan to accept do not exceed the expected numbers
of the itinerary requests. Letting {λ∗i : i ∈ L} be the optimal values of the dual variables associated
with constraints (18), if there is enough capacity and we have rt ≥

∑
i∈L ait λ∗i , then DLP accepts

itinerary request t. Otherwise, it rejects the itinerary request. It is also possible to show that the
optimal objective value of problem (17)-(19) provides an upper bound on the total expected revenue
obtained by the optimal policy. This information becomes useful when assessing the optimality gap of
a benchmark strategy.

Similar to SDR, DLP recomputes the bid prices n times over the decision horizon by resolving
problem (17)-(19) after every τ/n itinerary requests. Given the remaining leg capacities just before
making the decision for itinerary request t, we replace the right side of constraints (18) with {xit : i ∈ L}
and the right side of constraints (19) with {∑τ

t′=t E{1(Jt′ = j)} : j ∈ J }, and solve problem (17)-(19).
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We use the optimal values of the dual variables associated with constraints (18) as the bid prices until
we resolve problem (17)-(19).

Randomized linear program (RLP) DLP uses only the expected numbers of the itinerary requests
and RLP tries to make up for this deficiency. The idea behind RLP is to replace the right side of
constraints (19) with the samples of {∑τ

t=1 1(Jt = j) : j ∈ J }. We generate K samples of {Jt :
t = 1, . . . , τ} and denote these samples by {Ĵk

t : t = 1, . . . , τ} for k = 1, . . . , K. We replace the
right side of constraints (19) with {∑τ

t=1 1(Ĵk
t = j) : j ∈ J } and solve problem (17)-(19). Letting

{λk∗
i : i ∈ L} be the optimal values of the dual variables associated with constraints (18), RLP uses

{∑K
k=1 λk∗

i /K : i ∈ L} as the bid prices; see Talluri and van Ryzin (1999). We use K = 25 in our
computational experiments.

Finite differences on the deterministic linear program (FD) FD tries to improve on DLP
by capturing the total opportunity cost of the leg capacities consumed by an itinerary request more
accurately. Letting L1(x1) be the optimal objective value of problem (17)-(19), we replace the right side
of constraints (18) with {xi1 − ãij : i ∈ L} and solve problem (17)-(19) to obtain the optimal objective
value L−j1(x1). If there is enough capacity and we have rt ≥ L1(x1)−L−Jt1

(x1), then FD accepts itinerary
request t. Otherwise, it rejects the itinerary request; see Bertsimas and Popescu (2003). Both RLP and
FD recompute the bid prices n times over the decision horizon by using an approach similar to the one
used by DLP.

4.3 Computational Results

Our main computational results are summarized in six tables. For the first airline network, Tables
1, 2 and 3 respectively show the results for the cases where we recompute the bid prices once, three
times and six times over the decision horizon. Tables 4, 5 and 6 do the same for the second airline
network. The first five columns in these tables show the total expected revenues obtained by SDR, SDD,
DLP, RLP and FD. We estimate these total expected revenues by simulating 250 different trajectories
of itinerary requests. We use common random numbers when simulating the performances of the bid
prices obtained by different strategies. The next four columns show the percent difference between the
total expected revenues obtained by SDD and the other four strategies. SDD turns out to be one of the
better strategies and we use it as a reference point. The last four columns compare the performance
of SDD with the performances of SDR, DLP, RLP and FD. In particular, the tenth column includes
a “X” if SDD performs better than SDR, a “×” if SDR performs better than SDD and a “◦” if there
does not exist a statistically significant difference between the performances of SDD and SDR at 95%
significance level. The interpretations of the eleventh, twelfth and thirteenth columns are similar but
they respectively compare the performance of SDD with the performances of DLP, RLP and FD. Table
7 shows the optimal objective value of problem (17)-(19) for all of our test problems. As mentioned in
the previous section, this is useful to get a feel for the optimality gap of different strategies.

Tables 1 and 4 indicate that if we compute the bid prices only once at the beginning of the decision
horizon, then SDD performs significantly better than DLP, RLP and FD. The performance gap is
especially large when there is a large difference between the revenues associated with the high-fare and
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low-fare itineraries. Tables 2, 3, 5 and 6, on the other hand, indicate that the performance gap between
SDD and the other three strategies gets smaller as we recompute the bid prices more frequently. For
example, in Table 1, the total expected revenues obtained by SDD exceed those obtained by RLP by
10% on the average. If we recompute the bid prices three times over the decision horizon, then the
total expected revenues obtained by SDD exceed those obtained by RLP by 3% on the average. If we
recompute the bid prices six times over the decision horizon, then the same performance gap reduces
to 1%. Nevertheless, we emphasize that such seemingly small performance gaps are quite significant in
the network revenue management setting. Similar observations can be made from Tables 4, 5 and 6.

A general observation from the tables in this section is that SDD performs better than DLP, RLP
and FD for a majority of the test problems. Specifically, SDD performs worse than RLP in only three
cases and SDD performs worse than FD in only one case. SDD never performs worse than DLP. It is also
interesting to note that the performances of DLP, RLP and FD improve significantly when we recompute
the bid prices three or six times over the decision horizon. On the other hand, the performance of SDD
is fairly satisfactory even when we compute the bid prices only once at the beginning of the decision
horizon. It is possible to find test problems in Tables 1 and 2 for which the performance of SDD with
n = 1 is better than the performance of DLP, RLP or FD with n = 3.

If we compute the bid prices only once at the beginning of the decision horizon, then SDR performs
better than SDD. This is not surprising, since the results in Section 3 are under the assumption that
we can accept a fraction of an itinerary request and SDR partially accommodates this assumption by
using a randomized decision rule. It is, however, surprising that if we recompute the bid prices three
or six times over the decision horizon, then SDD performs noticeably better than SDR. Fortunately,
this is welcome news since the bid prices in practical settings are usually recomputed several times
over the decision horizon, and as mentioned in Section 4.2, SDD may be more appropriate in practical
settings. Given that both SDR and SDD should be visualized only as practical extensions of the results
in Section 3 and neither of them exactly matches the decision function in (5), it is difficult to justify
why one strategy performs better than the other one. Our findings suggest that a choice between SDR
and SDD should be made by considering the number of times that we recompute the bid prices and by
comparing the performances of the two strategies in a specific problem context.

For our test problems, the performance of Algorithm 1 is relatively insensitive to the choice of the
initial bid prices. In the computational experiments that we present in this section, we choose the initial
bid prices as {∑j∈J ãij r̃j/

∑
j∈J ãij : i ∈ L}. However, choosing the initial bid prices in a different

manner does not yield drastically different results. For example, Figure 3 plots E
{
R1(x1, ω, α, λk)

}

for test problem (I, 12, 1.6, 8) as a function of the iteration counter k in Algorithm 1. The three data
series correspond to the cases where we choose the initial bid prices as {∑j∈J ãij r̃j/

∑
j∈J ãij : i ∈ L},

as zero and as the bid prices obtained by the deterministic linear program. The figure indicates that
the differences in the objective function values that we obtain after 10,000 iterations are less than 1%.
Despite these encouraging empirical results, we emphasize the objective function of problem (7) is not
concave and the performance of Algorithm 1 may potentially depend on the choice of the initial bid
prices. Figure 3 also indicates that the performance of Algorithm 1 stabilizes after about 5,000 iterations.
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Nevertheless, to compensate for the lack of good stopping criteria for stochastic approximation methods
and to be on the safe side, we terminate the algorithm after 20,000 iterations.

For test problem (I, 12, 1.6, 8), letting {λ1∗
i : i ∈ L}, {λ2∗

i : i ∈ L} and {λ3∗
i : i ∈ L} respectively be

the bid prices obtained by Algorithm 1 when we choose the initial bid prices as {∑j∈J ãij r̃j/
∑

j∈J ãij :
i ∈ L}, as zero and as the bid prices obtained by the deterministic linear program, Figure 4 gives scatter
plots of {(λ1∗

i , λ2∗
i ) : i ∈ L} and {(λ1∗

i , λ3∗
i ) : i ∈ L}. The plots indicate that the bid prices obtained by

starting from different initial bid prices are close to each other, but may not be exactly the same.

