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We consider uncapacitated and capacitated assortment problems under the paired combinatorial logit model,

where the goal is to find a set of products to offer to maximize the expected revenue obtained from

a customer. In the uncapacitated setting, we can offer any set of products, whereas in the capacitated

setting, there is an upper bound on the number of products that we can offer. We establish that even

the uncapacitated assortment problem is strongly NP-hard. To develop an approximation framework for

our assortment problems, we transform the assortment problem into an equivalent problem of finding

the fixed point of a function, but computing the value of this function at any point requires solving a

nonlinear integer program. Using a suitable linear programming relaxation of the nonlinear integer program

and randomized rounding, we obtain a 0.6-approximation algorithm for the uncapacitated assortment

problem. Using randomized rounding on a semidefinite programming relaxation, we obtain an improved

0.79-approximation algorithm, but the semidefinite programming relaxation can get difficult to solve in

practice for large problem instances. Finally, using iterative rounding, we obtain a 0.25-approximation

algorithm for the capacitated assortment problem. Our computational experiments on randomly generated

problem instances demonstrate that our approximation algorithms, on average, yield expected revenues that

are within 1.1% of an efficiently computable upper bound on the optimal expected revenue.

Key words : Customer choice modeling, paired combinatorial logit model, assortment optimization.

1. Introduction

Traditional revenue management models commonly assume that each customer arrives into the

system with the intention to purchase a particular product. If this product is available for purchase,

then the customer purchases it; otherwise, the customer leaves the system without a purchase. In

reality, however, customers observe the set of available alternatives and make a choice among the

available alternatives. Under such a customer choice process, the demand for a particular product

depends on the availability of other products. In this case, discrete choice models provide a useful

representation of demand since discrete choice models capture the demand for each product as a

function of the entire set of products in the offer set. A growing body of literature indicates that
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capturing the choice process of customers using discrete choice models can significantly improve the

quality of operational decisions; see, for example, Talluri and van Ryzin (2004), Gallego et al. (2004)

and Vulcano et al. (2010). While more refined choice models yield a more accurate representation

of the customer choice process, the assortment and other operational problems under more refined

choice models become more challenging. Thus, it is useful to identify realistic choice models, where

the corresponding operational problems remain efficiently solvable.

In this paper, we study assortment problems under the paired combinatorial logit (PCL)

model. There is a fixed revenue for each product. Customers choose among the offered products

according to the PCL model, which is discussed in Section 2. The goal is to find an offer set that

maximizes the expected revenue obtained from a customer. We consider both the uncapacitated

version, where we can offer any subset of products, as well as the capacitated version, where there is

an upper bound on the number of products that we can offer. We show that even the uncapacitated

assortment problem is strongly NP-hard. We give a framework for constructing approximation

algorithms for the assortment problem. We use this framework to develop approximation algorithms

for the uncapacitated and capacitated versions. Our computational experiments on randomly

generated problem instances demonstrate that our approximation algorithms perform quite well,

yielding solutions with optimality gaps under 1.1% on average.

The PCL model is compatible with random utility maximization, where each customer associates

random utilities with the alternatives. The utilities are sampled from a certain distribution. The

customer knows the utilities and chooses the alternative that provides the largest utility. Other

choice models, such as the multinomial logit, nested logit and a mixture of multinomial logit models,

are also compatible with random utility maximization. The PCL model allows certain correlations

between the utilities of any pair of alternatives. In contrast, the multinomial logit model assumes

that the utilities are independent. In the nested logit model, the alternatives are grouped into

nests. There is a single parameter governing the correlation between the utilities of the alternatives

in the same nest. The utilities of the alternatives in different nests are independent. A mixture

of multinomial logit models allows general correlations, but it presents difficulties in solving the

corresponding assortment problem, as discussed in our literature review.

By allowing correlations between the utilities of any pair of alternatives, the PCL model

captures the situation where the preference of a customer for one product offers insight into

their inclination towards another product. The work in the existing literature shows that there

can be significant correlations between the utilities of the alternatives when passengers choose,

for example, among travel modes and paths. When such correlations between the utilities of the

alternatives are present, it turns out that the PCL model can provide better predictions of the
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demand process of the passengers; see, for example, Prashker and Bekhor (1998), Koppleman

and Wen (2000) and Chen et al. (2003). However, although the PCL model can provide better

predictions of the demand process when there are correlations between the utilities of different

alternatives, as far as we are aware, there is little research on understanding the complexity of

making operational decisions under the PCL model and providing efficient algorithms for making

such decisions. Our work in this paper is directed towards filling this gap.

1.1. Main Contributions

We make four main contributions. First, we show that the uncapacitated assortment problem under

the PCL model is strongly NP-hard. Our proof uses a reduction from the max-cut problem. This

result is in contrast with the assortment problem under the closely-related multinomial logit and

nested logit models. In particular, as we discuss in our literature review in Section 1.2, there

exist polynomial-time algorithms to solve even the capacitated assortment problem under the

multinomial logit model. Similarly, there exist polynomial-time algorithms to solve the capacitated

assortment problem under the nested logit model, as long as a customer deciding to make a

purchase in one of the nests cannot leave without making a purchase and the so-called dissimilarity

parameters in the nested logit model do not exceed one. The latter condition ensures the

compatibility of the nested logit model with random utility maximization.

Second, we give a framework to develop approximation algorithms for assortment problems under

the PCL model. In particular, we show that the assortment problem is equivalent to finding the

fixed point of a function f :R→R, whose evaluation at a certain point requires solving a nonlinear

integer program. We design an upper bound fR : R→R to f(·) and compute the fixed point ẑ of

fR(·). In this case, we develop an algorithm to find an α-approximate solution for the nonlinear

integer program that computes the value of f(·) at ẑ. This α-approximate solution turns out to

be an α-approximate solution to the assortment problem as well. Davis et al. (2014), Gallego

and Topaloglu (2014), and Feldman and Topaloglu (2015) use a connection in this spirit between

the assortment problem under the nested logit model and the fixed point of a function, but the

functions they work with are significantly simpler as they are separable by the nests.

Third, we use our approximation framework to give an approximation algorithm for the

uncapacitated assortment problem. We construct the upper bound fR(·) through a linear

programming (LP) relaxation of the nonlinear integer program that computes f(·). We show that

we can compute the fixed point of fR(·) by solving an LP. After we compute the fixed point ẑ of

fR(·), we get a solution to the LP that computes fR(·) at ẑ. We use randomized rounding on this

solution to get a 0.6-approximate solution to the nonlinear integer program that computes f(·) at
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ẑ. Lastly, to obtain a deterministic algorithm, we de-randomize this approach by using the standard

method of conditional expectations; see Section 15.1 in Alon and Spencer (2000) and Section 5.2

in Williamson and Shmoys (2011). Our framework can allow other approximation algorithms. For

example, if we construct fR(·) by using a semidefinite programming (SDP) relaxation of the

nonlinear integer program, then we can use the spherical rounding method of Goemans and

Willamson (1995) to obtain a 0.79-approximation algorithm for the uncapacitated assortment

problem. This approximation algorithm requires solving an SDP. We can theoretically solve an SDP

in polynomial time, but solving a large-scale SDP in practice can be computationally difficult. Thus,

the SDP relaxation can be less appealing than the LP relaxation.

Fourth, we give an approximation algorithm for the capacitated assortment problem, also by

using our approximation framework. Here, we exploit the structural properties of the extreme

points of the LP relaxation and use an iterative rounding method, followed by coupled randomized

rounding, to develop a 0.25-approximation algorithm. In this algorithm, if there are n products

that can be offered to the customers, then we solve at most n successive LP relaxations, fixing the

value of one decision variable after solving each LP relaxation. Once we solve the LP relaxations, we

perform coupled randomized rounding on the solution of the last LP relaxation to obtain a solution

to the assortment problem. Using the method of conditional expectations, we can de-randomize

this solution to obtain a deterministic algorithm with the same performance guarantee.

In our computational experiments, the practical performance of our approximation algorithms

is substantially better than their theoretical guarantees, yielding, on average, expected revenues

within 1.1% of an upper bound on the optimal expected revenue. We also test the ability of the

PCL model to predict the choices of the customers. On average, compared with the multinomial

logit benchmark, we get a 6.38% reduction in the errors of the predicted choice probabilities.

1.2. Literature Review

Considering operational decisions under the PCL model, prior to ours, the only work we are aware

of is Li and Webster (2017), where the authors study pricing problems under the PCL model.

The authors give sufficient conditions for the price sensitivities of the products to ensure that

the pricing problem can be solved efficiently. Subsequent to our work, Ghuge et al. (2019) give

approximation algorithms for constrained assortment problems under the PCL model. Despite

limited work on solving operational problems under the PCL model, there is considerable work,

especially in the transportation literature, on using the PCL model to capture travel mode and

path choices. Koppleman and Wen (2000) estimate the parameters of the PCL model by using real

data on the travel mode choices of the passengers. Their empirical results indicate that there are
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statistically significant correlations between the utilities that a passenger associates with different

travel modes. Prashker and Bekhor (1998) and Chen et al. (2003) use numerical examples to

demonstrate that the PCL model can provide improvements over the multinomial logit model in

predicting path choices. The authors argue that different paths overlap with each other to varying

extents, creating complex correlations between the utilities provided by different paths. Chen et al.

(2014) and Karoonsoontawong and Lin (2015) study various traffic equilibrium problems under

the PCL model and discuss the benefits from using this choice model. The numerical work in the

transportation literature demonstrates that the PCL model can provide improvements over the

multinomial logit and nested logit models in predicting travel mode and path choices, especially

when the utilities provided by different alternatives exhibit complex correlation structures.

There is considerable work on assortment problems under the multinomial logit and nested

logit models. In the multinomial logit model, the utilities of the products are independent of each

other. In the nested logit model, the products are grouped into disjoint nests. Associated with each

nest, there is a dissimilarity parameter characterizing the correlation between the utilities of the

products in the same nest, but the utilities of the products in different nests are independent of each

other. As shown by Daganzo and Kusnic (1993), the utilities of the products in the same nest have

the same correlation coefficient. In the PCL model, there exists one nest for each pair of products,

so the nests are overlapping. Associated with each nest, there is a separate dissimilarity parameter

characterizing the correlation between the utilities of each pair of products. Therefore, when

compared with the multinomial logit and nested logit models, we can use the PCL model to specify

a significantly more general correlation structure between the utilities of the products. Train (2002)

provides a thorough discussion of the multinomial logit, nested logit and PCL models. Koppleman

and Wen (2000) discuss the correlation structure of the utilities under the PCL model, including

the joint distributions and the correlation coefficients of the utilities.

Talluri and van Ryzin (2004) and Gallego et al. (2004) give an efficient algorithm for the

uncapacitated assortment problem under the multinomial logit model, whereas Rusmevichientong

et al. (2010) give an efficient algorithm for the capacitated version. Davis et al. (2013) formulate

an LP to solve the assortment problem under the multinomial logit model when there are

constraints on the offered assortment that can be represented through a totally unimodular

constraint structure. In a mixture of multinomial logit models, there are multiple customer types

and customers of different types choose according to different multinomial logit models. McFadden

and Train (2000) show that a mixture of a multinomial logit models can allow arbitrary correlations

between the utilities of the alternatives. Bront et al. (2009) show that the assortment problem

under this choice model is NP-hard. In their proof, the authors use a reduction from the minimum
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vertex cover problem, in which case, they end up with an assortment problem where the numbers

of products and customer types are as large as the number of vertices in the minimum vertex cover

problem. This result raises the question of whether the problem is still NP-hard when the number

of customer types is fixed. Rusmevichientong et al. (2014) show that the problem is NP-hard even

when the number of customer types is fixed at two. Letting m be the number of customer types,

Desire and Goyal (2016) show that there is no polynomial-time algorithm with an approximation

guarantee of O(1/m1−δ) for any constant δ > 0 unless NP ⊆BPP .

Davis et al. (2014) categorize the assortment problem under the nested logit model along two

dimensions, which are based on whether the dissimilarity parameter for a nest exceeds one and

whether the no purchase option is available within the nests. Considering the case where none of the

dissimilarity parameters exceeds one and the no purchase option is not available within the nests,

the authors develop an efficient algorithm to find the optimal assortment for the unconstrained

version of the problem. In other cases, the authors show that the assortment problem is NP-hard.

Most of the other literature on the assortment problem under the nested logit model focuses on

the case where none of the dissimilarity parameters exceeds one and the no purchase option is not

available within the nests. Under this case, Gallego and Topaloglu (2014) study the assortment

problem when a capacity constraint limits the total number of products offered in each nest and

give an efficient algorithm to compute the optimal assortment. They also give a 0.5-approximation

algorithm when each product occupies a certain amount of space and there is a constraint that

limits the total space consumption of the products offered in each nest. In contrast, Feldman

and Topaloglu (2015) give an efficient algorithm to compute the optimal assortment when a

capacity constraint limits the total number of products offered in all nests. They also give a 0.25-

approximation algorithm when there is a constraint that limits the total space consumption of the

products offered in all nests. Li et al. (2015) give an efficient algorithm to compute the optimal

assortment under the multi-level nested logit model, where the products are hierarchically organized

into nests and subnests. Our paper complements all this work on assortment problems under the

multinomial logit and nested logit models by working with the PCL model. Vulcano et al. (2010)

and Dai et al. (2014) use the multinomial and nested logit models in airline applications.

The paper is organized as follows. In Section 2, we formulate the uncapacitated and capacitated

assortment problems and show that even the uncapacitated version is strongly NP-hard. In Section

3, we give our approximation framework. In Section 4, we use our approximation framework to give

a 0.6-approximation algorithm for the uncapacitated problem. Also, we discuss how to obtain a

0.79-approximation algorithm by using an SDP relaxation. In Section 5, we use our approximation

framework to give a 0.25-approximation algorithm for the capacitated problem. In Section 6, we

give our computational experiments. In Section 7, we conclude.
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2. Assortment Problem

In this section, we formulate the assortment problem under the PCL model, characterize its

complexity and discuss the use of the PCL model in assortment problems.