Table 8 shows the CPU seconds required to compute one set of bid prices on a Pentium IV PC
running Windows XP with 2.4 GHz of CPU and 1 GB of RAM. Since the structure of the airline
network and the number of spokes are the primary factors that affect the CPU seconds, we only show
the average CPU seconds over different test problems. Since both SDR and SDD compute the bid
prices by solving problem (7), they have the same CPU seconds in Table 8. DLP is quite fast as it
requires solving one linear program to compute the bid prices. RLP and FD are a bit slower than DLP
as they require solving multiple linear programs. Running Algorithm 1 for 20,000 iterations for SDR
and SDD takes a few minutes, and the CPU seconds for SDR and SDD are larger than those for the
other strategies by orders of magnitude. Nevertheless, we emphasize that these CPU seconds increase
by about a factor of 5 when the number of spokes increases by a factor of 2, the number of flight legs
increases by a factor of 2 and the number of possible itineraries increases by a factor of 4. Also, the test
problems with N = 12 have approximately twice as many itinerary requests as those with N = 6. Given
that the bid prices are usually computed through overnight runs, these CPU seconds are acceptable
from a practical standpoint. In addition, due to the administrative overhead associated with opening
and closing the itineraries, a method that requires recomputing the bid prices fewer times but takes
longer to run may be preferable to a method that requires recomputing the bid prices more frequently
but takes shorter to run.

5 Conclusions

In this paper, we developed a convergent stochastic approximation method to compute bid prices in
network revenue management problems. To facilitate the convergence proof, we worked with a smoothed
version of the problem, which assumes that the leg capacities are continuous and we can accept a
fraction of an itinerary request. SDR used the bid prices obtained by our stochastic approximation
method through a randomized decision rule. Since such a randomized decision rule may not be realistic
in certain practical settings, SDD used the bid prices obtained by our stochastic approximation method
through the decision function in (1). Computational experiments demonstrated that the bid prices
obtained by our stochastic approximation method are especially advantageous when there are multiple
fare classes with large differences in the fares and the bid prices are not recomputed frequently.

There are several directions for further research. First, it is possible to use different sets of bid
prices to make the decisions for different itinerary requests. Specifically, we can use the bid prices
{λit : i ∈ L} to make the decision for itinerary request t, in which case the cumulative revenue function
in (6) becomes a function of {λit : i ∈ L, t = 1, . . . , τ}. The difficulty with this approach is that
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the sample path-based derivative of the cumulative revenue function with respect to λit is zero when
ait = 0 and it is not always possible to obtain a meaningful sample path-based derivative with respect
to all bid prices. Our preliminary computational experiments indicate that using different sets of bid
prices to make the decisions for different itinerary requests does not provide a noticeable advantage
over using the same set of bid prices to make the decisions for all itinerary requests. More work is
needed to make this approach work. Second, as b approaches to zero, the function in (16) looks like the
step function and the distinction between assuming that θ(·) characterizes a fraction or a probability
diminishes. It is possible to visualize a version of Algorithm 1 where we decrease b at each iteration. It
would be interesting to get a convergence result for this version as b approaches to zero and the number
of iterations approaches to infinity.
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Figure 1: Structures of the airline networks for the case where N = 6.
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Figure 2: The function in (16) for different values of b.
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Figure 3: Trajectory of Algorithm 1 for test problem (I, 12, 1.6, 8). We choose the initial bid prices (a)
as {∑j∈J ãij r̃j/

∑
j∈J ãij : i ∈ L}, (b) as zero and (c) as the bid prices obtained by the deterministic

linear program.
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Figure 4: Comparison of the bid prices obtained by Algorithm 1 for test problem (I, 12, 1.6, 8) when we
use different initial bid prices.

total expected revenue obtained by % diff. btwn. SDD and sig. diff. btwn. SDD and
prob. SDR SDD DLP RLP FD SDR DLP RLP FD SDR DLP RLP FD

(I, 6, 1.0, 2) 16,956 16,948 16,538 16,887 16,616 -0.05 2.42 0.36 1.96 ◦ X X X
(I, 6, 1.0, 4) 24,052 23,552 22,295 23,054 22,459 -2.12 5.34 2.12 4.64 × X X X
(I, 6, 1.0, 8) 38,945 38,669 33,809 35,359 34,156 -0.71 12.57 8.56 11.67 × X X X
(I, 6, 1.2, 2) 14,941 14,786 14,304 14,363 14,873 -1.05 3.26 2.86 -0.59 × X X ◦
(I, 6, 1.2, 4) 21,904 21,055 18,563 18,467 21,413 -4.03 11.84 12.29 -1.70 × X X ×
(I, 6, 1.2, 8) 36,023 34,803 27,110 26,735 28,641 -3.51 22.10 23.18 17.70 × X X X
(I, 6, 1.6, 2) 12,061 12,006 11,313 11,572 11,782 -0.45 5.77 3.62 1.87 ◦ X X X
(I, 6, 1.6, 4) 18,889 18,687 14,867 15,867 17,080 -1.08 20.44 15.09 8.60 × X X X
(I, 6, 1.6, 8) 33,221 32,677 21,976 24,450 24,102 -1.67 32.75 25.18 26.24 × X X X
(I, 12, 1.0, 2) 30,611 30,491 29,725 29,949 30,095 -0.39 2.51 1.78 1.30 × X X X
(I, 12, 1.0, 4) 43,908 43,740 39,936 40,452 41,451 -0.38 8.70 7.52 5.23 ◦ X X X
(I, 12, 1.0, 8) 71,718 71,370 60,358 61,417 61,506 -0.49 15.43 13.95 13.82 × X X X
(I, 12, 1.2, 2) 27,390 27,697 26,481 26,607 27,644 1.11 4.39 3.94 0.19 X X X ◦
(I, 12, 1.2, 4) 40,436 40,494 35,106 35,423 39,738 0.14 13.31 12.52 1.87 ◦ X X X
(I, 12, 1.2, 8) 67,189 66,602 52,353 52,973 57,590 -0.88 21.39 20.46 13.53 × X X X
(I, 12, 1.6, 2) 22,447 22,905 21,993 22,302 22,736 2.00 3.98 2.63 0.74 X X X X
(I, 12, 1.6, 4) 35,084 34,577 30,214 31,223 34,346 -1.47 12.62 9.70 0.67 × X X ◦
(I, 12, 1.6, 8) 61,809 60,147 46,363 48,834 52,515 -2.76 22.92 18.81 12.69 × X X X

Table 1: Computational results for the first airline network for the case where n = 1.
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total expected revenue obtained by % diff. btwn. SDD and sig. diff. btwn. SDD and
prob. SDR SDD DLP RLP FD SDR DLP RLP FD SDR DLP RLP FD

(I, 6, 1.0, 2) 17,185 17,343 17,082 17,210 17,205 0.91 1.51 0.77 0.79 X X X X
(I, 6, 1.0, 4) 24,570 24,715 23,766 24,131 24,250 0.59 3.84 2.36 1.88 X X X X
(I, 6, 1.0, 8) 39,301 39,282 37,133 38,312 38,292 -0.05 5.47 2.47 2.52 ◦ X X X
(I, 6, 1.2, 2) 15,312 15,517 15,209 15,261 15,330 1.32 1.98 1.65 1.20 X X X X
(I, 6, 1.2, 4) 22,556 22,711 21,170 21,761 22,099 0.68 6.79 4.18 2.69 X X X X
(I, 6, 1.2, 8) 35,585 35,603 33,211 35,297 34,785 0.05 6.72 0.86 2.30 ◦ X ◦ X
(I, 6, 1.6, 2) 12,495 12,667 12,266 12,468 12,433 1.36 3.16 1.57 1.84 X X X X
(I, 6, 1.6, 4) 19,673 19,712 17,569 18,956 19,048 0.20 10.87 3.84 3.37 ◦ X X X
(I, 6, 1.6, 8) 33,361 32,974 28,206 32,714 30,957 -1.17 14.46 0.79 6.11 × X ◦ X
(I, 12, 1.0, 2) 31,114 31,508 30,930 31,064 31,173 1.25 1.84 1.41 1.06 X X X X
(I, 12, 1.0, 4) 44,647 45,187 43,291 43,666 44,019 1.20 4.20 3.37 2.59 X X X X
(I, 12, 1.0, 8) 72,586 73,041 68,053 69,547 69,620 0.62 6.83 4.78 4.68 X X X X
(I, 12, 1.2, 2) 28,017 28,510 27,971 28,008 28,216 1.73 1.89 1.76 1.03 X X X X
(I, 12, 1.2, 4) 41,261 41,754 39,279 39,869 40,611 1.18 5.93 4.51 2.74 X X X X
(I, 12, 1.2, 8) 68,775 69,199 62,101 64,441 65,598 0.61 10.26 6.88 5.20 X X X X
(I, 12, 1.6, 2) 23,073 23,658 23,217 23,108 23,476 2.47 1.87 2.32 0.77 X X X X
(I, 12, 1.6, 4) 35,948 36,290 34,008 34,586 35,435 0.94 6.29 4.70 2.36 X X X X
(I, 12, 1.6, 8) 63,199 63,387 55,894 59,254 60,066 0.30 11.82 6.52 5.24 ◦ X X X

Table 2: Computational results for the first airline network for the case where n = 3.

total expected revenue obtained by % diff. btwn. SDD and sig. diff. btwn. SDD and
prob. SDR SDD DLP RLP FD SDR DLP RLP FD SDR DLP RLP FD

(I, 6, 1.0, 2) 17,277 17,442 17,232 17,322 17,282 0.95 1.21 0.69 0.92 X X X X
(I, 6, 1.0, 4) 24,671 24,923 24,132 24,500 24,408 1.01 3.17 1.70 2.07 X X X X
(I, 6, 1.0, 8) 39,158 39,159 37,933 39,289 38,635 0.00 3.13 -0.33 1.34 ◦ X ◦ X
(I, 6, 1.2, 2) 15,440 15,683 15,433 15,465 15,509 1.55 1.59 1.39 1.11 X X X X
(I, 6, 1.2, 4) 22,711 23,000 21,807 22,381 22,325 1.26 5.19 2.69 2.93 X X X X
(I, 6, 1.2, 8) 36,504 36,415 34,646 36,934 35,983 -0.25 4.86 -1.43 1.19 ◦ X × X
(I, 6, 1.6, 2) 12,597 12,824 12,571 12,666 12,570 1.77 1.97 1.23 1.98 X X X X
(I, 6, 1.6, 4) 19,844 20,031 18,519 19,450 19,220 0.94 7.55 2.90 4.05 X X X X
(I, 6, 1.6, 8) 33,023 33,267 30,503 33,916 32,281 0.74 8.31 -1.95 2.96 X X × X
(I, 12, 1.0, 2) 31,240 31,666 31,231 31,314 31,333 1.35 1.38 1.11 1.05 X X X X
(I, 12, 1.0, 4) 44,856 45,351 43,928 44,379 44,411 1.09 3.14 2.14 2.07 X X X X
(I, 12, 1.0, 8) 72,692 73,265 69,435 71,373 70,472 0.78 5.23 2.58 3.81 X X X X
(I, 12, 1.2, 2) 28,204 28,733 28,294 28,325 28,361 1.84 1.53 1.42 1.30 X X X X
(I, 12, 1.2, 4) 41,483 42,001 40,108 40,731 40,981 1.23 4.51 3.02 2.43 X X X X
(I, 12, 1.2, 8) 69,006 69,593 64,069 67,063 66,434 0.84 7.94 3.64 4.54 X X X X
(I, 12, 1.6, 2) 23,303 23,897 23,541 23,583 23,562 2.48 1.49 1.31 1.40 X X X X
(I, 12, 1.6, 4) 36,236 36,724 34,852 35,624 35,632 1.33 5.10 3.00 2.97 X X X X
(I, 12, 1.6, 8) 63,642 63,741 57,730 61,827 60,663 0.15 9.43 3.00 4.83 ◦ X X X

Table 3: Computational results for the first airline network for the case where n = 6.
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total expected revenue obtained by % diff. btwn. SDD and sig. diff. btwn. SDD and
prob. SDR SDD DLP RLP FD SDR DLP RLP FD SDR DLP RLP FD

(II, 6, 1.0, 2) 17,665 17,614 17,604 17,609 17,275 -0.29 0.06 0.03 1.93 ◦ X ◦ X
(II, 6, 1.0, 4) 25,471 24,491 24,468 24,479 24,603 -4.00 0.09 0.05 -0.46 × X ◦ ◦
(II, 6, 1.0, 8) 38,891 38,844 38,195 38,221 38,467 -0.12 1.67 1.60 0.97 ◦ X X X
(II, 6, 1.2, 2) 15,393 15,018 14,223 14,222 14,938 -2.50 5.29 5.30 0.53 × X X ◦
(II, 6, 1.2, 4) 23,216 22,201 18,085 18,621 20,683 -4.57 18.54 16.13 6.84 × X X X
(II, 6, 1.2, 8) 35,788 35,651 25,815 27,417 25,818 -0.38 27.59 23.10 27.58 ◦ X X X
(II, 6, 1.6, 2) 12,462 12,497 10,763 11,268 10,763 0.28 13.88 9.84 13.88 ◦ X X X
(II, 6, 1.6, 4) 20,379 19,331 13,446 16,485 13,446 -5.42 30.44 14.72 30.44 × X X X
(II, 6, 1.6, 8) 33,711 33,641 18,811 26,931 18,810 -0.21 44.08 19.95 44.09 × X X X
(II, 12, 1.0, 2) 30,731 30,435 30,319 30,396 30,545 -0.97 0.38 0.13 -0.36 × X X ◦
(II, 12, 1.0, 4) 43,742 42,761 41,236 41,437 42,520 -2.29 3.56 3.10 0.56 × X X ◦
(II, 12, 1.0, 8) 70,388 68,788 63,071 63,511 63,223 -2.33 8.31 7.67 8.09 × X X X
(II, 12, 1.2, 2) 27,598 27,439 26,438 27,204 27,397 -0.58 3.65 0.86 0.15 × X X ◦
(II, 12, 1.2, 4) 40,321 39,646 35,213 36,930 35,218 -1.70 11.18 6.85 11.17 × X X X
(II, 12, 1.2, 8) 66,970 64,001 52,771 56,425 52,776 -4.64 17.55 11.84 17.54 × X X X
(II, 12, 1.6, 2) 22,474 22,201 22,227 22,220 21,477 -1.23 -0.12 -0.09 3.26 × ◦ ◦ X
(II, 12, 1.6, 4) 34,952 33,468 29,421 30,196 29,429 -4.43 12.09 9.77 12.07 × X X X
(II, 12, 1.6, 8) 58,093 56,140 44,566 46,437 44,568 -3.48 20.62 17.28 20.61 × X X X

Table 4: Computational results for the second airline network for the case where n = 1.

total expected revenue obtained by % diff. btwn. SDD and sig. diff. btwn. SDD and
prob. SDR SDD DLP RLP FD SDR DLP RLP FD SDR DLP RLP FD

(II, 6, 1.0, 2) 17,849 17,955 17,863 17,891 17,747 0.60 0.51 0.36 1.16 X X X X
(II, 6, 1.0, 4) 25,802 25,826 25,334 25,559 25,450 0.09 1.90 1.04 1.46 ◦ X X X
(II, 6, 1.0, 8) 39,644 41,676 40,280 41,078 40,710 4.88 3.35 1.43 2.32 X X X X
(II, 6, 1.2, 2) 15,664 15,656 15,133 15,501 15,382 -0.05 3.34 0.99 1.75 ◦ X X X
(II, 6, 1.2, 4) 23,568 23,452 21,006 22,627 22,243 -0.49 10.43 3.52 5.16 ◦ X X X
(II, 6, 1.2, 8) 36,867 38,314 32,736 37,204 34,204 3.78 14.56 2.90 10.73 X X X X
(II, 6, 1.6, 2) 12,721 12,778 12,083 12,599 12,299 0.44 5.44 1.40 3.75 ◦ X X X
(II, 6, 1.6, 4) 20,645 20,297 17,556 19,874 18,182 -1.71 13.50 2.08 10.42 × X X X
(II, 6, 1.6, 8) 34,627 34,725 28,546 34,711 29,883 0.28 17.80 0.04 13.94 ◦ X ◦ X
(II, 12, 1.0, 2) 31,130 31,401 31,105 31,183 31,206 0.86 0.94 0.69 0.62 X X X X
(II, 12, 1.0, 4) 44,333 44,667 43,429 43,908 44,000 0.75 2.77 1.70 1.49 X X X X
(II, 12, 1.0, 8) 70,749 71,117 68,132 69,608 69,161 0.52 4.20 2.12 2.75 X X X X
(II, 12, 1.2, 2) 28,126 28,625 27,954 28,250 28,194 1.74 2.34 1.31 1.50 X X X X
(II, 12, 1.2, 4) 41,134 41,658 39,370 40,397 40,109 1.26 5.49 3.03 3.72 X X X X
(II, 12, 1.2, 8) 65,967 67,177 62,305 65,109 64,059 1.80 7.25 3.08 4.64 X X X X
(II, 12, 1.6, 2) 23,160 23,556 23,154 23,359 23,272 1.68 1.71 0.84 1.21 X X X X
(II, 12, 1.6, 4) 35,819 35,946 33,651 35,142 34,450 0.35 6.38 2.24 4.16 ◦ X X X
(II, 12, 1.6, 8) 60,517 61,447 54,747 59,635 57,439 1.51 10.90 2.95 6.52 X X X X