2.1. Problem Formulation and Complexity

The set of products is indexed by N = {1, . . . , n}. We use the vector x = (x1, . . . , xn) ∈ {0,1}n

to capture the subset of products that we offer to the customers, where xi = 1 if and only if

we offer product i. We refer to the vector x simply as the assortment or the subset of products

that we offer. Throughout the paper, we denote the vectors and matrices in bold font. We denote

the collection of nests by M = {(i, j)∈N 2 : i 6= j}. For each nest (i, j) ∈M , we let γij ∈ [0,1] be

the dissimilarity parameter of the nest. For each product i, we let vi be the preference weight of

product i. Under the PCL model, we can view the choice process of a customer as taking place in

two stages. First, the customer decides to make a purchase in one of the nests or to leave without a

purchase. In particular, letting Vij(x) = v
1/γij
i xi+v

1/γij
j xj and using v0 > 0 to denote the preference

weight of the no purchase option, if we offer the subset of products x, then a customer decides to

make a purchase in nest (i, j) with probability Pij(x) = Vij(x)γij/(v0 +
∑

(k,`)∈M Vk`(x)γk`). Second,

if the customer decides to make a purchase in nest (i, j), then she chooses product i with probability

qiij(x) = v
1/γij
i xi /Vij(x), whereas she chooses product j with probability qjij(x) = v

1/γij
j xj /Vij(x).

Thus, if we offer the subset of products x, then a customer chooses product i with probability
∑

k∈N :k 6=i(Pik(x) qiik(x) + Pki(x) qiki(x)), fully specifying the choice probabilities under the PCL

model. To formulate our assortment problem, we use pi ≥ 0 to denote the revenue of product i. If

we offer the subset of products x and a customer has already decided to make a purchase in nest

(i, j), then the expected revenue that we obtain from the customer is

Rij(x) = qiij(x)pi + qjij(x)pj =
pi v

1/γij
i xi + pj v

1/γij
j xj

Vij(x)
.

We use π(x) to denote the expected revenue that we obtain from a customer when we offer the

subset of products x. In this case, we have

π(x) =
∑

(i,j)∈M
Pij(x)Rij(x) =

∑

(i,j)∈M

Vij(x)γij

v0 +
∑

(k,`)∈M Vk`(x)γk`
Rij(x) =

∑
(i,j)∈M Vij(x)γij Rij(x)

v0 +
∑

(i,j)∈M Vij(x)γij
.

Throughout the paper, we consider both uncapacitated and capacitated assortment

problems. In the uncapacitated assortment problem, we can offer any subset of products to the

customers. In the capacitated assortment problem, we have an upper bound on the number of

products that we can offer to the customers. To capture both the uncapacitated and capacitated



Zhang, Rusmevichientong, and Topaloglu: Assortment Optimization under the PCL Model
8

assortment problems succinctly, for some c∈Z+, we use F = {x∈ {0,1}n :
∑

i∈N xi ≤ c} to denote

the feasible subsets of products that we can offer to the customers. Since there are n products,

the constraint
∑

i∈N xi ≤ c is not binding when we have c≥ n. Thus, we obtain the uncapacitated

assortment problem by choosing a value of c that is no smaller than n, whereas we obtain the

capacitated assortment problem with other values of c. In the assortment problem, our goal is to

find a feasible subset of products to offer that maximizes the expected revenue obtained from a

customer, corresponding to the combinatorial optimization problem

z∗ = max
x∈F

π(x) = max
x∈F

{∑
(i,j)∈M Vij(x)γij Rij(x)

v0 +
∑

(i,j)∈M Vij(x)γij

}
. (Assortment)

Our formulation of the PCL model is slightly different from the one that often appears in the

literature. In the existing literature, the collection of nests is often {(i, j)∈N 2 : i < j}, whereas in

our formulation, the collection of nests is {(i, j)∈N 2 : i 6= j}. If we let γij = γji for all (i, j) ∈N 2

with i > j and double the preference weight of the no purchase option in our formulation, then it is

simple to check that the two formulations of the PCL model are consistent. Thus, our approximation

algorithms remain applicable to the formulation of the PCL model that often appears in the

literature. Our formulation of the PCL model will reduce the notational burden.

If γij ∈ [0,1] and γij = γji for all (i, j)∈M , then the PCL model is compatible with the random

utility maximization principle, where each customer associates a random utility with the products

and the no purchase option, choosing the alternative with the largest utility; see Koppleman and

Wen (2000). The parameter γij characterizes the degree of correlation between the utilities of

products i and j. The approximation algorithms that we give require that γij ∈ [0,1], but not

necessarily γij = γji, but the latter condition is needed if we want to ensure that the PCL model

that we work with is compatible with the random utility maximization principle.

In the next theorem, we show that the Assortment problem is strongly NP-hard even when

F = {0,1}n so that the problem is uncapacitated and γij = γji for all (i, j)∈M .

Theorem 2.1 (Computational Complexity) The Assortment problem is strongly NP-hard,

even when we have F = {0,1}n and γij = γji for all (i, j)∈M .

The proof of Theorem 2.1 is in Appendix A. It uses a reduction from the max-cut problem, which

is a well-known NP-hard problem; see Section A.2.2 in Garey and Johnson (1979). Motivated by

this complexity result, in the rest of the paper, we focus on developing approximation algorithms

for the Assortment problem. For α ∈ [0,1], an α-approximation algorithm is a polynomial-time

algorithm that, for any problem instance, computes an assortment x̂∈F , whose expected revenue

is at least α times the optimal expected revenue; that is, noting that the optimal expected revenue

in the Assortment problem is z∗, the assortment x̂ satisfies π(x̂)≥ αz∗.
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2.2. Paired Combinatorial Logit Model in Assortment Problems

There is work on assortment problems under the multinomial logit and nested logit models. The

multinomial logit, nested logit and PCL models are all compatible with the random utility

maximization principle. In the random utility maximization principle, a customer associates

random utilities with the products and the no purchase option, which are sampled from a certain

joint utility distribution. The customer knows the sampled values of the utilities and she chooses

the alternative with the largest utility. A natural question is whether the PCL model captures a

phenomenon in the choice process of the customers that cannot be captured by the multinomial

logit or nested logit models. We point out two phenomena that can be captured by the PCL model,

but not by the multinomial logit and nested logit models. Also, we give an example where these

two phenomena naturally occur, potentially making the PCL model a viable candidate.

First, there can be different levels of correlation between the utilities of different pairs of products.

In particular, if there are two products that are similar to each other, then knowing that a customer

associates a high utility with one may indicate that the customer also associates a high utility

with the other. Under the multinomial logit model, the utilities of the products are uncorrelated,

yielding a correlation coefficient matrix of zero for the utilities. Under the nested logit model,

the products are partitioned into nests. The correlation coefficient for the utilities of any pair of

products in the same nest is a constant determined by the dissimilarity parameter of the nest. The

correlation coefficient for the utilities of any pair of products in different nests is zero; see Daganzo

and Kusnic (1993). Therefore, the correlation coefficient matrix for the utilities under the nested

logit model is block diagonal and all (non-diagonal) entries in each block are the same.

Under the PCL model, we can have a different correlation coefficient for the utilities of each pair

of products. Recalling that γij = γji when the PCL model is compatible with the random utility

maximization principle, under the PCL model, the correlation coefficient between the utilities of

products i and j depends only on the dissimilarity parameter γij and the number of products n; see

Koppleman and Wen (2000). Thus, each entry in the correlation coefficient matrix for the utilities

can be different, capturing different degrees of correlation between the utilities. In Figure 1, we

consider the case with three products and show the correlation coefficient between the utilities of

products i and j as a function of γij. By choosing a different value for γij for each pair of products

i and j, we can have a different correlation coefficient for the utilities of each pair of products. Such

flexibility is not available under the multinomial logit and nested logit models.

Second, we may have a case where the correlation structure of the utilities does not satisfy, what

we call, the “transitivity” property. In particular, we may have a case where the utility of product
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Figure 1 Correlation coefficient of the utilities of products i and j under the PCL model as a function of γij .

1 is correlated with the utility of product 2 and the utility of product 2 is correlated with the

utility of product 3, but the utility of product 1 is not correlated with the utility of product 3. We

cannot capture such a correlation structure under the multinomial logit or nested logit models.

Under the multinomial logit model, the utilities of the products are uncorrelated. Under the nested

logit model, if the utilities of products 1 and 2 are to be correlated, then they have to be in the

same nest. Similarly, if the utilities of products 2 and 3 are to be correlated, then they have to be

in the same nest as well. Therefore, products 1 and 3 end up being in the same nest, in which case,

the utilities of products 1 and 3 must also be correlated.

We can use the PCL model to capture the case where the correlation structure of the utilities

does not satisfy the “transitivity” property. Noting Figure 1, if γij = 1, then the utilities of products

i and j under the PCL model are uncorrelated, where as if γij < 1, then the utilities of products

i and j are correlated. Therefore, if we use the PCL model with γ12 < 1, γ23 < 1 and γ13 = 1,

then the utility of product 1 is correlated with the utility of product 2, the utility of product 2 is

correlated with the utility of product 3 and the utility of product 1 is not correlated with the utility

of product 3. Thus, such choices of γ12, γ23 and γ13 allow the PCL model to handle correlation

structures that do not satisfy the “transitivity” property.

It is not difficult to give examples where there are different levels of correlation between the

utilities of different pairs of alternatives and the correlation structure of the utilities does not satisfy

the “transitivity” property. In Appendix B, we give an example that focuses on the path choices

of commuters traveling from an origin node to a destination node in a network. In this example,

there are different paths that connect the origin node to the destination node. The disutility of a

path is the sum of the travel times on the edges that are included in the path. The travel time

on the edges are random but the commuter knows the travel times before deciding which path to

take. The commuter chooses the path that provides the largest utility. Since two different paths
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may use a common edge, the utilities provided by two different paths can be correlated. We make

two observations in our example. First, we can have different levels of correlation between the

utilities of different pairs of paths. In particular, paths P1 and P2 may share three common edges,

but paths P1 and P3 may share only one common edge. In this case, we expect the correlation

between the utilities of paths P1 and P2 to be relatively high, but the correlation between the

utilities of paths P1 and P3 to be relatively low. Second, the correlation structure between the

utilities of different paths may not satisfy the “transitivity” property. In particular, path R1 may

share common edges with path R2, path R2 may share common edges with path R3, but path R1

may not share any common edges with path R3. In this case, we expect that the utility of path

R1 is correlated with the utility of path R2, the utility of path R2 is correlated with the utility of

path R3, but the utility of path R1 is not correlated with the utility of path R3. In Appendix B, we

give a specific network where it is indeed the case that there can be different levels of correlation

between the utilities of different pairs of paths and the correlation structure of the utilities may

violate the “transitivity” property. In addition, we give a numerical study to check the ability of

the PCL model to predict the path choices of commuters. Although our example focuses on the

path choices of commuters, similar situations occur when customers choose among products that

share different numbers of common features.

The generalized nested logit model subsumes the multinomial logit, nested logit and PCL models,

as well as the cross nested logit, ordered extreme value and product differentiation models, as

special cases; see Section 2.2 in Wen and Koppelman (2001). As discussed in Section 4.4.2 in Train

(2002), we can view the choice process of a customer under any generalized nested logit model as

taking place in two stages. In the first stage, the customer chooses a nest. In the second stage, the

customer chooses a product within the nest. Often times, the two stages in the choice process occur

as a result of the correlation structure between the utilities of the products. For the nested logit

model, for example, using γm to denote the dissimilarity parameter of nest m and m(i) to denote

the nest that includes product i, the utility of product i is given by Utilityi = µi + ζm(i) + γm(i) ηi,

where µi is a deterministic constant, the random variable ζm(i) has the so-called C distribution with

parameter γm and the random variable ηi has the Gumbel distribution with location and shape

parameters (0,1); see Section 3 in Cardell (1997). Letting M be the set of nests and N be the set of

products, the random variables {ζm :m∈M}∪ {ηi : i∈N} are independent of each other. We can

interpret ζm as the utility extracted from a product in nest m based on the common characteristics

of the products in this nest and ηi as the utility specific to product i. Due to this structure of the

utilities, we can view the choice process of the customer under the nested logit model as taking

place in two stages. Since each product appears in only one nest in the nested logit model with the
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utilities of the products in different nests being uncorrelated, the two stages may correspond to

the thought process that a customer goes through when making a purchase. In the first stage, the

customer chooses a group of products that are similar to each other, which is captured by a nest. In

the second stage, the customer chooses a product within this group. However, the use of the nested

logit model does not require that the customers actually go through a two stage thought process

when making a purchase. The two stages occur simply as a result of the correlation structure of

the utilities. In Appendix C, we give a similar description of the utilities of the products under the

PCL model. We can interpret the choice process of a customer under the PCL model also as taking

place in two stages, but the two stages, once again, do not necessarily reflect the actual thought

process of the customers. The two stages occur simply as a result of the correlation structure of

the utilities and we only use the two stages to intuitively describe the PCL model.

In the Assortment problem, the assortment that we offer is a decision variable, but we use the PCL

model with the same parameters to capture choices within different assortments, simply dropping

the products that are not offered. In Appendix D, we carefully justify this approach by using the

fact that the PCL model is based on the random utility maximization principle. In Appendix E, we

also give a numerical study to check the ability of the PCL model to predict choices within different

assortments. Compared with the multinomial logit benchmark, fitting a PCL model provides larger

out of sample log-likelihoods and smaller errors in the predicted choice probabilities.

3. A General Framework for Approximation Algorithms

In this section, we provide a general framework that is useful for developing approximation

algorithms for the Assortment problem. Our framework is applicable to both the uncapacitated and

capacitated problems simultaneously.

3.1. Connection to a Fixed Point Problem

Note that π(x) =
∑

(i,j)∈M Vij(x)
γij Rij(x)

v0+
∑

(i,j)∈M Vij(x)
γij ≥ z if and only if

∑
(i,j)∈M Vij(x)γij (Rij(x)−z)≥ v0 z. Thus,

there exists an assortment with a revenue of z or more if and only if
∑

(i,j)∈M Vij(x)γij (Rij(x)−z)≥
v0 z for some x∈ {0,1}n. To use this observation, we define the function f :R→R as

f(z) = max
x∈F

{ ∑

(i,j)∈M
Vij(x)γij (Rij(x)− z)

}
. (Function Evaluation)

For each x∈F , the objective function of the Function Evaluation problem on the right side above is

decreasing in z, which implies that f(z) is also decreasing in z. A simple lemma, given as Lemma

F.1 in Appendix F, also shows that f(·) is continuous and it satisfies f(0)≥ 0. Therefore, f(·) is
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decreasing and continuous, satisfying f(0)≥ 0. Also, defining the function g :R→R as g(z) = v0 z,

g(·) is strictly increasing and continuous, satisfying g(0) = 0 and limz→∞ g(z) =∞. In this case,

there exists a unique ẑ ≥ 0 satisfying f(ẑ) = v0 ẑ. Note that the value of ẑ that satisfies f(ẑ) = v0 ẑ

is the fixed point of the function f(·)/v0. It is possible to show that this value of ẑ corresponds

to the optimal objective value of the Assortment problem and we can solve the Function Evaluation

problem with z = ẑ to obtain an optimal solution to the Assortment problem. We do not give a

proof for this result, since this result immediately follows as a corollary to a more general result

that we shortly give in Theorem 3.1.