Table 5: Computational results for the second airline network for the case where n = 3.
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total expected revenue obtained by % diff. btwn. SDD and sig. diff. btwn. SDD and
prob. SDR SDD DLP RLP FD SDR DLP RLP FD SDR DLP RLP FD

(II, 6, 1.0, 2) 17,924 18,065 17,991 18,002 17,913 0.78 0.41 0.35 0.84 X X X X
(II, 6, 1.0, 4) 25,857 26,118 25,646 25,894 25,792 1.00 1.81 0.86 1.25 X X X X
(II, 6, 1.0, 8) 41,331 42,003 40,961 41,992 41,392 1.60 2.48 0.03 1.45 X X ◦ X
(II, 6, 1.2, 2) 15,783 15,926 15,699 15,842 15,754 0.90 1.43 0.53 1.08 X X X X
(II, 6, 1.2, 4) 23,713 23,918 22,647 23,495 23,143 0.86 5.32 1.77 3.24 X X X X
(II, 6, 1.2, 8) 38,900 39,857 36,518 39,291 37,481 2.40 8.38 1.42 5.96 X X X X
(II, 6, 1.6, 2) 12,803 12,980 12,565 12,950 12,641 1.36 3.19 0.23 2.61 X X ◦ X
(II, 6, 1.6, 4) 20,739 20,835 19,143 20,596 19,514 0.46 8.12 1.15 6.34 X X X X
(II, 6, 1.6, 8) 36,012 35,694 32,280 36,315 33,091 -0.89 9.57 -1.74 7.29 ◦ X × X
(II, 12, 1.0, 2) 31,237 31,572 31,294 31,350 31,363 1.06 0.88 0.70 0.66 X X X X
(II, 12, 1.0, 4) 44,432 44,839 43,932 44,293 44,275 0.91 2.02 1.22 1.26 X X X X
(II, 12, 1.0, 8) 70,918 71,140 69,275 70,552 69,967 0.31 2.62 0.83 1.65 ◦ X X X
(II, 12, 1.2, 2) 28,297 28,808 28,358 28,529 28,421 1.77 1.56 0.97 1.34 X X X X
(II, 12, 1.2, 4) 41,329 41,892 40,363 41,123 40,899 1.34 3.65 1.84 2.37 X X X X
(II, 12, 1.2, 8) 66,829 66,968 64,456 67,033 65,847 0.21 3.75 -0.10 1.67 ◦ X ◦ X
(II, 12, 1.6, 2) 23,345 23,845 23,541 23,679 23,533 2.10 1.27 0.69 1.31 X X X X
(II, 12, 1.6, 4) 36,013 36,331 34,940 35,866 35,717 0.88 3.83 1.28 1.69 X X X X
(II, 12, 1.6, 8) 60,937 61,261 58,036 61,627 59,643 0.53 5.26 -0.60 2.64 ◦ X ◦ X

Table 6: Computational results for the second airline network for the case where n = 6.

prob. up. bnd. prob. up. bnd.
(I, 6, 1.0, 2) 18,859 (II, 6, 1.0, 2) 19,188
(I, 6, 1.0, 4) 26,817 (II, 6, 1.0, 4) 27,603
(I, 6, 1.0, 8) 42,735 (II, 6, 1.0, 8) 44,432
(I, 6, 1.2, 2) 17,200 (II, 6, 1.2, 2) 16,944
(I, 6, 1.2, 4) 25,129 (II, 6, 1.2, 4) 25,357
(I, 6, 1.2, 8) 41,036 (II, 6, 1.2, 8) 42,186
(I, 6, 1.6, 2) 14,294 (II, 6, 1.6, 2) 13,935
(I, 6, 1.6, 4) 22,219 (II, 6, 1.6, 4) 22,346
(I, 6, 1.6, 8) 38,122 (II, 6, 1.6, 8) 39,175
(I, 12, 1.0, 2) 34,115 (II, 12, 1.0, 2) 33,372
(I, 12, 1.0, 4) 48,455 (II, 12, 1.0, 4) 47,271
(I, 12, 1.0, 8) 77,136 (II, 12, 1.0, 8) 75,068
(I, 12, 1.2, 2) 31,700 (II, 12, 1.2, 2) 30,640
(I, 12, 1.2, 4) 46,035 (II, 12, 1.2, 4) 44,535
(I, 12, 1.2, 8) 74,710 (II, 12, 1.2, 8) 72,332
(I, 12, 1.6, 2) 26,798 (II, 12, 1.6, 2) 25,661
(I, 12, 1.6, 4) 40,943 (II, 12, 1.6, 4) 39,354
(I, 12, 1.6, 8) 69,618 (II, 12, 1.6, 8) 67,151

Table 7: Optimal objective value of problem (17)-(19) for all of our test problems.

benchmark first airline network second airline network
strategy N = 6 N = 12 N = 6 N = 12

SDR/SDD 34.843 169.734 26.734 130.921
DLP 0.002 0.004 0.002 0.003
RLP 0.050 0.162 0.043 0.116
FD 0.069 0.461 0.026 0.125

Table 8: CPU seconds for SDR, SDD, DLP, RLP and FD to compute one set of bid prices.
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Online Supplement

A Verifying (A.1)-(A.3) in Proposition 1

In this section, we establish that the cumulative revenue function in (6) satisfies (A.1)-(A.3) in the proof
of Proposition 1. The next proposition shows that (A.1) holds.

Proposition 1 We have E
{
∂Λ

i R1(x1, ω, α, λ)
}

= ∂Λ
i E

{
R1(x1, ω, α, λ)

}
for all λ ∈ R|L|, i ∈ L.

Proof Since we have |min{p1, p2}−min{q1, q2}|2 ≤ |p1−q1|2+|p2−q2|2, min{·, ·} : R2 → R is Lipschitz.
Since θ(·) is also Lipschitz and the composition of Lipschitz functions is Lipschitz, the decision function
in (5) is Lipschitz when viewed as a function of the bid prices and leg capacities. Moving backwards
through the itinerary requests and using the fact that the composition of Lipschitz functions is Lipschitz,
one can show that the cumulative revenue function in (6) is Lipschitz when viewed as a function of the
bid prices and leg capacities. Therefore, R1(x1, ω, α, ·) is Lipschitz. By the discussion in Section 2.1, the
derivative of R1(x1, ω, α, ·) with respect to the bid price of flight leg i evaluated at bid prices λ exists
w.p.1. Finally, the cumulative revenue function is bounded by τBr w.p.1. In this case, the result follows
from Lemma 6.3.1 in Glasserman (1994), which we briefly state in Section E of the online supplement
for completeness. 2

The next proposition shows that (A.2) holds.

Proposition 2 We have
∣∣∂Λ

i R1(x1, ω, α, λ)
∣∣ ≤ BΛ

R w.p.1 for a finite scalar BΛ
R.

Proof All statements in the proof are in w.p.1 sense. We first show that

∣∣∂X
i Rt(xt, ω, α, λ)

∣∣ ≤ Br + Br (1 + Ba) |L|+ . . . + Br (1 + Ba)τ−t |L|τ−t (E.1)

for all xt ∈ R|L|+ , i ∈ L, t = 1, . . . , τ . Since ait ≥ 1 for all i ∈ L+
t , we have

∣∣∂X
i ut(xt, ω, α, λ)

∣∣ ≤ 1 for all
i ∈ L by (13) and (9) implies that

∣∣∂X
i Rt(xt, ω, α, λ)

∣∣ ≤ Br +
∑

j∈L
(1 + Ba)

∣∣∂X
j Rt+1(xt + αt − ut(xt, ω, α, λ) at, ω, α, λ)

∣∣

for all xt ∈ R|L|+ , i ∈ L. Using the inequality above and moving backwards through the itinerary
requests, it is easy to show that (E.1) holds. Therefore, if we let BX

R = Br + Br (1 + Ba) |L| + . . . +
Br (1 + Ba)τ−1 |L|τ−1, then we have

∣∣∂X
i Rt(xt, ω, α, λ)

∣∣ ≤ BX
R for all xt ∈ R|L|+ , i ∈ L, t = 1, . . . , τ .

Since Lθ is the Lipschitz modulus of θ(·), we have |θ̇(p)| ≤ Lθ for all p ∈ R and (11) implies that∣∣∂Λ
i ut(xt, ω, α, λ)

∣∣ ≤ Ba Lθ for all xt ∈ R|L|+ , i ∈ L, t = 1, . . . , τ . Since
∣∣∂X

i Rt(xt, ω, α, λ)
∣∣ ≤ BX

R , (8)
implies that

∣∣∂Λ
i Rt(xt, ω, α, λ)

∣∣ ≤ Br Ba Lθ +
∣∣∂Λ

i Rt+1(xt +αt−ut(xt, ω, α, λ) at, ω, α, λ)
∣∣+B2

a BX
R |L|Lθ

for all xt ∈ R|L|+ , i ∈ L. Using this inequality and moving backwards through the itinerary requests, it
is easy to show that

∣∣∂Λ
i R1(x1, ω, α, λ)

∣∣ ≤ τ
[
Br Ba Lθ + B2

a BX
R |L|Lθ

]
and the result follows. 2
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We introduce some new notation to show that (A.3) holds. We let xλ
t be the leg capacities just

before making the decision for itinerary request t when we use the policy characterized by bid prices λ.
That is, the random variables {xλ

t : t = 1, . . . , τ} are given recursively by

xλ
t+1 = xλ

t + αt − ut(xλ
t , ω, α, λ) at, (E.2)

with xλ
1 = x1. The next two lemmas are preliminary results that are useful to show that (A.3) holds.

We provide detailed proofs for these lemmas in Sections B and C of the online supplement. Lemma 1
shows that the expected value of the derivative of the decision function with respect to the bid price of
flight leg i is Lipschitz when viewed as a function of the bid prices.

Lemma 1 We have E
{∣∣∂Λ

i ut(xλ
t , ω, α, λ)− ∂Λ

i ut(x
γ
t , ω, α, γ)

∣∣} ≤ LΛ
u ‖λ− γ‖ for a finite scalar LΛ

u .

Lemma 2 shows that the expected value of the derivative of the cumulative revenue function with
respect to the remaining capacity on flight leg i is Lipschitz when viewed as a function of the bid prices.

Lemma 2 We have E
{∣∣∂X

i Rt(xλ
t , ω, α, λ)− ∂X

i Rt(x
γ
t , ω, α, γ)

∣∣} ≤ LX
R ‖λ− γ‖ for a finite scalar LX

R .

We are now ready to show that (A.3) holds.

Proposition 3 We have E
{∣∣∂Λ

i Rt(xλ
t , ω, α, λ) − ∂Λ

i Rt(x
γ
t , ω, α, γ)

∣∣} ≤ LΛ
R ‖λ − γ‖ for a finite scalar

LΛ
R.

Proof All statements in the proof are in w.p.1 sense. Using (E.2), we can write (8) as

∂Λ
i Rt(xλ

t , ω, α, λ) = rt ∂Λ
i ut(xλ

t , ω, α, λ) + ∂Λ
i Rt+1(xλ

t+1, ω, α, λ)

−
∑

j∈L
ajt ∂Λ

i ut(xλ
t , ω, α, λ) ∂X

j Rt+1(xλ
t+1, ω, α, λ). (E.3)

On the other hand, using the fact that |p1 q1 − p2 q2| ≤ |p1| |q1 − q2|+ |p1 − p2| |q2|, we have

∣∣∂Λ
i ut(xλ

t , ω, α, λ) ∂X
j Rt+1(xλ

t+1, ω, α, λ)− ∂Λ
i ut(x

γ
t , ω, α, γ) ∂X

j Rt+1(x
γ
t+1, ω, α, γ)

∣∣
≤ ∣∣∂Λ

i ut(xλ
t , ω, α, λ)

∣∣ ∣∣∂X
j Rt+1(xλ

t+1, ω, α, λ)− ∂X
j Rt+1(x

γ
t+1, ω, α, γ)

∣∣
+

∣∣∂Λ
i ut(xλ

t , ω, α, λ)− ∂Λ
i ut(x

γ
t , ω, α, γ)

∣∣ ∣∣∂X
j Rt+1(x

γ
t+1, ω, α, γ)

∣∣.

Using the fact that
∣∣∂Λ

i ut(xλ
t , ω, α, λ)

∣∣ ≤ Ba Lθ and noting BX
R in the proof of Proposition 2, the

inequality above implies that

∣∣∂Λ
i ut(xλ

t , ω, α, λ) ∂X
j Rt+1(xλ

t+1, ω, α, λ)− ∂Λ
i ut(x

γ
t , ω, α, γ) ∂X

j Rt+1(x
γ
t+1, ω, α, γ)

∣∣
≤ Ba Lθ

∣∣∂X
j Rt+1(xλ

t+1, ω, α, λ)− ∂X
j Rt+1(x

γ
t+1, ω, α, γ)

∣∣
+ BX

R

∣∣∂Λ
i ut(xλ

t , ω, α, λ)− ∂Λ
i ut(x

γ
t , ω, α, γ)

∣∣. (E.4)
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Therefore, by (E.3) and (E.4), we obtain

E
{∣∣∂Λ

i Rt(xλ
t , ω, α, λ)− ∂Λ

i Rt(x
γ
t , ω, α, γ)

∣∣}

≤ Br E
{∣∣∂Λ

i ut(xλ
t , ω, α, λ)− ∂Λ

i ut(x
γ
t , ω, α, γ)

∣∣}

+ E
{∣∣∂Λ

i Rt+1(xλ
t+1, ω, α, λ)− ∂Λ

i Rt+1(x
γ
t+1, ω, α, γ)

∣∣}

+
∑

j∈LB2
a Lθ E

{∣∣∂X
j Rt+1(xλ

t+1, ω, α, λ)− ∂X
j Rt+1(x

γ
t+1, ω, α, γ)

∣∣}

+
∑

j∈LBa BX
R E

{∣∣∂Λ
i ut(xλ

t , ω, α, λ)− ∂Λ
i ut(x

γ
t , ω, α, γ)

∣∣},

in which case Lemmas 1 and 2 imply that

E
{∣∣∂Λ

i Rt(xλ
t , ω, α, λ)− ∂Λ

i Rt(x
γ
t , ω, α, γ)

∣∣}

≤ Br LΛ
u ‖λ− γ‖+ E

{∣∣∂Λ
i Rt+1(xλ

t+1, ω, α, λ)− ∂Λ
i Rt+1(x

γ
t+1, ω, α, γ)

∣∣}

+ B2
a |L|Lθ LX

R ‖λ− γ‖+ Ba BX
R |L|LΛ

u ‖λ− γ‖.

Using the inequality above and moving backwards through the itinerary requests, it is easy to show that
E

{∣∣∂Λ
i Rt(xλ

t , ω, α, λ)− ∂Λ
i Rt(x

γ
t , ω, α, γ)

∣∣} ≤ (τ − t + 1)
[
Br LΛ

u + B2
a |L|Lθ LX

R + Ba BX
R |L|LΛ

u

] ‖λ− γ‖
and the result follows by letting LΛ

R = τ
[
Br LΛ

u + B2
a |L|Lθ LX

R + Ba BX
R |L|LΛ

u

]
. 2

B Proof of Lemma 1

The next two results are useful when showing Lemma 1.

Lemma 3 If ‖xt− zt‖ ≤ M ‖λ− γ‖ for some M ∈ R+, then we have
∣∣ut(xt, ω, α, λ)− ut(zt, ω, α, γ)

∣∣ ≤
(Lu + M) ‖λ− γ‖ w.p.1 for a finite scalar Lu.

Proof We consider four cases.