Since the Function Evaluation problem is a nonlinear integer program, finding the fixed point of

f(·)/v0 can be difficult. Instead, we will use an LP or SDP relaxation of the Function Evaluation

problem to construct an upper bound fR(·) on f(·) so that fR(z)≥ f(z) for all z ∈R. The upper

bound fR(·) will be decreasing and continuous, satisfying fR(0)≥ 0. Thus, by the same argument

in the previous paragraph, there exists a unique ẑ ≥ 0 satisfying fR(ẑ) = v0 ẑ. In the next theorem,

we show that this value of ẑ upper bounds the optimal objective value of the Assortment problem

and we can use this value of ẑ to obtain an approximate solution.

Theorem 3.1 (Approximation Framework) Assume that fR(·) satisfies fR(z)≥ f(z) for all

z ∈R. Let ẑ ≥ 0 satisfy fR(ẑ) = v0 ẑ and x̂∈F be such that

∑

(i,j)∈M
Vij(x̂)γij (Rij(x̂)− ẑ)≥ αfR(ẑ) (Sufficient Condition)

for some α∈ [0,1]. Then, we have π(x̂)≥ α ẑ ≥ αz∗; so, ẑ upper bounds the optimal objective value

of the Assortment problem and x̂ is an α-approximate solution to the Assortment problem.

Proof: Noting that v0 ẑ = fR(ẑ), we have αv0 ẑ = αfR(ẑ) ≤ ∑(i,j)∈M Vij(x̂)γij (Rij(x̂)− ẑ) ≤
∑

(i,j)∈M Vij(x̂)γij (Rij(x̂)−α ẑ), where the first inequality uses the Sufficient Condition. Thus, we

have αv0 ẑ ≤
∑

(i,j)∈M Vij(x̂)γij (Rij(x̂)−α ẑ), in which case, solving for ẑ in the last inequality, we

get α ẑ ≤∑(i,j)∈M Vij(x̂)γij Rij(x̂)/(v0 +
∑

(i,j)∈M Vij(x̂)γij ) = π(x̂). Next, we show that ẑ ≥ z∗. We

let x∗ be an optimal solution to the Assortment problem. Since x∗ is a feasible but not

necessarily an optimal solution to the Function Evaluation problem when we solve this problem

with z = ẑ, we have f(ẑ) ≥ ∑(i,j)∈M Vij(x
∗)γij (Rij(x

∗) − ẑ). Noting that v0 ẑ = fR(ẑ) ≥ f(ẑ),

we obtain v0 ẑ ≥
∑

(i,j)∈M Vij(x
∗)γij (Rij(x

∗) − ẑ). Solving for ẑ in this inequality, we get ẑ ≥
∑

(i,j)∈M Vij(x
∗)γij Rij(x

∗)/(v0 +
∑

(i,j)∈M Vij(x
∗)γij ) = π(x∗) = z∗. 2

As a corollary, if we apply Theorem 3.1 with fR(·) = f(·), then the value of ẑ that satisfies f(ẑ) =

v0 ẑ is the optimal objective value of the Assortment problem, but we will use the theorem above

only to obtain an approximate solution. By Theorem 3.1, to obtain an α-approximate solution to

the Assortment problem, it is enough to execute the following three steps.
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Approximation Framework

Step 1: Construct a decreasing and continuous upper bound fR(·) on f(·) with fR(0)≥ 0.

Step 2: Find the fixed point ẑ of fR(·)/v0; that is, find the value of ẑ such that fR(ẑ) = v0 ẑ.

Step 3: Find an assortment x̂∈F such that
∑

(i,j)∈MVij(x̂)γij (Rij(x̂)− ẑ)≥ αfR(ẑ).

In Section 3.2, we show how to construct the upper bound fR(·) on f(·) by using an LP relaxation

of the Function Evaluation problem. In Section 3.3, we show how to compute the fixed point of

fR(·)/v0 by solving an LP. Using these results, we can execute Steps 1 and 2 in our approximation

framework. In Section 4, we tackle the uncapacitated problem and use randomized rounding on an

optimal solution of an LP relaxation of the Function Evaluation problem to construct an assortment

x̂ that satisfies the Sufficient Condition with α= 0.6, yielding a 0.6-approximation algorithm. We

also discuss an SDP relaxation to satisfy the Sufficient Condition with α= 0.79. In Section 5, we

tackle the capacitated problem and use iterative rounding to construct an assortment that satisfies

the Sufficient Condition with α= 0.25, yielding a 0.25-approximation algorithm.

Davis et al. (2014), Gallego and Topaloglu (2014), and Feldman and Topaloglu (2015) use

analogues of the Function Evaluation problem and Theorem 3.1 to approximately solve assortment

problems under the nested logit model, but these authors face different challenges. First, under the

nested logit model, since each product appears in one nest, the analogue of the Function Evaluation

problem decomposes by the nests. Second, the authors characterize α-approximate solutions for

the subproblem for each nest for all possible values of z ∈R. In this way, they construct a collection

of candidate assortments for each nest that includes an α-approximate assortment to offer in the

nest. Third, the authors solve an LP to stitch together an α-approximate solution to the assortment

problem by picking one assortment from the candidate collection for each nest.

The steps described above are not possible under the PCL model. First, since a product appears

in multiple nests under the PCL model, the Function Evaluation problem does not decompose by

the nests. Second, the idea of constructing a collection of candidate assortments for each nest does

not yield a useful algorithmic approach under the PCL model, since there are two products in each

nest, yielding four possible assortments in each nest anyway. Third, there is a stronger interaction

between the nests under the PCL model. If we offer an assortment that includes product i in nest

(i, j), then we must offer assortments that include product i in all nests {(i, `) : `∈N \{i}}. Due to

this interaction, we cannot solve an LP to stitch together an approximate solution to the assortment

problem by picking one assortment from a candidate collection for each nest.

In our approach, instead of characterizing α-approximate solutions to the Function Evaluation

problem for all values of z ∈R, we find the fixed point ẑ of the upper bound fR(·)/v0. In this case,

we find an α-approximate solution to the Function Evaluation problem only at z = ẑ.
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3.2. Constructing an Upper Bound

We construct an upper bound fR(·) on f(·) by using an LP relaxation of the Function Evaluation

problem. Noting the definition of Vij(x) and Rij(x), we have

Vij(x)γij (Rij(x)− z) = (v
1/γij
i xi + v

1/γij
j xj)

γij
(pi− z)v1/γiji xi + (pj − z)v1/γijj xj

v
1/γij
i xi + v

1/γij
j xj

.

We let ρij(z) be the expression on the right side above when xi = 1 and xj = 1 and θi(z) be the

expression on the right side above when xi = 1 and xj = 0. In other words, we have

ρij(z) = (v
1/γij
i + v

1/γij
j )γij

(pi− z)v1/γiji + (pj − z)v1/γijj

v
1/γij
i + v

1/γij
j

and θi(z) = vi (pi− z).

There are only four possible values of (xi, xj). In this case, letting µij(z) = ρij(z)− θi(z)− θj(z) for

notational brevity, we can express Vij(x)γij (Rij(x)− z) succinctly as

Vij(x)γij (Rij(x)− z) = ρij(z)xi xj + θi(z)xi (1−xj) + θj(z) (1−xi)xj = µij(z)xi xj + θi(z)xi + θj(z)xj.

Writing its objective function as
∑

(i,j)∈M(µij(z)xi xj + θi(z)xi + θj(z)xj), the Function Evaluation

problem is equivalent to

f(z) = max




∑

(i,j)∈M
(µij(z)xi xj + θi(z)xi + θj(z)xj) :

∑

i∈N
xi ≤ c, xi ∈ {0,1} ∀ i∈N



 .

In general, the sign of µij(z) can be positive or negative, but we shortly show that µij(z) ≤ 0

whenever pi ≥ z and pj ≥ z. To construct an upper bound fR(·) on f(·), we use a standard approach

to linearize the term xi xj in the objective function above. Define the decision variable yij ∈ {0,1}
with the interpretation that yij = xi xj. To ensure that yij takes the value xi xj, we impose the

constraints yij ≥ xi + xj − 1, yij ≤ xi and yij ≤ xj. If xi = 0 or xj = 0, then the constraints yij ≤ xi
and yij ≤ xj ensure that yij = 0. If xi = 1 and xj = 1, then the constraint yij ≥ xi + xj − 1 ensures

that yij = 1. We define our upper bound fR(·) on f(·) by using the LP relaxation

fR(z) = max
∑

(i,j)∈M
(µij(z)yij + θi(z)xi + θj(z)xj) (Upper Bound)

s.t. yij ≥ xi +xj − 1 ∀ (i, j)∈M

yij ≤ xi, yij ≤ xj ∀ (i, j)∈M
∑

i∈N
xi ≤ c

0≤ xi ≤ 1 ∀ i∈N, yij ≥ 0 ∀ (i, j)∈M.

Since the Upper Bound problem is an LP relaxation of the Function Evaluation problem, we have

fR(z)≥ f(z) for all z ∈R. Setting xi = 0 for all i ∈N and yij = 0 for all (i, j) ∈M gives a feasible
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solution to the Upper Bound problem, so fR(·)≥ 0. Since θi(z) and µij(z) are continuous in z and

the optimal objective value of a bounded LP is continuous in its objective function coefficients,

fR(z) is continuous in z. It is not immediately clear that fR(z) is decreasing in z since it is not

immediately clear that the objective function coefficient µij(z) in the Upper Bound problem is

decreasing in z. In the next lemma, we show that fR(z) is decreasing in z. Since fR(·) is decreasing

and continuous with fR(0)≥ 0, there exists a unique ẑ ≥ 0 satisfying fR(ẑ) = v0 ẑ.

Lemma 3.2 (Monotonicity of Upper Bound) The optimal objective value fR(z) of the Upper

Bound problem is decreasing in z.

Proof: Consider z+ ≥ z− and let (x∗,y∗) with y∗ = {y∗ij : (i, j) ∈M} be an optimal solution to the

Upper Bound problem when we solve this problem with z = z+. Since µij(z) = ρij(z)− θi(z)− θj(z)
by the definition of µij(z), we obtain

fR(z+) =
∑

(i,j)∈M
(µij(z

+)y∗ij + θi(z
+)x∗i + θj(z

+)x∗j )

=
∑

(i,j)∈M
(ρij(z

+)y∗ij + θi(z
+) (x∗i − y∗ij) + θj(z

+) (x∗j − y∗ij))

≤
∑

(i,j)∈M
(ρij(z

−)y∗ij + θi(z
−) (x∗i − y∗ij) + θj(z

−) (x∗j − y∗ij))

=
∑

(i,j)∈M
(µij(z

−)y∗ij + θi(z
−)x∗i + θj(z

−)x∗j )

≤ fR(z−),

where the first inequality is by the fact that ρij(z) and θi(z) are decreasing in z, along with the fact

that y∗ij ≤ x∗i and y∗ij ≤ x∗j , whereas the second inequality is by the fact that (x∗,y∗) is a feasible

but not necessarily an optimal solution to the Upper Bound problem with z = z−. 2

One useful property of the Upper Bound problem is that there exists an optimal solution to this

problem where the decision variable xi takes a non-zero value only when pi ≥ z and the decision

variable yij takes a non-zero value only when pi ≥ z and pj ≥ z. Thus, we need to keep the decision

variable xi only when pi ≥ z and we need to keep the decision variable yij only when pi ≥ z and

pj ≥ z. This property allows us to significantly simplify the Upper Bound problem. In particular,

let N(z) = {i ∈N : pi ≥ z} and M(z) = {(i, j)∈N(z)2 : i 6= j}. In Lemma G.1 in Appendix G, we

show that there exists an optimal solution x∗ = {xi : i∈N} and y∗ = {y∗ij : (i, j)∈N} to the Upper

Bound problem such that x∗i = 0 for all i 6∈N(z) and y∗ij = 0 for all (i, j) 6∈M(z). The proof of this

result follows by showing that if x̂= {x̂i : i ∈N} and ŷ = {ŷij : (i, j) ∈N} is a feasible solution to

the Upper Bound problem, then we can set x̂i = 0 for all i 6∈N(z) and ŷij = 0 for all (i, j) 6∈M(z)

while making sure that the solution (x̂, ŷ) remains feasible to the Upper Bound problem and we do
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not degrade the objective value provided by this solution. In this case, letting 1(·) be the indicator

function and dropping the decision variable xi for all i 6∈N(z) and the decision variable yij for all

(i, j) 6∈M(z), we write the objective function of the Upper Bound problem as

∑

(i,j)∈M
1(i∈N(z), j ∈N(z)) (µij(z)yij + θi(z)xi + θj(z)xj)

+
∑

(i,j)∈M
1(i∈N(z), j 6∈N(z))θi(z)xi +

∑

(i,j)∈M
1(i 6∈N(z), j ∈N(z))θj(z)xj.

For the last two sums, we have
∑

(i,j)∈M 1(i∈N(z), j 6∈N(z))θi(z)xi = |N \N(z)|∑i∈N(z) θi(z)xi

and
∑

(i,j)∈M 1(i 6∈N(z), j ∈N(z))θj(z)xj = |N \ N(z)|∑j∈N(z) θj(z)xj. Thus, the objective

function of the Upper Bound problem takes the form
∑

(i,j)∈M(z) (µij(z)yij + θi(z)xi + θj(z)xj) +

2 |N \N(z)|∑i∈N(z) θi(z)xi. A simple lemma, given as Lemma G.2 in Appendix G, shows that

µij(z)≤ 0 for all (i, j)∈M(z). So, the decision variable yij takes its smallest possible value in the

Upper Bound problem, which implies that the constraints yij ≤ xi and yij ≤ xj are redundant. In

this case, the Upper Bound problem is equivalent to the problem

fR(z) = max
∑

(i,j)∈M(z)

(µij(z)yij + θi(z)xi + θj(z)xj) + 2 |N \N(z)|
∑

i∈N(z)

θi(z)xi

s.t. yij ≥ xi +xj − 1 ∀ (i, j)∈M(z) (Compact Upper Bound)
∑

i∈N(z)

xi ≤ c

0≤ xi ≤ 1 ∀ i∈N(z), yij ≥ 0 ∀ (i, j)∈M(z).