Case 1. We assume that θ(rt −
∑

j∈L ajt λj) ≤ minj∈L+
t
{[xjt + αjt]/ajt} and θ(rt −

∑
j∈L ajt γj) ≤

minj∈L+
t
{[zjt + αjt]/ajt}. Using (5), we have

∣∣ut(xt, ω, α, λ) − ut(zt, ω, α, γ)
∣∣ =

∣∣θ(rt −
∑

j∈L ajt λj) −
θ(rt −

∑
j∈L ajt γj)

∣∣ ≤ Lθ

∣∣∑
j∈L ajt [λj − γj ]

∣∣ ≤ Ba |L|Lθ ‖λ− γ‖.

Case 2. We assume that θ(rt −
∑

j∈L ajt λj) ≤ minj∈L+
t
{[xjt + αjt]/ajt} and θ(rt −

∑
j∈L ajt γj) >

minj∈L+
t
{[zjt + αjt]/ajt}. Using (5), we have

∣∣ut(xt, ω, α, λ) − ut(zt, ω, α, γ)
∣∣ =

∣∣θ(rt −
∑

j∈L ajt λj) −
minj∈L+

t
{[zjt + αjt]/ajt}

∣∣ and we consider two subcases.

Case 2.a. We assume that θ(rt−
∑

j∈L ajt λj) ≥ θ(rt−
∑

j∈L ajt γj), in which case we have minj∈L+
t
{[zjt+

αjt]/ajt} < θ(rt−
∑

j∈L ajt γj) ≤ θ(rt−
∑

j∈L ajt λj) ≤ minj∈L+
t
{[xjt+αjt]/ajt}. Since zjt−M ‖λ−γ‖ ≤

xjt ≤ zjt + M ‖λ− γ‖ for all j ∈ L and M ‖λ− γ‖/ajt ≤ M ‖λ− γ‖ for all j ∈ L+
t , we obtain

∣∣ut(xt, ω, α, λ)− ut(zt, ω, α, γ)
∣∣ ≤ min

j∈L+
t

{[xjt + αjt]/ajt} − min
j∈L+

t

{[zjt + αjt]/ajt}

≤ min
j∈L+

t

{[zjt + M ‖λ− γ‖+ αjt]/ajt} − min
j∈L+

t

{[zjt + αjt]/ajt}

≤ M ‖λ− γ‖.
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Case 2.b. We assume that θ(rt −
∑

j∈L ajt λj) < θ(rt −
∑

j∈L ajt γj) and consider two (sub)subcases.

Case 2.b.i. We assume that θ(rt −
∑

j∈L ajt λj) ≥ minj∈L+
t
{[zjt + αjt]/ajt}, in which case we have

minj∈L+
t
{[zjt + αjt]/ajt} ≤ θ(rt −

∑
j∈L ajt λj) ≤ minj∈L+

t
{[xjt + αjt]/ajt}. Therefore, we obtain∣∣ut(xt, ω, α, λ) − ut(zt, ω, α, γ)

∣∣ ≤ minj∈L+
t
{[xjt + αjt]/ajt} − minj∈L+

t
{[zjt + αjt]/ajt} ≤ M ‖λ − γ‖,

where the second inequality follows from the same argument in Case 2.a.

Case 2.b.ii. Assume that θ(rt−
∑

j∈L ajt λj) < minj∈L+
t
{[zjt + αjt]/ajt}, in which case we have θ(rt−∑

j∈L ajt λj) < minj∈L+
t
{[zjt + αjt]/ajt} < θ(rt −

∑
j∈L ajt γj). Therefore, we obtain

∣∣ut(xt, ω, α, λ) −
ut(zt, ω, α, γ)

∣∣ < θ(rt −
∑

j∈L ajt γj)− θ(rt −
∑

j∈L ajt λj) ≤ Ba |L|Lθ ‖λ− γ‖.

The other cases that we do not cover above can be handled in a similar manner. If we combine all
cases, then it is easy to see that letting Lu = Ba |L|Lθ suffices. 2

Lemma 4 We have ‖xλ
t − xγ

t ‖ ≤ LX ‖λ− γ‖ w.p.1 for a finite scalar LX .

Proof All statements in the proof are in w.p.1 sense. We show by induction that ‖xλ
t − xγ

t ‖ ≤[
2 (1+Ba) Lu + . . .+2t−1 (1+Ba)t−1 Lu

] ‖λ−γ‖ for all t = 2, . . . , τ , in which case the result follows by
letting LX = 2 (1 + Ba)Lu + . . . + 2τ−1 (1 + Ba)τ−1 Lu and noting that xλ

1 = xγ
1 = x1. Assuming that

the result holds for itinerary request t and using (E.2), we have

‖xλ
t+1 − xγ

t+1‖ ≤ ‖xλ
t − xγ

t ‖+ Ba

∣∣ut(xλ
t , ω, α, λ)− ut(x

γ
t , ω, α, γ)

∣∣
≤ (1 + Ba) ‖xλ

t − xγ
t ‖+ (1 + Ba)

∣∣ut(xλ
t , ω, α, λ)− ut(x

γ
t , ω, α, γ)

∣∣
≤ (1 + Ba)

[
2 (1 + Ba) Lu + . . . + 2t−1 (1 + Ba)t−1 Lu

] ‖λ− γ‖
+ (1 + Ba)

[
Lu + 2 (1 + Ba) Lu + . . . + 2t−1 (1 + Ba)t−1 Lu

] ‖λ− γ‖
≤ [

2 (1 + Ba) Lu + 22 (1 + Ba)2 Lu + . . . + 2t (1 + Ba)t Lu

] ‖λ− γ‖,

where the third inequality follows from the induction hypothesis and Lemma 3. Therefore, the result
holds for itinerary request t + 1. We complete the induction argument by noting that

‖xλ
2 − xγ

2‖ ≤ ‖xλ
1 − xγ

1‖+ Ba

∣∣u1(xλ
1 , ω, α, λ)− u1(x

γ
1 , ω, α, γ)

∣∣ ≤ Ba Lu ‖λ− γ‖ ≤ 2 (1 + Ba) Lu ‖λ− γ‖,

where we use Lemma 3 and the fact that ‖xλ
1 − xγ

1‖ ≤ 0 ‖λ− γ‖. 2

We are now ready to show Lemma 1. We begin by considering four cases.

Case 1. We assume that θ(rt −
∑

j∈L ajt λj) ≤ minj∈L+
t
{[xλ

jt + αjt]/ajt} and θ(rt −
∑

j∈L ajt γj) ≤
minj∈L+

t
{[xγ

jt+αjt]/ajt}. By (11), we have |∂Λ
i ut(xλ

t , ω, α, λ)−∂Λ
i ut(x

γ
t , ω, α, γ)| = ait |θ̇(rt−

∑
j∈L ajt λj)−

θ̇(rt −
∑

j∈L ajt γj)| ≤ Ba Lθ̇ |
∑

j∈L ajt [λj − γj ]| ≤ B2
a |L|Lθ̇ ‖λ− γ‖.

Case 2. We assume that θ(rt −
∑

j∈L ajt λj) ≤ minj∈L+
t
{[xλ

jt + αjt]/ajt} and θ(rt −
∑

j∈L ajt γj) >

minj∈L+
t
{[xγ

jt + αjt]/ajt}. We have |∂Λ
i ut(xλ

t , ω, α, λ) − ∂Λ
i ut(x

γ
t , ω, α, γ)| = ait |θ̇(rt −

∑
j∈L ajt λj)| ≤

Ba Lθ by (11).
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Case 3. We assume that θ(rt −
∑

j∈L ajt λj) > minj∈L+
t
{[xλ

jt + αjt]/ajt} and θ(rt −
∑

j∈L ajt γj) ≤
minj∈L+

t
{[xγ

jt +αjt]/ajt}, in which case the same argument in the second case yields
∣∣∂Λ

i ut(xλ
t , ω, α, λ)−

∂Λ
i ut(x

γ
t , ω, α, γ)

∣∣ ≤ Ba Lθ.

Case 4. We assume that θ(rt −
∑

j∈L ajt λj) > minj∈L+
t
{[xλ

jt + αjt]/ajt} and θ(rt −
∑

j∈L ajt γj) >

minj∈L+
t
{[xγ

jt + αjt]/ajt}. In this case, (11) implies that |∂Λ
i ut(xλ

t , ω, α, λ)− ∂Λ
i ut(x

γ
t , ω, α, γ)| = 0.