Both the Upper Bound and Compact Upper Bound problems will be useful. We will use the Upper

Bound problem to find the fixed point of fR(·)/v0. We will use the Compact Upper Bound problem

above to find an assortment x̂ satisfying the Sufficient Condition.

Noting the objective function
∑

(i,j)∈M(µij(z)xi xj + θi(z)xi + θj(z)xj) in the equivalent

formulation of the Function Evaluation problem, this problem does not decompose by the nests

even when we focus on the uncapacitated assortment problem. Therefore, unlike the approach

used by Davis et al. (2014), Gallego and Topaloglu (2014), and Feldman and Topaloglu (2015) for

tackling assortment problems under the nested logit model, since the Function Evaluation problem

does not decompose by the nests under the PCL model, it is difficult to characterize the optimal

or approximate solutions to the Function Evaluation problem for all values of z ∈ R. Instead, we

approximate the Function Evaluation problem without decomposing it. Rather than characterizing

approximate solutions for all values of z ∈R, we construct an approximate solution to the Function

Evaluation problem with z = ẑ, where ẑ is the fixed point of fR(·)/v0.
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3.3. Computing the Fixed Point

To compute the fixed point of fR(·)/v0, we use the dual of the Upper Bound problem. For each

(i, j)∈M , let αij, βij, and γij be the dual variables of the constraints yij ≥ xi+xj−1, yij ≤ xi and

yij ≤ xj, respectively. For each i∈N , let λi be the dual variable of the constraint xi ≤ 1. Let δ be

the dual variable of the constraint
∑

i∈N xi ≤ c. The dual of the Upper Bound problem is

fR(z) = min c δ+
∑

i∈N
λi +

∑

(i,j)∈M
αij (Dual)

s.t. −αij +βij + γij ≥ µij(z) ∀ (i, j)∈M

δ+λi +
∑

j∈N
1(j 6= i) (αij +αji−βij − γji) ≥ 2 (n− 1)θi(z) ∀ i∈N

αij ≥ 0, βij ≥ 0, γij ≥ 0 ∀ (i, j)∈M, λi ≥ 0 ∀ i∈N, δ≥ 0.

In the Dual problem above, the decision variables are α= {αij : (i, j) ∈M}, β = {βij : (i, j) ∈M},
γ = {γij : (i, j) ∈M}, λ = {λi : i ∈N} and δ. We treat z as fixed. In the next theorem, we show

that if we treat z as a decision variable and add one constraint to the Dual problem that involves

the decision variable z, then we can recover the fixed point of fR(·)/v0.

Theorem 3.3 (Fixed Point Computation by Using an LP) Let (α̂, β̂, γ̂, λ̂, δ̂, ẑ) be an

optimal solution to the problem

min c δ+
∑

i∈N
λi +

∑

(i,j)∈M
αij (Fixed Point)

s.t. −αij +βij + γij ≥ µij(z) ∀ (i, j)∈M

δ+λi +
∑

j∈N
1(j 6= i) (αij +αji−βij − γji) ≥ 2 (n− 1)θi(z) ∀ i∈N

cδ+
∑

i∈N
λi +

∑

(i,j)∈M
αij = v0 z

αij ≥ 0, βij ≥ 0, γij ≥ 0 ∀ (i, j)∈M, λi ≥ 0 ∀ i∈N, δ≥ 0, z is free.

Then, we have fR(ẑ) = v0 ẑ; so, ẑ is the fixed point of fR(·)/v0.

Proof: Let z̄ be the fixed point of fR(·)/v0 so that fR(z̄) = v0 z̄. We will show that ẑ = z̄. Let

(ᾱ, β̄, γ̄, λ̄, δ̄) be an optimal solution to the Dual problem when we solve this problem with z =

z̄. Thus, we have c δ̄ +
∑

i∈N λ̄i +
∑

(i,j)∈M ᾱij = fR(z̄) = v0 z̄, which implies that the solution

(ᾱ, β̄, γ̄, λ̄, δ̄, z̄) satisfies the last constraint in the Fixed Point problem in the theorem. Furthermore,

since the solution (ᾱ, β̄, γ̄, λ̄, δ̄) is feasible to the Dual problem, it satisfies the first two constraints
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in the Fixed Point problem as well. Thus, (ᾱ, β̄, γ̄, λ̄, δ̄, z̄) is a feasible but not necessarily an optimal

solution to the the Fixed Point problem, which implies that

v0 z̄ = fR(z̄) = c δ̄+
∑

i∈N
λ̄i +

∑

(i,j)∈M
ᾱij ≥ c δ̂+

∑

i∈N
λ̂i +

∑

(i,j)∈M
α̂ij = v0 ẑ,

where the last equality uses the fact that (α̂, β̂, γ̂, λ̂, δ̂, ẑ) satisfies the last constraint in the Fixed

Point problem. The chain of inequalities above implies that z̄ ≥ ẑ. Next, we show that z̄ ≤ ẑ. Note

that (α̂, β̂, γ̂, λ̂, δ̂) is a feasible solution to the Dual problem with z = ẑ, so that the objective

value of the Dual problem at the solution (α̂, β̂, γ̂, λ̂, δ̂) is no smaller than its optimal objective

value. Therefore, we have fR(ẑ) ≤ c δ̂+
∑

i∈N λ̂i +
∑

(i,j)∈M α̂ij = v0 ẑ, where the equality uses the

fact that (α̂, β̂, γ̂, λ̂, δ̂, ẑ) satisfies the last constraint in the Fixed Point problem. Since fR(·) is a

decreasing function, having fR(z̄) = v0 z̄ and fR(ẑ)≤ v0 ẑ implies that z̄ ≤ ẑ. 2

Since µij(z) and θi(z) are linear functions of z, the Fixed Point problem is an LP. Thus, we can

compute the fixed point of fR(·)/v0 by solving an LP.

4. Applying the Approximation Framework to the Uncapacitated Problem

In Sections 3.2 and 3.3, we show how to construct an upper bound fR(·) on f(·) by using an

LP relaxation of the Function Evaluation problem and how to find the fixed point of fR(·)/v0
by using the Fixed Point problem. This discussion allows us to execute Steps 1 and 2 in

our approximation framework that we give in Section 3.1. In this section, we focus on Step

3 in our approximation framework for the uncapacitated problem. In particular, letting ẑ be

such that fR(ẑ) = v0 ẑ, we give an efficient approach to find a subset of products x̂ that

satisfies
∑

(i,j)∈M Vij(x̂)γij (Rij(x̂)− ẑ) ≥ 0.6fR(ẑ). In this case, Theorem 3.1 implies that x̂ is a

0.6-approximate solution to the uncapacitated assortment problem. Letting ẑ satisfy fR(ẑ) = v0 ẑ,

since the value of ẑ is fixed, to simplify our notation, we exclude the reference to ẑ in this

section. In particular, we let µij = µij(ẑ), θi = θi(ẑ), ρij = ρij(ẑ), f
R = fR(ẑ), N̂ = N(ẑ) and

M̂ =M(ẑ). Also, since we consider the uncapacitated assortment problem, we omit the constraint
∑

i∈N(z) xi ≤ c. Thus, we write the Compact Upper Bound problem as

fR = max
∑

(i,j)∈M̂

(µij yij + θi xi + θj xj) + 2 |N \ N̂ |
∑

i∈N̂

θi xi (1)

s.t. yij ≥ xi +xj − 1 ∀ (i, j)∈ M̂

0≤ xi ≤ 1 ∀ i∈ N̂ , yij ≥ 0 ∀ (i, j)∈ M̂.

Our goal is to find x̂ that satisfies
∑

(i,j)∈M Vij(x̂)γij (Rij(x̂)− ẑ)≥ 0.6fR, where fR is the optimal

objective value of the problem above. We use randomized rounding for this purpose. Let (x∗,y∗) be
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an optimal solution to the problem above. We define a random subset of products X̂ = {X̂i : i∈N}
by independently rounding each coordinate of x∗ as follows. For each i∈ N̂ , we set

X̂i =

{
1 with probability x∗i
0 with probability 1−x∗i .

(2)

For each i ∈N \ N̂ , we set X̂i = 0. Note that the subset of products X̂ is a random variable with

E{X̂i}= x∗i for all i∈ N̂ . In the next theorem, we give the main result of this section.

Theorem 4.1 (0.6-Approximation) Let X̂ be obtained by using the randomized rounding

approach. Then, we have

E
{ ∑

(i,j)∈M
Vij(X̂)γij (Rij(X̂)− ẑ)

}
≥ 0.6fR.

Proof: Here, we will show that E{∑(i,j)∈M Vij(X̂)γij (Rij(X̂)− ẑ)} ≥ 0.5fR and briefly discuss how

to refine the analysis to get the approximation guarantee of 0.6. The details of the refined analysis

are in Appendix H. As discussed at the beginning of Section 3.2, we have Vij(X̂)γij (Rij(X̂)− ẑ) =

µij X̂i X̂j + θi X̂i + θj X̂j. So, since {X̂i : i∈N} are independent and E{X̂i}= x∗i , we have

E{Vij(X̂)γij (Rij(X̂)− ẑ)}=





µij x
∗
i x
∗
j + θi x

∗
i + θj x

∗
j if i∈ N̂ , j ∈ N̂ , i 6= j

θi x
∗
i if i∈ N̂ , j /∈ N̂

θj x
∗
j if i /∈ N̂ , j ∈ N̂

0 if i /∈ N̂ , j /∈ N̂ .

Letting [a]+ = max{a,0} and considering the four cases above through the indicator function, we

can write
∑

i,j)∈M E{Vij(X̂)γij (Rij(X̂)− ẑ)} equivalently as

∑

(i,j)∈M
E{Vij(X̂)γij (Rij(X̂)− ẑ)} =

∑

(i,j)∈M
1(i∈ N̂ , j ∈ N̂) (µij x

∗
i x
∗
j + θi x

∗
i + θj x

∗
j )

+
∑

(i,j)∈M
1(i∈ N̂ , j 6∈ N̂)θi x

∗
i +

∑

(i,j)∈M
1(i 6∈ N̂ , j ∈ N̂)θj x

∗
j

=
∑

(i,j)∈M̂

(µij x
∗
i x
∗
j + θi x

∗
i + θj x

∗
j ) + 2 |N \ N̂ |

∑

i∈N̂

θi x
∗
i

=
∑

(i,j)∈M̂

(µij [x∗i +x∗j − 1]+ + θi x
∗
i + θj x

∗
j ) + 2 |N \ N̂ |

∑

i∈N̂

θi x
∗
i +

∑

(i,j)∈M̂

µij (x∗i x
∗
j − [x∗i +x∗j − 1]+)

= fR +
∑

(i,j)∈M̂

µij (x∗i x
∗
j − [x∗i +x∗j − 1]+)

≥ fR +
1

4

∑

(i,j)∈M̂

µij.

In the chain of inequalities above, the fourth equality follows because we have µij ≤ 0 for all

(i, j) ∈ M̂ by Lemma G.2 so that the decision variable y∗ij takes its smallest possible value in an
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optimal solution to the Compact Upper Bound problem, which implies that y∗ij = [x∗i +x∗j −1]+. The

last inequality follows from the fact that we have 0 ≤ ab− [a+ b− 1]+ ≤ 1/4 for any a, b ∈ [0,1].

To complete the proof, we proceed to giving a lower bound on fR. Let x̂i = 1
2

for all i ∈ N̂ and

ŷij = 0 for all (i, j) ∈ M̂ . In this case, (x̂, ŷ) is a feasible solution to the LP that computes fR at

the beginning of this section, which implies that the objective value of this LP at (x̂, ŷ) provides

a lower bound on fR. Therefore, we can lower bound fR as

fR ≥
∑

(i,j)∈M̂

θi + θj
2

+ |N \ N̂ |
∑

i∈N̂

θi ≥
∑

(i,j)∈M̂

θi + θj
2

≥
∑

(i,j)∈M̂

θi + θj − ρij
2

= −
∑

(i,j)∈M̂

µij
2
,

where the second inequality holds since θi ≥ 0 for all i ∈ N̂ , the third inequality holds since

ρij ≥ 0 for all (i, j)∈ M̂ and the equality follows from the definition of µij. Using the lower bound

above on fR in the earlier chain of inequalities, we have
∑

(i,j)∈M E{Vij(X̂)γij (Rij(X̂) − ẑ)} ≥
fR + 1

4

∑
(i,j)∈M̂ µij ≥ 1

2
fR, which is the desired result. Next, we briefly discuss how to refine the

analysis to improve the approximation guarantee to 0.6. The refined analysis is lengthy and we

defer the details of the refined analysis to Appendix H.

The discussion above uses a lower bound on fR that is based on a feasible solution (x̂, ŷ) with

x̂i = 1
2

for all i ∈ N̂ and ŷij = 0 for all (i, j) ∈ M̂ . This lower bound may not be tight. In our

refined analysis, we discuss that if (x̂, ŷ) is an extreme point of the feasible region in the LP that

computes fR at the beginning of this section, then we have x̂i ∈ {0, 12 ,1} for all i ∈ N̂ . Motivated

by this observation, we enumerate over a relatively small collection of feasible solutions (x̂, ŷ) to

the LP that computes fR, where we have x̂i ∈ {0, 12 ,1} for all i∈ N̂ and ŷij = [xi +xj − 1]+ for all

(i, j) ∈ M̂ . We pick the best one of these solutions to obtain a tighter lower bound on fR. In this

case, we can show that
∑

(i,j)∈M E{Vij(X̂)γij (Rij(X̂)− ẑ)} ≥ 0.6fR. 2

The subset of products X̂ is a random variable, but in Theorem 3.1, we need a deterministic

subset of products x̂ that satisfies the Sufficient Condition. In particular, even if the subset of

products X̂ satisfies
∑

(i,j)∈M E{Vij(X̂)γij (Rij(X̂)− ẑ)} ≥ 0.6fR, Theorem 3.1 does not necessarily

imply that E{π(X̂)} ≥ 0.6z∗. Nevertheless, we can use the method of conditional expectations

to de-randomize the subset of products X̂ so that we obtain a deterministic subset of products

x̂ that satisfies
∑

(i,j)∈M Vij(x̂)γij (Rij(x̂)− ẑ)≥ 0.6fR, in which case, we obtain π(x̂)≥ 0.6z∗ by

Theorem 3.1. Therefore, the subset of products x̂ that we obtain by de-randomizing the subset of

products X̂ is a 0.6-approximate solution to the Assortment problem.

The method of conditional expectations is standard in the discrete optimization literature; see

Section 15.1 in Alon and Spencer (2000) and Section 5.2 in Williamson and Shmoys (2011). We give

an overview of our use of the method of conditional expectations but defer the detailed discussion
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of this method to Appendix I. In the method of conditional expectations, we inductively construct

a subset of products x(k) = (x̂1, . . . , x̂k, X̂k+1, . . . , X̂n) for all k ∈N , where the first k products in

this subset are deterministic and the last n− k products are random variables. In particular, we

start with x(0) = X̂ and construct the subset of products x(k) = (x̂1, . . . , x̂k−1, x̂k, X̂k+1, . . . , X̂n) by

using the subset of products x(k−1) = (x̂1, . . . , x̂k−1, X̂k, X̂k+1, . . . , X̂n). These subsets of products

are constructed in such a way that they satisfy
∑

(i,j)∈M E{Vij(x(k))γij (Rij(x
(k))− ẑ)} ≥ 0.6fR for

all k ∈ N . In this case, the subset of products x(n) = (x̂1, . . . , x̂n) corresponds to a deterministic

subset of products and it satisfies
∑

(i,j)∈M Vij(x
(n))γij (Rij(x

(n))− ẑ)≥ 0.6fR. In other words, the

deterministic subset of products x(n) satisfies the Sufficient Condition with α= 0.6. Constructing

the subset of products x(k) by using the subset of products x(k−1) takes O(n) operations, in which

case, the method of conditional expectations takes O(n2) operations.

Thus, for the uncapacitated problem, we execute the approximation framework given in Section

3.1 as follows, yielding a 0.6-approximation algorithm. (a) Solve the LP given in the Fixed Point

problem in Theorem 3.3 to compute the fixed point ẑ of fR(·)/v0. (b) Recalling that µij = µij(ẑ),

θi = θi(ẑ), M̂ = M(ẑ) and N̂ = N(ẑ), solve the LP in (1) that computes fR at the beginning of

this section to obtain the optimal solution (x∗,y∗). The solution (x∗,y∗) characterizes the random

subset of products X̂ through our randomized rounding approach given in (2) in this section.

(c) De-randomize the subset of products X̂ by using the method of conditional expectations to

obtain a deterministic subset of products x̂ satisfying
∑

(i,j)∈M Vij(x̂)γij (Rij(x̂)− ẑ)≥ 0.6fR. By

Theorem 4.1, the subset of products x̂ is a 0.6-approximate solution to the uncapacitated problem.

In terms of computational effort, we solve two LP formulations, each with O(n2) decision variables

and O(n2) constraints. The method of conditional expectations takes O(n2) operations.

Approximation Framework with a Semidefinite Programming Relaxation

We can also use an SDP relaxation of the Function Evaluation problem to construct an upper bound

fR(·) on f(·). This SDP has O(n2) decision variables and O(n2) constraints. We can compute the

fixed point ẑ of fR(·)/v0 by solving an SDP of the same size. In this case, we can construct a

subset of products X̂ that satisfies
∑

(i,j)∈M E{Vij(X̂)γij (Rij(X̂)− ẑ)} ≥ 0.79fR(ẑ), where fR(·)
refers to the upper bound constructed by using the SDP relaxation. This approach provides a

stronger approximation guarantee, but comes at the expense of solving an SDP. We summarize

this approach in the next theorem and defer the details to Appendix J.

Theorem 4.2 (SDP Relaxation) There exists an algorithm to find the fixed point ẑ of a

function fR(·)/v0 that satisfies fR(z) ≥ f(z) for all z ∈ R and to construct a random subset of

products X̂ that satisfies
∑

(i,j)∈M E{Vij(X̂)γij (Rij(X̂)− ẑ)} ≥ 0.79fR(ẑ). This algorithm requires

solving two SDP formulations, each with O(n2) decision variables and O(n2) constraints.
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5. Applying the Approximation Framework to the Capacitated Problem

We consider Step 3 in our approximation framework for the capacitated problem. Letting ẑ satisfy

fR(ẑ) = v0 ẑ for fR(·) given by the Compact Upper Bound problem, we focus on finding a subset of

products x̂ such that
∑

(i,j)∈M Vij(x̂)γij (Rij(x̂)− ẑ)≥ 1
4
fR(ẑ) and

∑
i∈N x̂i ≤ c. Then, by Theorem

3.1, the subset of products x̂ is a 0.25-approximate solution to the Assortment problem.

5.1. Half-Integral Solutions Through Iterative Rounding

As in the previous section, since the value of ẑ is fixed, to simplify our notation, we drop the

argument ẑ in the Compact Upper Bound problem. In particular, we let µij = µij(ẑ), θi = θi(ẑ),

ρij = ρij(ẑ), f
R = fR(ẑ), N̂ =N(ẑ) and M̂ =M(ẑ). Noting that the optimal objective value of the

Compact Upper Bound problem is fR, we write the Compact Upper Bound problem as

fR = max
∑

(i,j)∈M̂

(µij yij + θi xi + θj xj) + 2 |N \ N̂ |
∑

i∈N̂

θi xi

s.t. yij ≥ xi +xj − 1 ∀ (i, j)∈ M̂
∑

i∈N̂

xi ≤ c

0≤ xi ≤ 1 ∀ i∈ N̂ , yij ≥ 0 ∀ (i, j)∈ M̂.

We can construct counterexamples to show that all of the decision variables {xi : i ∈ N̂} can take

strictly positive values in an extreme point of the set of feasible solutions to the LP above. In

Example K.1 in Appendix K, we give one such counterexample. In this case, letting {x∗i : i∈ N̂} be

an optimal solution to the LP above, if we construct a random subset of products by using a naive

randomized rounding approach that sets xi = 1 with probability x∗i and xi = 0 with probability

1− x∗i , then the random subset of products may violate the capacity constraint. To address this

difficulty, we will use an iterative rounding algorithm, where we iteratively solve a modified version

of the LP above after fixing some of the decision variables {xi : i∈ N̂} at 1
2
. In this way, we construct

a feasible solution to the LP above, where the decision variables {xi : i ∈ N̂} ultimately all take

values in {0, 1
2
,1}. In the feasible solution that we construct, since the smallest strictly positive

value for the decision variables {xi : i ∈ N̂} is 1
2
, noting the constraint

∑
i∈N̂ xi ≤ c, no more than

2 c of the decision variables {xi : i ∈ N̂} can take strictly positive values. In this case, we will be

able to use a coupled randomized rounding algorithm on the feasible solution to obtain a random

subset of products that includes no more than c products.

Since we will solve the LP above after fixing some of the decision variables {xi : i ∈ N̂} at 1
2
,

we study the extreme points of the set of feasible solutions to this LP with some of the decision
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variables {xi : i∈ N̂} fixed at 1
2
. In particular, if we fix the decision variables {xi : i∈H} at 1

2
, then

the set of feasible solutions to the LP is given by the polyhedron

P(H) =

{
(x,y)∈ [0,1]|N̂ |×R|M̂ |+ : yij ≥ xi +xj − 1 ∀ (i, j)∈ M̂,

∑

i∈N̂

xi ≤ c, xi =
1

2
∀ i∈H

}
.

In the next lemma, we show a useful structural property of the extreme points of P(H). In

particular, it turns out that if none of the decision variables {xi : i ∈ N̂} take a fractional value

larger than 1
2

in an extreme point of P(H), then all of the decision variables {xi : i ∈ N̂} must

take values in {0, 1
2
,1}. This result shortly becomes useful for arguing that our iterative rounding

algorithm terminates with a feasible solution to the LP that computes fR at the beginning of this

section, where all of the decision variables {xi : i∈ N̂} are guaranteed to take values in {0, 1
2
,1}. We

defer the proof of the next lemma to Appendix K.

Lemma 5.1 (Extreme Points) For any H ⊆ N̂ , let (x̂, ŷ) be an extreme point of P(H). If there

is no product i∈ N̂ such that 1
2
< x̂i < 1, then we have x̂i ∈ {0, 12 ,1} for all i∈ N̂ .

We consider the following iterative rounding algorithm to construct a feasible solution to the LP

that computes fR at the beginning of this section.

Iterative Rounding

Step 1: Set the iteration counter to k= 1 and initialize the set of fixed variables Hk =∅.

Step 2: Let (xk,yk) be an optimal solution to the LP

fk = max

{ ∑

(i,j)∈M̂

(µij yij + θi xi + θj xj) + 2 |N \ N̂ |
∑

i∈N̂

θi xi : (x,y)∈P(Hk)

}
. (Variable Fixing)

Step 3: If there exists some ik ∈ N̂ such that 1
2
<xkik < 1, then set Hk+1 =Hk ∪{ik}, increase k

by one and go to Step 2. Otherwise, stop.

Without loss of generality, we assume that the optimal solution (xk,yk) to the Variable Fixing

problem in Step 2 is an extreme point of P(Hk). In Step 3 of the iterative rounding algorithm, if

there does not exist some i ∈ N̂ such that 1
2
< xki < 1, then we stop. By Lemma 5.1, if there does

not exist some i ∈ N̂ such that 1
2
< xki < 1, then we have xki ∈ {0, 12 ,1} for all i ∈ N̂ . Therefore,

if the iterative rounding algorithm stops at iteration k with the solution (xk,yk), then we must

have xki ∈ {0, 12 ,1} for all i ∈ N̂ . Similar iterative rounding approaches are often used to design

approximation algorithms for discrete optimization problems; see Lau et al. (2011).

We use (x∗,y∗) to denote an optimal solution to the Variable Fixing problem at the last

iteration of the iterative rounding algorithm. By the discussion in the previous paragraph, we have
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x∗i ∈ {0, 12 ,1} for all i ∈ N̂ . Also, since this solution is feasible to the Variable Fixing problem, we

have
∑

i∈N̂ x
∗
i ≤ c. Therefore, noting that the smallest strictly positive value of {x∗i : i∈ N̂} is 1

2
, no

more than 2c of the decision variables {x∗i : i ∈ N̂} can take strictly positive values. Nevertheless,

including each product i ∈ N̂ in a subset with probability x∗i may not provide a solution that

satisfies the capacity constraint, because this subset can include as many as 2c products. Instead, we

use a coupled randomized rounding approach to obtain a random subset of products that satisfies

the capacity constraint with probability one.

5.2. Feasible Subsets Through Coupled Randomized Rounding

Letting (x∗,y∗) be an optimal solution to the Variable Fixing problem at the last iteration of the

iterative rounding algorithm, we use the following coupled randomized rounding approach to obtain

a random subset of products X̂ = {X̂i : i∈N}.

Coupled Randomized Rounding

Recall that we have x∗i ∈ {0, 12 ,1} for all i∈ N̂ . We assume that the number of the decision variables

in {x∗i : i∈ N̂} that take the value 1
2

is even. The idea of coupled randomized rounding is similar

under the odd case. Letting 2` be the number of the decision variables in {x∗i : i ∈ N̂} that take

the value 1
2
, we use {x∗i1 , x∗j1 , x∗i2 , x∗j2 , . . . , x∗i` , x∗j`} to denote these decision variables. We view each

of (i1, j1), (i2, j2), . . . , (i`, j`) as a pair. Using the solution (x∗,y∗), we define the random subset

of products X̂ = {X̂i : i ∈ N} as follows. For each pair (im, jm), we set (X̂im , X̂jm) = (1,0) with

probability 0.5, whereas we set (X̂im , X̂jm) = (0,1) with probability 0.5. Note that the decision

variables {x∗i : i ∈ N̂} that are not in the set {x∗i1 , x∗j1 , x∗i2 , x∗j2 , . . . , x∗i` , x∗j`} take the value zero or

one. Thus, for all i ∈ N̂ \ {i1, j1, i2, j2, . . . , i`, j`}, we set X̂i = 1 if x∗i = 1, whereas we set X̂i = 0 if

x∗i = 0. Finally, we set X̂i = 0 for all i∈N \ N̂ .

In our construction, X̂im and X̂jm for the pair (im, jm) are dependent, but the components of X̂

corresponding to different pairs are independent. Also, we have E{X̂i}= x∗i for all i ∈ N̂ . Lastly,

the subset of products X̂ always satisfies the capacity constraint
∑

i∈N X̂i ≤ c. In particular, we

let S = {i ∈ N̂ : x∗i = 1
2
} and L= {i ∈ N̂ : x∗i = 1}. We have |S|= 2`. By the definition of X̂, there

are exactly `+ |L| products in X̂, so
∑

i∈N X̂i = `+ |L|. Since (x∗,y∗) is a feasible solution to

the Variable Fixing problem, we have
∑

i∈N̂ x
∗
i ≤ c, but we can write the last sum as

∑
i∈N̂ x

∗
i =

2` · 1
2

+ |L|= `+ |L|, indicating X̂ satisfies the capacity constraint
∑

i∈N X̂i = `+ |L| ≤ c.

The main result of this section is stated in the following theorem.
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Theorem 5.2 (0.25-Approximation) Let X̂ be obtained by using the coupled randomized

rounding approach. Then, we have

∑

(i,j)∈M
E{Vij(X̂)γij (Rij(X̂)− ẑ)} ≥ 1

4
fR.

We give the proof of this theorem in Section 5.3. The subset of products X̂ is random, but

we can use the method of conditional expectations discussed in Section 4 and Appendix I to

obtain a deterministic subset of products x̂ that satisfies
∑

(i,j)∈M Vij(x̂)γij (Rij(x̂)− ẑ)≥ 1
4
fR and

∑
i∈N x̂i ≤ c. The only difference is that we condition on the pair (X̂im , X̂jm) when we consider the

products (im, jm) that are paired in the coupled randomized rounding approach. For product i that

is not paired, we condition on X̂i. Using the same argument in Appendix I, for the capacitated

problem, the method of conditional expectations takes O(n2) operations.

Thus, for the capacitated problem, we can execute the approximation framework given in

Section 3.1 as follows, yielding a 0.25-approximation algorithm. (a) Solve the LP given in the

Fixed Point problem in Theorem 3.3 to compute the fixed point ẑ of fR(·)/v0. (b) Recalling that

µij = µij(ẑ), θi = θi(ẑ), M̂ =M(ẑ) and N̂ =N(ẑ) in the Variable Fixing problem, we execute the

iterative rounding algorithm. Let (x∗,y∗) be an optimal solution to the Variable Fixing problem at

the last iteration of the iterative rounding algorithm. Through the coupled randomized rounding

approach, the solution (x∗,y∗) characterizes the random subset of products X̂. (c) De-randomize

the subset of products X̂ by using the method of conditional expectations to obtain a deterministic

subset of products x̂ satisfying
∑

(i,j)∈M Vij(x̂)γij (Rij(x̂)− ẑ)≥ 1
4
fR and

∑
i∈N x̂i ≤ c. In terms of

computational effort, to compute the fixed point of fR(·)/v0, we solve an LP with O(n2) decision

variables and O(n2) constraints. The iterative rounding algorithm terminates in O(n) iterations. At

each iteration of the iterative rounding algorithm, we solve an LP with O(n2) decision variables

and O(n2) constraints. The method of conditional expectations takes O(n2) operations.