We now obtain a bound on the probability of the second case. Lemma 4 shows that ‖xλ
t − xγ

t ‖ ≤
LX ‖λ− γ‖ w.p.1 for a finite scalar LX . Therefore, we have

∣∣[ait θ(rt −
∑

j∈L ajt γj)− xγ
it

]− [
ait θ(rt −

∑
j∈L ajt λj)− xλ

it

]∣∣
≤ Ba

∣∣θ(rt −
∑

j∈L ajt γj)− θ(rt −
∑

j∈L ajt λj)
∣∣ + ‖xλ

t − xγ
t ‖

≤ B2
a |L|Lθ ‖λ− γ‖+ LX ‖λ− γ‖ (E.5)

w.p.1. On the other hand, for two sets of random variables {Pi : i ∈ A} and {Qi : i ∈ A}, we have
P
{
p ≤ minj∈A{Pj}, q > minj∈A{Qj}

} ≤ ∑
i∈A P

{
p ≤ minj∈A{Pj}, q > Qi

} ≤ ∑
i∈A P

{
p ≤ Pi, q >

Qi

}
. Therefore, we obtain a bound on the probability of the second case by noting that

P
{

θ(rt −
∑

j∈L ajt λj) ≤ minj∈L+
t
{[xλ

jt + αjt]/ajt}, θ(rt −
∑

j∈L ajt γj) > minj∈L+
t
{[xγ

jt + αjt]/ajt}
}

≤
∑

i∈L
P
{

θ(rt −
∑

j∈L ajt λj) ≤ [xλ
it + αit]/ait, θ(rt −

∑
j∈L ajt γj) > [xγ

it + αit]/ait

}

=
∑

i∈L
P
{

ait θ(rt −
∑

j∈L ajt λj)− xλ
it ≤ αit < ait θ(rt −

∑
j∈L ajt γj)− xγ

it

}

≤ [
B2

a |L|2 Lθ + |L|LX

] ‖λ− γ‖/ε,

where the second inequality follows from (E.5), and the fact that αit is uniformly distributed over the
interval [0, ε] and it is independent of xλ

t and at. The same bound applies to the probability of the third
case. Combining the four cases at the beginning of the proof and using the trivial bound of one for the
probability of the first case, we obtain

E
{|∂Λ

i ut(xλ
t , ω, α, λ)− ∂Λ

i ut(x
γ
t , ω, α, γ)|} ≤ B2

a |L|Lθ̇ ‖λ− γ‖+ 2
[
B2

a |L|2 Lθ + |L|LX

] ‖λ− γ‖Ba Lθ/ε

and the result follows.

C Proof of Lemma 2

The next result is useful when showing Lemma 2.

Lemma 5 We have E
{∣∣∂X

i ut(xλ
t , ω, α, λ)− ∂X

i ut(x
γ
t , ω, α, γ)

∣∣} ≤ LX
u ‖λ− γ‖ for a finite scalar LX

u .

Proof By (15),
∣∣∂X

i ut(xλ
t , ω, α, λ)− ∂X

i ut(x
γ
t , ω, α, γ)

∣∣ is equal to 1/ait for the following four cases and
is equal to zero otherwise.

Case 1. i ∈ argminj∈L+
t
{[xλ

jt + αjt]/ajt}, [xλ
it + αit]/ait ≤ θ(rt −

∑
j∈L ajt λj),

i ∈ argminj∈L+
t
{[xγ

jt + αjt]/ajt}, [xγ
it + αit]/ait > θ(rt −

∑
j∈L ajt γj).
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Case 2. i ∈ argminj∈L+
t
{[xλ

jt + αjt]/ajt}, [xλ
it + αit]/ait > θ(rt −

∑
j∈L ajt λj),

i ∈ argminj∈L+
t
{[xγ

jt + αjt]/ajt}, [xγ
it + αit]/ait ≤ θ(rt −

∑
j∈L ajt γj).

Case 3. i ∈ argminj∈L+
t
{[xλ

jt + αjt]/ajt}, [xλ
it + αit]/ait ≤ θ(rt −

∑
j∈L ajt λj),

i 6∈ argminj∈L+
t
{[xγ

jt + αjt]/ajt}.

Case 4. i 6∈ argminj∈L+
t
{[xλ

jt + αjt]/ajt},
i ∈ argminj∈L+

t
{[xγ

jt + αjt]/ajt}, [xγ
it + αit]/ait ≤ θ(rt −

∑
j∈L ajt γj).

Since we have either i ∈ argminj∈L+
t
{[xλ

jt + αjt]/ajt} or i ∈ argminj∈L+
t
{[xγ

jt + αjt]/ajt} for these four
cases and ait ≥ 1 for all i ∈ L+

t , we also have
∣∣∂X

i ut(xλ
t , ω, α, λ)− ∂X

i ut(x
γ
t , ω, α, γ)

∣∣ ≤ 1.

We obtain a bound on the probability of the first case by noting that

P
{

i ∈ argminj∈L+
t
{[xλ

jt + αjt]/ajt}, [xλ
it + αit]/ait ≤ θ(rt −

∑
j∈L ajt λj),

i ∈ argminj∈L+
t
{[xγ

jt + αjt]/ajt}, [xγ
it + αit]/ait > θ(rt −

∑
j∈L ajt γj)

}

≤ P
{

ait θ(rt −
∑

j∈L ajt γj)− xγ
it < αit ≤ ait θ(rt −

∑
j∈L ajt λj)− xλ

it

}
.

By (E.5), the probability on right side above is bounded by
[
B2

a |L|Lθ + LX

] ‖λ − γ‖/ε. The same
bound applies to the probability of the second case. Using Pω

{ · } to denote probability conditional on
the filtration generated by ω, we obtain a bound on the probability of the third case by noting that

Pω

{
i ∈ argminj∈L+

t
{[xλ

jt + αjt]/ajt}, [xλ
it + αit]/ait ≤ θ(rt −

∑
j∈L ajt λj),

i 6∈ argminj∈L+
t
{[xγ

jt + αjt]/ajt}
}

≤ Pω

{
i ∈ argminj∈L+

t
{[xλ

jt + αjt]/ajt}, i 6∈ argminj∈L+
t
{[xγ

jt + αjt]/ajt}
}

≤
∑

i′∈L+
t \{i}

Pω

{
i ∈ argminj∈L+

t
{[xλ

jt + αjt]/ajt}, [xγ
i′t + αi′t]/ai′t < [xγ

it + αit]/ait

}

≤
∑

i′∈L+
t \{i}

Pω

{
[xλ

it + αit]/ait ≤ [xλ
i′t + αi′t]/ai′t, [xγ

i′t + αi′t]/ai′t < [xγ
it + αit]/ait

}

=
∑

i′∈L+
t \{i}

Pω

{
xγ

i′t
ai′t

− xγ
it

ait
<

αit

ait
− αi′t

ai′t
≤ xλ

i′t
ai′t

− xλ
it

ait

}
. (E.6)

Using the fact that the random variables αit and αi′t are uniformly distributed over the interval [0, ε],
and they are independent of each other and ω, a straightforward computation shows that

Pω

{
αit

ait
− αi′t

ai′t
≤ p

}
=





0 if p ≤ − ε

ai′t
ait

2 ai′t
+

ait

ε
p +

ai′t

2 ait

[ait p

ε

]2
if − ε

ai′t
< p ≤ 0 and

ait

ai′t
+

ait p

ε
≤ 1

1 +
ai′t

2 ait

[ait p

ε

]2
− ai′t

2 ait

[
1− ait p

ε

]2
if − ε

ai′t
< p ≤ 0 and

ait

ai′t
+

ait p

ε
> 1

ai′t

2 ait
+

ait p

ε
if 0 < p ≤ ε

ait
and

ait

ai′t
+

ait p

ε
≤ 1

1− ai′t

2 ait

[
1− ait p

ε

]2
if 0 < p ≤ ε

ait
and

ait

ai′t
+

ait p

ε
> 1

1 if p >
ε

ait
.

28



Using this expression, it is easy to check that the cumulative distribution function of [αit/ait]− [αi′t/ai′t]
conditional on ω is Lipschitz with modulus Ba/ε for all i, i′ ∈ L+

t . Therefore, we have

Pω

{
q ≤ αit

ait
− αi′t

ai′t
≤ p

}
≤ Ba

ε
|p− q|

w.p.1 for all i, i′ ∈ L+
t . On the other hand, since we have ait ≥ 1 for all i ∈ L+

t , Lemma 4 implies that
∣∣∣∣
[
xλ

i′t
ai′t

− xλ
it

ait

]
−

[
xγ

i′t
ai′t

− xγ
it

ait

]∣∣∣∣ ≤
[|xλ

it − xγ
it|+ |xλ

i′t − xγ
i′t|

] ≤ 2 LX‖λ− γ‖

w.p.1 for all i, i′ ∈ L+
t . By the last two inequalities, we obtain

Pω

{
xγ

i′t
ai′t

− xγ
it

ait
<

αit

ait
− αi′t

ai′t
≤ xλ

i′t
ai′t

− xλ
it

ait

}
≤ 2Ba

ε
LX ‖λ− γ‖ (E.7)

w.p.1 for all i, i′ ∈ L+
t . If we combine (E.6) and (E.7), and integrate out the conditional expectation,

then it is easy to see that the probability of the third case is bounded by 2Ba |L|LX ‖λ − γ‖/ε. The
same bound applies to the probability of the fourth case. Combining the bounds on the probabilities of
the four cases and noting that

∣∣∂X
i ut(xλ

t , ω, α, λ)−∂X
i ut(x

γ
t , ω, α, γ)

∣∣ ≤ 1 for these four cases, we obtain
E

{∣∣∂X
i ut(xλ

t , ω, α, λ) − ∂X
i ut(x

γ
t , ω, α, γ)

∣∣} ≤ 2
[
B2

a |L|Lθ + LX

] ‖λ − γ‖/ε + 4Ba |L|LX ‖λ − γ‖/ε and
the result follows. 2

We are now ready to show Lemma 2. All statements in the proof are in w.p.1 sense. Using (E.2),
we write (9) as

∂X
i Rt(xλ

t , ω, α, λ) = rt ∂X
i ut(xλ

t , ω, α, λ)

+
∑

j∈L

[
1(j = i)− ajt ∂X

i ut(xλ
t , ω, α, λ)

]
∂X

j Rt+1(xλ
t+1, ω, α, λ). (E.8)

Since ait ≥ 1 for all i ∈ L+
t , we have

∣∣∂X
i ut(xλ

t , ω, α, λ)
∣∣ ≤ 1 for all i ∈ L by (13) and we can use an

argument similar to the one in (E.4) to obtain
∣∣∂X

i ut(xλ
t , ω, α, λ) ∂X

j Rt+1(xλ
t+1, ω, α, λ)− ∂X

i ut(x
γ
t , ω, α, γ) ∂X

j Rt+1(x
γ
t+1, ω, α, γ)

∣∣
≤ BX

R

∣∣∂X
i ut(xλ

t , ω, α, λ)− ∂X
i ut(x

γ
t , ω, α, γ)

∣∣ +
∣∣∂X

j Rt+1(xλ
t+1, ω, α, λ)− ∂X

j Rt+1(x
γ
t+1, ω, α, γ)

∣∣,
where BX

R is as in the proof of Proposition 2. Therefore, (E.8) and the inequality above imply that

E
{∣∣∂X

i Rt(xλ
t , ω, α, λ)− ∂X

i Rt(x
γ
t , ω, α, γ)

∣∣}

≤ Br E
{∣∣∂X

i ut(xλ
t , ω, α, λ)− ∂X

i ut(x
γ
t , ω, α, γ)

∣∣}

+
∑

j∈L E
{∣∣∂X

j Rt+1(xλ
t+1, ω, α, λ)− ∂X

j Rt+1(x
γ
t+1, ω, α, γ)

∣∣}

+
∑

j∈LBa BX
R E

{∣∣∂X
i ut(xλ

t , ω, α, λ)− ∂X
i ut(x

γ
t , ω, α, γ)

∣∣}

+
∑

j∈LBa E
{∣∣∂X

j Rt+1(xλ
t+1, ω, α, λ)− ∂X

j Rt+1(x
γ
t+1, ω, α, γ)

∣∣},

in which case Lemma 5 implies that

E
{∣∣∂X

i Rt(xλ
t , ω, α, λ)− ∂X

i Rt(x
γ
t , ω, α, γ)

∣∣}

≤ Br LX
u ‖λ− γ‖+ Ba BX

R |L|LX
u ‖λ− γ‖∑

j∈L
(1 + Ba)E

{∣∣∂X
j Rt+1(xλ

t+1, ω, α, λ)− ∂X
j Rt+1(x

γ
t+1, ω, α, γ)

∣∣}. (E.9)
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Letting M = Br LX
u + Ba BX

R |L|, we now use (E.9) to show by induction that E
{∣∣∂X

i Rt(xλ
t , ω, α, λ) −

∂X
i Rt(x

γ
t , ω, α, γ)

∣∣} ≤ [
M +(1+Ba) |L|M +. . .+(1+Ba)τ−t |L|τ−t M

] ‖λ−γ‖ for all i ∈ L, t = 1, . . . , τ ,
in which case the result follows by letting LX

R = M+(1+Ba) |L|M+. . .+(1+Ba)τ−1 |L|τ−1 M . Assuming
that the result holds for itinerary request t + 1 and using (E.9), we have

E
{∣∣∂X

i Rt(xλ
t , ω, α, λ)− ∂X

i Rt(x
γ
t , ω, α, γ)

∣∣}

≤ M ‖λ− γ‖+ (1 + Ba) |L|
[
M + (1 + Ba) |L|M + . . . + (1 + Ba)τ−t−1 |L|τ−t−1 M

] ‖λ− γ‖
=

[
M + (1 + Ba) |L|M + . . . + (1 + Ba)τ−t |L|τ−t M

] ‖λ− γ‖.

We complete the induction argument by noting that E
{∣∣∂X

i Rτ (xλ
τ , ω, α, λ) − ∂X

i Rτ (x
γ
τ , ω, α, γ)

∣∣} ≤
M ‖λ− γ‖ by (E.9).

D Proposition 4.1 in Bertsekas and Tsitsiklis (1996)

For a function f(·) : Rn → R, we consider the algorithm

λk+1 = λk + σk sk

to solve the problem maxλ f(λ), where {σk}k is a sequence of step size parameters and {sk}k is a sequence
of step directions. We let Fk be the filtration generated by the random variables {λ1, s1, . . . , sk−1} in
this algorithm and assume that the following statements hold for all λ, γ ∈ Rn.

(B.0) We have f(λ) ≥ 0.
(B.1) We have E

{
sk | Fk

}
= ∇f(λk) w.p.1 for all k = 1, 2, . . ..

(B.2) There exists a finite scalar Ms such that we have ‖sk‖ ≤ Ms w.p.1 for all k = 1, 2, . . ..
(B.3) There exists a finite scalar Lf such that we have ‖∇f(λ)−∇f(γ)‖ ≤ Lf ‖λ− γ‖.

In this case, the next convergence result is from Proposition 4.1 in Bertsekas and Tsitsiklis (1996).

Proposition 4 Assume that the sequence of step size parameters {σk}k are Fk-measurable and satisfy
σk ≥ 0 for all k = 1, 2, . . .,

∑∞
k=1 σk = ∞ and

∑∞
k=1[σ

k]2 < ∞ w.p.1. If the sequence {λk}k is generated
by the algorithm above and (B.0)-(B.3) hold, then we have limk→∞∇f(λk) = 0 w.p.1 and every limit
point λ∗ of the sequence {λk}k satisfies ∇f(λ∗) = 0 w.p.1.

E Lemma 6.3.1 in Glasserman (1994)

For a probability space (Ω,F ,P) and a function f(·, ·) : Rn × Ω → R, we assume that the following
statements hold for all λ, γ ∈ Rn.

(C.1) The function f(·, ω) is differentiable at λ for P-almost all values of ω.
(C.2) There exists a finite scalar Lf such that we have ‖f(λ, ω)− f(γ, ω)‖ ≤ Lf ‖λ− γ‖ for P-almost
all values of ω.

In this case, the next result is from Lemma 6.3.1 in Glasserman (1994).
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Lemma 6 Assume that there exists a finite scalar Mf that satisfies E
{|f(λ, ω)|} ≤ Mf for all λ ∈ Rn.

In this case, if (C.1) and (C.2) hold, then ∇E{
f(λ, ω)

}
exists and we have ∇E{

f(λ, ω)
}

= E
{∇f(λ, ω)

}

for all λ ∈ Rn.
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