5.3. Proof of Theorem 5.2

We devote this section in its entirety to the proof of Theorem 5.2. The proof relies on the next two

lemmas. As the iterations of the iterative rounding algorithm progress, we fix additional decision

variables at the value 1
2

in the Variable Fixing problem. Therefore, noting that the optimal objective

value of the Variable Fixing problem at iteration k is fk, since the Variable Fixing problem at iteration

k+ 1 has one more decision variable fixed at 1
2
, we have fk+1 ≤ fk for all k = 1,2, . . .. In the next

lemma, we give an upper bound on the degradation in the optimal objective value of the Variable

Fixing problem at the successive iterations of the iterative rounding algorithm.
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Lemma 5.3 (Reduction in Objective) For all k= 1,2, . . ., we have fk− fk+1 ≤ (|N | − 1)θik .

Proof: We have
∑

(i,j)∈M̂ θi xi =
∑

i∈N̂
∑

j∈N̂ 1(i 6= j)θi xi = (|N̂ | − 1)
∑

i∈N̂ θi xi. Similarly, we have
∑

(i,j)∈M̂ θj xj = (|N̂ | − 1)
∑

i∈N̂ θi xi. In this case, since |N̂ | − 1 + |N \ N̂ |= |N | − 1, we can write

the objective function of the Variable Fixing problem as

∑

(i,j)∈M̂

(µij yij + θi xi + θj xj) + 2 |N \ N̂ |
∑

i∈N̂

θi xi

=
∑

(i,j)∈M̂

µij yij + 2(|N̂ | − 1)
∑

i∈N̂

θi xi + 2 |N \ N̂ |
∑

i∈N̂

θi xi =
∑

(i,j)∈M̂

µij yij + 2(|N | − 1)
∑

i∈N̂

θi xi.

Since the iterative rounding algorithm did not stop at iteration k, we have xkik ∈ ( 1
2
,1). We define

the solution (x̃, ỹ) to the Variable Fixing problem as follows. We set x̃i = xki for all i∈ N̂ \ {ik} and

x̃ik = 1
2
. Also, we set ỹij = [x̃i + x̃j − 1]+ for all (i, j)∈ M̂ .

We claim that (x̃, ỹ) is a feasible solution to the Variable Fixing problem at iteration k+ 1. In

particular, since xkik ∈ ( 1
2
,1), but x̃ik = 1

2
, we have x̃i ≤ xki for all i ∈ N̂ . Therefore,

∑
i∈N̂ x̃i ≤∑

i∈N̂ x
k
i ≤ c, where the last inequality uses the fact that (xk,yk) is a feasible solution to the Variable

Fixing problem at iteration k so that it satisfies the capacity constraint. Also, we have xki = 1
2

for

all i ∈Hk. Since Hk+1 =Hk ∪ {ik} and x̃ik = 1
2
, we have x̃i = 1

2
for all i ∈Hk+1. Thus, it follows

that (x̃, ỹ) is a feasible solution to the Variable Fixing problem at iteration k+1. Since (x̃, ỹ) is not

necessarily an optimal to the same problem at iteration k+ 1, we have

fk− fk+1 ≤ fk−
∑

(i,j)∈M̂

µij ỹij − 2 (|N | − 1)
∑

i∈N̂

θi x̃i

=
∑

(i,j)∈M̂

µij (ykij − ỹij) + 2(|N | − 1)θik

(
xkik −

1

2

)
+ 2(|N | − 1)

∑

i∈N̂\{ik}

θi (x
k
i − x̃i)

≤
∑

(i,j)∈M̂

µij (ykij − ỹij) + (|N | − 1)θik ,

where the equality uses the fact that (xk,yk) is an optimal solution to the Variable Fixing

problem at iteration k and the second inequality uses the fact that xkik ≤ 1 and x̃i = xki for all

i∈ N̂ \ {ik}. Assume for the moment that ykij = [xki +xkj −1]+ for all (i, j)∈ M̂ . By our construction,

we have ỹij = [x̃i + x̃j − 1]+ as well. Earlier in this paragraph, we showed that xki ≥ x̃i for all

i∈ N̂ . Since [·]+ is an increasing function, we get ykij ≥ ỹij for all (i, j)∈ M̂ . By Lemma G.2, we have

µij ≤ 0 for all (i, j)∈ M̂ . In this case, we obtain
∑

(i,j)∈M̂ µij (ykij− ỹij) + (|N |−1)θik ≤ (|N |−1)θik

and the desired result follows from the chain of inequalities above.

To complete the proof, we argue that ykij = [xki +xkj − 1]+ for all (i, j)∈ M̂ . Note that (xk,yk) is

an extreme point of P(Hk). If ykij > [xki +xkj −1]+ for some (i, j)∈ M̂ , then we can perturb only this
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component of yk by +ε and −ε for a small enough ε > 0, while keeping the other components of

(xk,yk) constant. The two points that we obtain are in P(Hk) and (xk,yk) is a convex combination

of the two points, which contradicts the fact that (xk,yk) is an extreme point of P(Hk). 2

In the next lemma, we accumulate the degradation in the optimal objective value of the Variable

Fixing problem over the iterations of the iterative rounding algorithm to compare the optimal

objective value of the Variable Fixing problem at the last iteration with fR.

Lemma 5.4 (Objective at Last Iteration) If (x∗,y∗) is an optimal solution to the Variable

Fixing problem at the last iteration of the iterative rounding algorithm, then we have

∑

(i,j)∈M̂

(µij y
∗
ij + θi x

∗
i + θj x

∗
j ) + 2 |N \ N̂ |

∑

i∈N̂

θi x
∗
i ≥

1

2
fR.

Proof: By the discussion at the beginning of the proof of Lemma 5.3, we can write the objective

function of the Variable Fixing problem as
∑

(i,j)∈M̂ µij yij + 2 (|N | − 1)
∑

i∈N̂ θi xi. We let K be

the last iteration of the iterative rounding algorithm. Consider the Variable Fixing problem at

iteration K. In this problem, we fix the decision variables in {xi : i ∈HK} at 1
2

and have HK =

{i1, . . . , iK−1} by the construction of the iterative rounding algorithm. If we set xi = 1
2

for all

i∈HK , xi = 0 for all i∈ N̂ \ {HK} and yij = 0 for all (i, j)∈ M̂ , then we obtain a feasible solution

to the Variable Fixing problem at iteration K and this solution provides the objective value of

2 (|N | − 1)
∑

i∈HK
θi
2

= (|N | − 1)
∑

i∈HK θi. Since the optimal objective value of the Variable Fixing

problem at iteration K is fK , we get fK ≥ (|N | − 1)
∑

i∈HK θi. By Lemma 5.3, we also have

fk− fk+1 ≤ (|N | − 1)θik for all k= 1, . . . ,K − 1. In this case, we obtain

∑

(i,j)∈M̂

(µij y
∗
ij + θi x

∗
i + θj x

∗
j ) + 2 |N \ N̂ |

∑

i∈N̂

θi x
∗
i = fK − 1

2
(|N | − 1)

∑

i∈HK
θi +

1

2
(|N | − 1)

∑

i∈HK
θi

≥ fK − 1

2
(|N | − 1)

∑

i∈HK
θi +

1

2

K−1∑

k=1

(fk− fk+1) ≥ 1

2
fK +

1

2

K−1∑

k=1

(fk− fk+1) =
1

2
f1.

In the chain of inequalities above, the first equality is from the fact that (x∗,y∗) is an optimal

solution to the Variable Fixing problem at iteration K. The first inequality is by the fact that

fk− fk+1 ≤ (|N | − 1)θik for all k = 1, . . . ,K − 1 and HK = {i1, . . . , iK−1}. The second inequality

holds since fK ≥ (|N |−1)
∑

i∈HK θi. Since H1 =∅, the Variable Fixing problem at the first iteration

is identical to the LP that computes fR at the beginning of Section 5.1. Therefore, we get f1 = fR,

in which case, the desired result follows from the chain of inequalities above. 2

Finally, here is the proof of Theorem 5.2.

Proof of Theorem 5.2: Since (x∗,y∗) is an extreme point solution to the Variable Fixing

problem, by the same discussion at the end of the proof of Lemma 5.3, we have y∗ij = [x∗i +x∗j − 1]+



Zhang, Rusmevichientong, and Topaloglu: Assortment Optimization under the PCL Model
29

for all (i, j) ∈ M̂ . Also, by the same discussion at the beginning of Section 3.2, we have

Vij(X̂)γij (Rij(X̂)− ẑ) = µij X̂i X̂j + θi X̂i + θj X̂j. There are four cases to consider.

Case 1: Suppose i ∈ N̂ and j ∈ N̂ with i 6= j. We claim that E{Vij(X̂)γij (Rij(X̂) − ẑ)} ≥
1
2

(µij y
∗
ij + θi x

∗
i + θj x

∗
j ) in this case.

First, assume that the products i and j are paired in the coupled randomized rounding approach.

Thus, we must have x∗i = 1
2

and x∗j = 1
2
, so that y∗ij = [x∗i +x∗j − 1]+ = 0. Also, since products i and

j are paired, we have (X̂i, X̂j) = (1,0) or (X̂i, X̂j) = (0,1), so that X̂i X̂j = 0. So, we get

E{Vij(X̂)γij (Rij(X̂)− ẑ)} = µijE{X̂i X̂j}+ θiE{X̂i}+ θj E{X̂j}

=
θi
2

+
θj
2

=
1

2
(µij y

∗
ij + θi x

∗
i + θj x

∗
j ).

Second, assume that the products i and j are not paired. Thus, X̂i and X̂j are independent, in

which case, E{Vij(X̂)γij (Rij(X̂)− ẑ)}= µij E{X̂i}E{ X̂j}+θiE{X̂i}+θj E{X̂j}= µij x
∗
i x
∗
j +θi x

∗
i +

θj x
∗
j . If x∗i ∈ {0,1} or x∗j ∈ {0,1}, then we have [x∗i +x∗j − 1]+ = x∗i x

∗
j . Thus, we get

E{Vij(X̂)γij (Rij(X̂)− ẑ)} = µij x
∗
i x
∗
j + θi x

∗
i + θj x

∗
j ≥

1

2
(µij x

∗
i x
∗
j + θi x

∗
i + θj x

∗
j )

=
1

2
(µij [x∗i +x∗j − 1]+ + θi x

∗
i + θj x

∗
j ) =

1

2
(µij y

∗
ij + θi x

∗
i + θj x

∗
j ),

where the inequality uses the fact that µij x
∗
i x
∗
j + θi x

∗
i + θj x

∗
j = ρij x

∗
i x
∗
j + θi x

∗
i (1 − x∗j ) +

θj (1−x∗i )x∗j and ρij ≥ 0, θi ≥ 0 and θj ≥ 0 for all (i, j) ∈ M̂ . If x∗i = 1
2

and x∗j = 1
2
, then y∗ij =

[x∗i +x∗j − 1]+ = 0, so since ρij ≥ 0, we obtain

E{Vij(X̂)γij (Rij(X̂)− ẑ)} = µij x
∗
i x
∗
j + θi x

∗
i + θj x

∗
j =

ρij − θi− θj
4

+
θi
2

+
θj
2

≥ θi
4

+
θj
4

=
1

2
(µ∗ij y

∗
ij + θi x

∗
i + θj x

∗
j ),

where the last equality uses the fact that y∗ij = 0. In all cases, we get E{Vij(X̂)γij (Rij(X̂)− ẑ)} ≥
1
2
(µij y

∗
ij + θi x

∗
i + θj x

∗
j ) for all i∈ N̂ and j ∈ N̂ with i 6= j, which is the desired the claim.

Case 2: Suppose i ∈ N̂ and j 6∈ N̂ . Since X̂j = 0, we get Vij(X̂)γij (Rij(X̂)− ẑ) = µij X̂i X̂j +

θi X̂i + θj X̂j = θi X̂i. Thus, we have E{Vij(X̂)γij (Rij(X̂)− ẑ)}= θiE{X̂i}= θi x
∗
i ≥ 1

2
θi x

∗
i .

Case 3: Suppose i 6∈ N̂ and j ∈ N̂ . Using the same argument as in Case 2, it follows that

E{Vij(X̂)γij (Rij(X̂)− ẑ)} ≥ 1
2
θj x

∗
j .

Case 4: Suppose i 6∈ N̂ and j /∈ N̂ with i 6= j. In this case, noting that X̂i = 0 and X̂j = 0, we

get E{Vij(X̂)γij (Rij(X̂)− ẑ)}= 0.

Collecting the four cases above, if i ∈ N̂ and j ∈ N̂ , then we have E{Vij(X̂)γij (Rij(X̂)− ẑ)} ≥
1
2

(µij y
∗
ij + θi x

∗
i + θj x

∗
j ). Also, if i∈ N̂ and j 6∈ N̂ , then we have E{Vij(X̂)γij (Rij(X̂)− ẑ)} ≥ 1

2
θi x

∗
i .
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Similarly, if i 6∈ N̂ and j ∈ N̂ , then we have E{Vij(X̂)γij (Rij(X̂)− ẑ)} ≥ 1
2
θj x

∗
j . Finally, if i 6∈ N̂

and j /∈ N̂ , then we have E{Vij(X̂)γij (Rij(X̂)− ẑ)}= 0. Therefore, we get

∑

(i,j)∈M
E{Vij(X̂)γij (Rij(X̂)− ẑ)} ≥ 1

2

{ ∑

(i,j)∈M
1(i∈ N̂ , j ∈ N̂) (µij y

∗
ij + θi x

∗
i + θj x

∗
j )

+
∑

(i,j)∈M
1(i∈ N̂ , j 6∈ N̂)θi x

∗
i +

∑

(i,j)∈M
1(i 6∈ N̂ , j ∈ N̂)θj x

∗
j

}

=
1

2

{ ∑

(i,j)∈M̂

(µij y
∗
ij + θi x

∗
i + θj x

∗
j ) + 2 |N \ N̂ |

∑

i∈N̂

θi x
∗
i

}

≥ 1

4
fR,

where the equality follows because
∑

(i,j)∈M 1(i ∈ N̂ , j 6∈ N̂)θi x
∗
i = |N \ N̂ |∑i∈N̂ θi x

∗
i =

∑
(i,j)∈M 1(i 6∈ N̂ , j ∈ N̂)θj x

∗
j and the last inequality follows from Lemma 5.4. 2

As an alternative to the coupled randomized rounding approach, letting S = {i∈ N̂ : x∗i = 1
2
} and

recalling that we have |S|= 2` in our discussion of the coupled randomized rounding approach, we

can simply sample ` elements of S without replacement. Using Ŝ to denote these elements, we can

define the random subset of products X̂ = {X̂i : i∈N} as follows. For each i∈ N̂ , we set X̂i = 1 if

i∈ Ŝ and X̂i = 0 if i 6∈ Ŝ. For each i∈N \ N̂ , we set X̂i = 0. In this case, the subset of products X̂

still satisfies Theorem 5.2. The only difference in the proof of Theorem 5.2 is that since the subset

Ŝ is obtained by sampling ` elements of S without replacement, for i, j ∈ N̂ with i 6= j, we have

X̂i = 1 and X̂j = 1 with probability
(
2`−2
`−2
)
/
(
2`
`

)
. Furthermore, for any i, j ∈ N̂ with i 6= j, X̂i and

X̂j are never independent, so computing the conditional expectations involved in the method of

conditional expectations gets slightly more complicated.

6. Computational Experiments

In this section, we present computational experiments to test the performance of our approximation

algorithms on a large number of randomly generated test problems.

6.1. Computational Setup

We work with both uncapacitated and capacitated problems. To obtain a 0.6-approximate solution

for the uncapacitated assortment problem, we execute Steps (a)-(c) discussed at the end of Section

4. To obtain a 0.25-approximate solution for the capacitated assortment problem, we execute Steps

(a)-(c) discussed at the end of Section 5.2. We do not test the performance of the approximation

algorithm based on an SDP relaxation, because the approximation algorithm based on an LP
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relaxation already performs quite well. Also, although we can solve an SDP in polynomial time in

theory, the size of our test problems prevents us from solving SDP relaxations for the large number

of problem instances that we consider. We carry out our computational experiments using Matlab

with 3.1 GHz Intel Core i7 CPU and 16 GB RAM. We use Gurobi 6.5.0 as our LP solver.

By Theorem 3.1, if ẑ satisfies fR(ẑ) = v0 ẑ, then we have ẑ ≥ z∗, so ẑ is an upper bound on

the optimal expected revenue z∗ for the Assortment problem. Recalling that π(x̂) is the expected

revenue from the subset of products x̂, to evaluate the quality of the subset of products x̂ obtained

by our approximation algorithms, we report the quantity 100× π(x̂)/ẑ, which corresponds to the

percentage of the upper bound captured by the subset x̂. This quantity provides a conservative

estimate of the optimality gaps of the solutions obtained by our approximation algorithms, because

ẑ is an upper bound on the optimal expected revenue, rather than the optimal expected revenue

itself. To compute the upper bound ẑ, we solve the Fixed Point problem in Theorem 3.3, which is an

LP. Letting (α̂, β̂, γ̂, λ̂, δ̂, ẑ) be an optimal solution to the Fixed Point problem, by Theorem 3.3, ẑ

satisfies fR(ẑ) = v0 ẑ, in which case, by Theorem 3.1, ẑ is an upper bound on the optimal expected

revenue z∗. In our test problems, we have n= 50 or n= 100 products. Finding the optimal subset

of products through enumeration requires checking the expected revenues from O(2n) assortments,

which is not computationally feasible for the sizes of our problem instances. Thus, we provide

comparisons with an upper bound on the optimal expected revenue.

6.2. Uncapacitated Problems

We randomly generate a large number of test problems and check the performance of our

approximation algorithm on each test problem. To generate the dissimilarity parameters of the

nests, we sample γij from the uniform distribution over [0, γ̄] for all (i, j)∈M , where γ̄ is a

parameter that we vary in our computational experiments. To generate the preference weights of

the products, we sample vi from the uniform distribution over [0,1] for all i ∈N . Using 1 ∈Rn to

denote the vector of all ones, if we offer all products, then a customer leaves without a purchase

with probability v0/(v0 +
∑

(i,j)∈M Vij(1)γij ). To generate the preference weight of the no purchase

option, we set v0 = φ0

∑
(i,j)∈M Vij(1)γij/(1− φ0), where φ0 is a parameter that we vary. In this

case, if we offer all products, then a customer leaves without a purchase with probability φ0. We

work with two classes of test problems when generating the revenues of the products. In the first

class, we sample the revenue pi of each product i from the uniform distribution over [0,1]. We refer

to these problem instances as independent instances since the preference weights and the revenues

are independent. In the second class, we set the revenue pi of each product i as pi = 1−vi. We refer

to these problem instances as correlated instances since the preference weights and the revenues are
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correlated. In the correlated instances, more expensive products have smaller preference weights,

making them less desirable. As stated earlier, we use n= 50 or n= 100 products.

We vary γ̄ over {0.1,0.5,1.0} and φ0 over {0.25,0.50,0.75}. Using I and C to, respectively, refer

to the independent and correlated instances, we label our test problems as (T,n, γ̄, φ0)∈ {I,C}×
{50,100}×{0.1,0.5,1.0}×{0.25,0.50,0.75}, where T is the class of the test problem and n, γ̄ and

φ0 are as discussed above. In this way, we obtain 36 parameter combinations. In each parameter

combination, we randomly generate 1000 individual test problems by using the approach discussed

in the previous paragraph. We use our approximation algorithm to obtain an approximate solution

for each test problem. Also, for each test problem, we solve the Fixed Point problem in Theorem 3.3

to find the value of ẑ satisfying fR(ẑ) = v0 ẑ. For test problem s, we use x̂s to denote the solution

obtained by our approximation algorithm and ẑs to denote the value of ẑ satisfying fR(ẑ) = v0 ẑ.

In this case, the data {100× π(x̂s)/ẑs : s= 1, . . . ,1000} characterizes the quality of the solutions

obtained for the 1000 test problems in a parameter combination.

We give our computational results in Table 1. The first column in this table shows the parameter

combination. The next five columns, respectively, show the average, minimum, 5th percentile, 95th

percentile and standard deviation of the data {100×π(x̂s)/ẑs : s= 1, . . . ,1000}. The last column

shows the average CPU seconds to run our approximation algorithm over the 1000 test problems

in a parameter configuration. The results in Table 1 indicate that our approximation algorithm

performs remarkably well. Over all test problems, on average, our approximation algorithm obtains

99.5% of the upper bound on the optimal expected revenue. In the worst case, our approximation

algorithm obtains 95.5% of the upper bound on the optimal expected revenue. In Appendix L,

we give confidence intervals for some of the performance measures in Table 1. For the largest test

problems with n= 100, on average, our approximation algorithm runs in 0.23 seconds. The CPU

seconds varied no more than 10% from one test problem to another.

6.3. Capacitated Problems

The approach that we use to generate the capacitated test problems is the same as the one

that we use to generate the uncapacitated ones, but we also need to choose the available

capacity in the capacitated test problems. We set the capacity c as c = dδ ne, where δ is a

parameter that we vary. We label our test problems by (T,n, γ̄, φ0, δ) ∈ {I,C} × {50,100} ×
{0.1,0.5,1.0}×{0.25,0.75}×{0.2,0.5,0.8}, which yields 72 parameter combinations. We randomly

generate 1000 individual test problems in each parameter combination. Using x̂s and ẑs

with the same interpretation that we have for the uncapacitated test problems, the data

{100×π(x̂s)/ẑs : s= 1, . . . ,1000} continues to characterize the quality of the solutions obtained
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Param. Conf. π(x̂)/ẑ CPU
(T,n, γ̄, φ0) Avg. Min 5th 95th Std. Secs.

(I, 50,0.1,0.25) 98.6 95.5 97.3 99.7 0.7 0.06
(I, 50,0.1,0.50) 99.7 98.8 99.2 100.0 0.2 0.05
(I, 50,0.1,0.75) 99.9 99.6 99.8 100.0 0.1 0.05
(I, 50,0.5,0.25) 98.8 96.2 97.7 99.7 0.6 0.04
(I, 50,0.5,0.50) 99.7 98.8 99.3 100.0 0.2 0.05
(I, 50,0.5,0.75) 99.9 99.7 99.8 100.0 0.1 0.05
(I, 50,1.0,0.25) 98.8 96.0 97.7 99.7 0.6 0.05
(I, 50,1.0,0.50) 99.8 98.6 99.4 100.0 0.2 0.05
(I, 50,1.0,0.75) 99.9 99.7 99.9 100.0 0.1 0.05
(I,100,0.1,0.25) 98.6 96.4 97.7 99.3 0.5 0.23
(I,100,0.1,0.50) 99.7 99.0 99.3 99.9 0.2 0.25
(I,100,0.1,0.75) 99.9 99.8 99.9 100.0 0.1 0.25
(I,100,0.5,0.25) 98.8 97.0 98.0 99.5 0.5 0.22
(I,100,0.5,0.50) 99.7 99.2 99.4 100.0 0.2 0.24
(I,100,0.5,0.75) 99.9 99.8 99.9 100.0 0.1 0.26
(I,100,1.0,0.25) 98.8 97.1 98.1 99.5 0.4 0.22
(I,100,1.0,0.50) 99.8 99.1 99.5 100.0 0.1 0.24
(I,100,1.0,0.75) 99.9 99.8 99.9 100.0 0.1 0.26
Average 99.5 98.3 99.0 99.8 0.3 0.15

Param. Conf. π(x̂)/ẑ CPU
(T,n, γ̄, φ0) Avg. Min 5th 95th Std. Secs.

(C, 50,0.1,0.25) 98.6 96.2 97.3 99.7 0.7 0.04
(C, 50,0.1,0.50) 99.7 98.6 99.2 100.0 0.3 0.05
(C, 50,0.1,0.75) 99.9 99.7 99.8 100.0 0.1 0.05
(C, 50,0.5,0.25) 98.8 96.4 97.6 99.7 0.6 0.04
(C, 50,0.5,0.50) 99.7 98.9 99.3 100.0 0.2 0.05
(C, 50,0.5,0.75) 99.9 99.6 99.8 100.0 0.1 0.05
(C, 50,1.0,0.25) 98.8 96.4 97.6 99.8 0.6 0.04
(C, 50,1.0,0.50) 99.7 99.0 99.3 100.0 0.2 0.05
(C, 50,1.0,0.75) 99.9 99.7 99.9 100.0 0.0 0.06
(C,100,0.1,0.25) 98.6 96.9 97.7 99.4 0.5 0.21
(C,100,0.1,0.50) 99.7 98.9 99.4 99.9 0.2 0.23
(C,100,0.1,0.75) 99.9 99.8 99.9 100.0 0.0 0.26
(C,100,0.5,0.25) 98.8 97.0 97.9 99.5 0.5 0.21
(C,100,0.5,0.50) 99.7 99.2 99.5 100.0 0.2 0.24
(C,100,0.5,0.75) 99.9 99.8 99.9 100.0 0.1 0.27
(C,100,1.0,0.25) 98.8 97.1 98.1 99.5 0.4 0.21
(C,100,1.0,0.50) 99.8 99.1 99.5 100.0 0.1 0.25
(C,100,1.0,0.75) 99.9 99.8 99.9 100.0 0.1 0.28
Average 99.5 98.4 99.0 99.9 0.3 0.14

Table 1 Computational results for the uncapacitated test problems.

for the 1000 test problems in a parameter combination. We give our computational results in

Table 2. The layout of this table is identical to that of Table 1. The optimality gaps reported

in Table 2 are slightly larger than those in Table 1, but our approximation algorithm for the

capacitated problems also performs remarkably well. On average, our approximation algorithm

obtains 98.9% of the upper bound on the optimal expected revenue, corresponding to an average

optimality gap of no larger than 1.1%. In Appendix L, we give confidence intervals for some

of the performance measures in Table 2. The slightly larger optimality gaps in Table 2 can be

attributed to the performance of the approximation algorithm being inferior or the upper bounds

being looser, but it is not possible to say which one of these factors plays a dominant role without

knowing the optimal expected revenues. Over the largest test problems with n= 100, on average,

our approximation algorithm runs in 0.25 seconds. To put this running time in perspective, if we

partition the 100 products into two nests and assume that the customers choose under the nested

logit model, then the average CPU seconds for the approach proposed by Feldman and Topaloglu

(2015) is 0.86 seconds. We solve multiple LP relaxations in the iterative rounding algorithm. Over

all of our test problems, the iterative rounding algorithm terminated after solving at most five LP

relaxations, with only 1.32 LP relaxations on average.

7. Conclusions

In this paper, we developed approximation algorithms for the uncapacitated and capacitated

assortment problems under the PCL model. We can extend our work to a slightly more general

version of the PCL model. In particular, the generalized nested logit model is a more general version

of both the nested logit and PCL models. Under the generalized nested logit model, each product
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Param. Conf. π(x̂)/ẑ CPU
(T,n, γ̄, φ0, δ) Avg. Min 5th 95th Std. Secs.

(I, 50,0.1,0.25,0.8) 95.8 90.2 93.2 98.1 1.5 0.05
(I, 50,0.1,0.25,0.5) 98.1 94.4 96.1 99.6 1.0 0.05
(I, 50,0.1,0.25,0.2) 99.5 96.1 98.4 100.0 0.6 0.05
(I, 50,0.1,0.75,0.8) 99.9 99.2 99.6 100.0 0.1 0.06
(I, 50,0.1,0.75,0.5) 99.9 99.5 99.8 100.0 0.1 0.06
(I, 50,0.1,0.75,0.2) 99.9 99.7 99.9 100.0 0.0 0.06
(I, 50,0.5,0.25,0.8) 96.3 90.1 93.8 98.5 1.5 0.05
(I, 50,0.5,0.25,0.5) 98.1 94.1 96.3 99.5 1.0 0.05
(I, 50,0.5,0.25,0.2) 99.4 96.6 98.2 100.0 0.6 0.06
(I, 50,0.5,0.75,0.8) 99.9 99.3 99.6 100.0 0.1 0.06
(I, 50,0.5,0.75,0.5) 99.9 99.5 99.7 100.0 0.1 0.06
(I, 50,0.5,0.75,0.2) 99.9 99.6 99.9 100.0 0.1 0.06
(I, 50,1.0,0.25,0.8) 96.6 92.8 94.4 98.5 1.2 0.05
(I, 50,1.0,0.25,0.5) 98.0 93.2 96.2 99.5 1.0 0.05
(I, 50,1.0,0.25,0.2) 99.4 96.5 98.2 100.0 0.6 0.06
(I, 50,1.0,0.75,0.8) 99.9 99.4 99.7 100.0 0.1 0.06
(I, 50,1.0,0.75,0.5) 99.9 99.1 99.7 100.0 0.1 0.06
(I, 50,1.0,0.75,0.2) 99.9 98.9 99.9 100.0 0.1 0.19
(I,100,0.1,0.25,0.8) 95.8 90.9 94.0 97.5 1.1 0.23
(I,100,0.1,0.25,0.5) 98.1 95.8 96.9 99.1 0.7 0.25
(I,100,0.1,0.25,0.2) 99.5 97.7 98.8 100.0 0.4 0.26
(I,100,0.1,0.75,0.8) 99.9 99.6 99.7 100.0 0.1 0.32
(I,100,0.1,0.75,0.5) 99.9 99.5 99.8 100.0 0.1 0.30
(I,100,0.1,0.75,0.2) 99.9 99.9 99.9 100.0 0.1 0.28
(I,100,0.5,0.25,0.8) 96.3 92.6 94.6 97.8 1.0 0.24
(I,100,0.5,0.25,0.5) 98.0 94.6 96.6 99.1 0.7 0.27
(I,100,0.5,0.25,0.2) 99.4 97.5 98.7 100.0 0.4 0.26
(I,100,0.5,0.75,0.8) 99.9 99.4 99.7 100.0 0.1 0.33
(I,100,0.5,0.75,0.5) 99.9 99.7 99.8 100.0 0.1 0.33
(I,100,0.5,0.75,0.2) 99.9 99.7 99.9 100.0 0.0 0.30
(I,100,1.0,0.25,0.8) 96.5 92.8 94.8 98.0 1.0 0.24
(I,100,1.0,0.25,0.5) 98.0 95.3 96.7 99.1 0.7 0.28
(I,100,1.0,0.25,0.2) 99.4 97.1 98.6 100.0 0.4 0.27
(I,100,1.0,0.75,0.8) 99.9 99.6 99.7 100.0 0.1 0.20
(I,100,1.0,0.75,0.5) 99.9 99.5 99.8 100.0 0.1 0.20
(I,100,1.0,0.75,0.2) 99.9 99.7 99.9 100.0 0.1 0.20
Average 98.9 96.9 98.1 99.6 0.5 0.16

Param. Conf. π(x̂)/ẑ CPU
(T,n, γ̄, φ0, δ) Avg. Min 5th 95th Std. Secs.

(C, 50,0.1,0.25,0.8) 96.0 89.3 93.4 98.2 1.5 0.06
(C, 50,0.1,0.25,0.5) 98.1 93.9 96.2 99.6 1.0 0.06
(C, 50,0.1,0.25,0.2) 99.5 97.5 98.5 100.0 0.5 0.06
(C, 50,0.1,0.75,0.8) 99.9 99.3 99.6 100.0 0.1 0.07
(C, 50,0.1,0.75,0.5) 99.9 99.3 99.8 100.0 0.1 0.07
(C, 50,0.1,0.75,0.2) 99.9 99.6 99.9 100.0 0.0 0.07
(C, 50,0.5,0.25,0.8) 96.3 91.9 94.0 98.4 1.3 0.06
(C, 50,0.5,0.25,0.5) 98.0 94.3 96.0 99.5 1.1 0.06
(C, 50,0.5,0.25,0.2) 99.4 96.9 98.2 100.0 0.6 0.06
(C, 50,0.5,0.75,0.8) 99.9 99.3 99.6 100.0 0.1 0.07
(C, 50,0.5,0.75,0.5) 99.9 99.3 99.7 100.0 0.1 0.07
(C, 50,0.5,0.75,0.2) 99.9 99.2 99.9 100.0 0.1 0.07
(C, 50,1.0,0.25,0.8) 96.5 91.6 94.2 98.6 1.3 0.07
(C, 50,1.0,0.25,0.5) 98.0 94.3 96.3 99.5 1.0 0.07
(C, 50,1.0,0.25,0.2) 99.4 97.2 98.2 100.0 0.6 0.06
(C, 50,1.0,0.75,0.8) 99.9 99.4 99.6 100.0 0.1 0.07
(C, 50,1.0,0.75,0.5) 99.9 99.2 99.7 100.0 0.1 0.08
(C, 50,1.0,0.75,0.2) 99.9 98.7 99.9 100.0 0.1 0.07
(C,100,0.1,0.25,0.8) 95.8 92.5 94.1 97.5 1.1 0.21
(C,100,0.1,0.25,0.5) 98.1 95.6 96.8 99.2 0.7 0.21
(C,100,0.1,0.25,0.2) 99.5 98.1 98.8 100.0 0.4 0.21
(C,100,0.1,0.75,0.8) 99.9 99.3 99.7 100.0 0.1 0.25
(C,100,0.1,0.75,0.5) 99.9 99.6 99.8 100.0 0.1 0.25
(C,100,0.1,0.75,0.2) 99.9 99.9 99.9 100.0 0.0 0.25
(C,100,0.5,0.25,0.8) 96.3 93.0 94.6 97.7 1.0 0.22
(C,100,0.5,0.25,0.5) 98.0 94.9 96.8 99.1 0.7 0.22
(C,100,0.5,0.25,0.2) 99.4 97.7 98.7 100.0 0.4 0.23
(C,100,0.5,0.75,0.8) 99.9 99.4 99.7 100.0 0.1 0.26
(C,100,0.5,0.75,0.5) 99.9 99.6 99.8 100.0 0.1 0.26
(C,100,0.5,0.75,0.2) 99.9 99.7 99.9 100.0 0.0 0.26
(C,100,1.0,0.25,0.8) 96.5 92.9 95.0 98.0 0.9 0.23
(C,100,1.0,0.25,0.5) 98.1 95.9 96.8 99.1 0.7 0.24
(C,100,1.0,0.25,0.2) 99.4 97.8 98.7 100.0 0.4 0.24
(C,100,1.0,0.75,0.8) 99.9 99.5 99.7 100.0 0.1 0.27
(C,100,1.0,0.75,0.5) 99.9 99.0 99.8 100.0 0.1 0.27
(C,100,1.0,0.75,0.2) 99.9 99.7 99.9 100.0 0.0 0.28
Average 98.9 97.1 98.1 99.6 0.5 0.15

Table 2 Computational results for the capacitated test problems.

can be in multiple nests and each nest can include an arbitrary number of products. For each

product and nest combination, there is a membership parameter that characterizes the extent to

which the product is a member of the nest. Considering the generalized nested logit model with

at most two products in each nest, we can generalize our results to tackle the uncapacitated and

capacitated assortment problems under this choice model. We discuss this extension in Appendix

M. There are several future research directions to pursue. First, our approximation algorithms

exploit the fact that we can formulate the Function Evaluation problem as an integer program by

linearizing the quadratic terms in the objective function. Our performance guarantees are based

on the fact that we can choose the values of the decision variables within {0, 1
2
,1} to construct a

provably good feasible solution to the LP relaxation of the integer program. This observation does

not hold when each nest includes more than two products. Solving assortment problems under

variants of the generalized nested logit model that have more than two products in each nest is a

worthwhile and highly non-trivial extension. Second, we can consider a variant of the multinomial
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logit model with synergies between the pairs of products, where the deterministic component of

the utility of product i increases by ∆i when product i is offered along with some other product

ip. Using x to denote the subset of offered products, if we formulate an assortment problem

under such a choice model, then the objective function can be written as a ratio of two quadratic

functions of x. An interesting question is whether we can use an approach similar to ours to develop

approximation algorithms under this variant of the multinomial logit model. A straightforward

extension of our approach does not work when the increase ∆i in the deterministic component of

the utility of product i has no relationship with the base deterministic component of the utility

of product i when this product is not offered along with product ip. More research is needed in

this direction. Third, although there is work on pricing problems under the PCL model, this work

assumes that the price sensitivities of the products satisfy certain conditions. We can formulate

a pricing problem as a variant of our assortment problem. In particular, we can create multiple

copies of a product, corresponding to offering a product at different price levels. In this case, we

need to impose the constraint that we offer at most one copy of a particular product, meaning

that each product should have one price level, if offered. Our efforts to extend our approximation

algorithms to this type of a pricing problem showed that the pricing problem is considerably more

difficult and more work is also needed in this direction. Fourth, the PCL model is flexible as it

allows a rather general correlation structure among the utilities of the products. Empirical studies

in the path choice domain demonstrate that the flexibility of the PCL model may be beneficial. It

would be useful to conduct additional empirical studies in the operations management domain to

understand the benefits of the PCL model in predicting the customer purchase behavior.
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Appendix A: Computational Complexity

In this section, we give a proof for Theorem 2.1 by using a polynomial-time reduction from the

max-cut problem. In the max-cut problem, we have an undirected graph G= (V,E), where V is the

set of vertices and E is the set of edges. We denote the edge between vertex i and j as (i, j). The goal

is to find a subset of vertices S such that the number of edges in the set {(i, j)∈E : i∈ S, j ∈ V \S}
is maximized. In other words, the goal is to find a subset of vertices S such that the number of

edges that connect a vertex in S and a vertex in V \S is maximized. We refer to a subset of vertices

S as a cut and |{(i, j) ∈ E : i ∈ S, j ∈ V \ S}| as the objective value provided by the cut S. The

max-cut problem is strongly NP-hard; see Section A.2.2 in Garey and Johnson (1979). Here, we

focus on graphs where the degrees of all vertices are even. We show that the max-cut problem

over graphs with even vertex degrees continues to be strongly NP-hard. For any δ > 0, de la Vega

and Karpinski (2006) show that the max-cut problem over the graphs G = (E,V ) with |E| =
Ω(|V |2−δ) is hard to approximate within a constant factor. Therefore, defining the class of graphs

G1(β) = {G= (V,E) : |E| ≥ β |V |1.5}, there exist constants α ∈ (0,1) and β > 0 such that it is hard

to approximate the max-cut problem over the graphs in G1(β) within a factor of 1− α. Defining

the class of graphs G2(β) = {G= (V,E) : |E| ≥ β |V |1.5 and all vertices in G have even degrees}, in

the next lemma, we show that the same result holds over the graphs in G2(β).

Lemma A.1 There exist constants α ∈ (0,1) and β > 0 such that it is hard to approximate the

max-cut problem over the graphs in G2(β) within a factor of 1−α.

Proof: Let α1 ∈ (0,1) and β1 > 0 be such that it is hard to approximate the max-cut problem

over the graphs in G1(β1) within a factor of 1 − α1. Note that the existence of α1 and β1 is

guaranteed by the discussion right before the lemma. Fix any ε < 2α1/3. Set α = α1 − 3 ε/2 and

β = β1/2
1.5. Assume that there exists a (1−α)-approximation algorithm for the max-cut problem

over the graphs in G2(β). We will show that the existence of this approximation algorithm directly

implies the existence of a (1 − α1)-approximation algorithm for the max-cut problem over the

graphs in G1(β1), which is a contradiction.

Choose any graph G1 = (V1,E1) ∈ G1(β1) and let n = |V1|. If we have n ≤ (2/(β1 ε))
2, then we

can enumerate all of the cuts in G1 to solve the max-cut problem over G1 in polynomial time,

since the number of vertices is bounded by a constant. Also, if all of the vertices in G1 have even

degrees, noting that G1 ∈ G1(β1) and β1 ≥ β, we have |E1| ≥ β1 |V1|1.5 ≥ β |V1|1.5, which implies that

G1 ∈ G2(β). Therefore, we can use the (1− α)-approximation algorithm for the max-cut problem

over the graphs in G2(β) to find a (1−α)-approximate cut inG1. Since α1 ≥ α, a (1−α)-approximate

cut is also a (1−α1)-approximate cut. Therefore, we can obtain a (1−α1)-approximate cut in G1 in
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polynomial time, which is a contradiction. In the rest of the proof, we assume that n> (2/(β1 ε))
2

and some of the vertices in G1 have odd degrees.

Let k be the number of vertices in G1 with odd degrees. Note that k must be an even number,

otherwise the sum of the degrees of all vertices in G1 would be an odd number, but we know

that this sum is equal to twice the number of edges. We add k auxiliary vertices to G1. Using

additional k edges, we connect each one of these auxiliary vertices to one of the k vertices with odd

degrees. Since k is an even number, we also use k/2 additional edges to form a perfect matching

between the auxiliary vertices. We denote this new graph by Ḡ= (V̄ , Ē). By our construction, all of

the vertices in Ḡ have even degrees. Furthermore, we have |Ē| ≥ |E1| ≥ β1 |V1|1.5 = β1
21.5

(2 |V1|)1.5 ≥
β1

21.5
(|V1|+ k)1.5 = β1

21.5
|V̄ |1.5 = β |V̄ |1.5, which implies that Ḡ∈ G2(β).

We use OPT1 and OPT to, respectively, denote the optimal objective values of the max-cut

problems in G1 and Ḡ. We have OPT≥OPT1, because V̄ ⊇ V1 and Ē ⊇E1. Since Ḡ ∈ G2(β), we

use the (1−α)-approximation algorithm for the max-cut problem over the graphs in G2(β) to find

a (1−α)-approximate cut in Ḡ. That is, letting CUT be the objective value provided by the cut,

we have CUT≥ (1−α)OPT. By removing the auxiliary vertices in the (1−α)-approximate cut in

Ḡ, we obtain the corresponding cut in G1. We use CUT1 to denote the objective value provided

by the cut in G1. Since the graphs G1 and Ḡ differ in 3k/2 edges, the objective values of the two

cuts cannot differ by more than 3k/2, so CUT1 ≥CUT− 3k/2. Therefore, we obtain

CUT1 ≥ CUT− 3

2
k ≥ (1−α)OPT− 3

2
k ≥ (1−α)OPT1−

3

2
k ≥ (1−α)OPT1−

3

2
|V1|.

It is well-known that the optimal objective value of the max-cut problem over any graph is

at least half of the number of edges; see Section 12.4 in Kleinberg and Tardos (2005). Thus,

noting that n > (2/(β1 ε))
2, we have |V1|= n≤ 1

2
εβ1 n

1.5 = 1
2
εβ1 |V1|1.5 ≤ 1

2
ε |E1| ≤ εOPT1, where

the second inequality uses the fact that G1 ∈ G1(β1). In this case, we get (1− α)OPT1 − 3
2
|V1| ≥

(1−α− 3
2
ε)OPT1 = (1 − α1)OPT1, so using the chain of inequalities above, it follows that

CUT1 ≥ (1−α1)OPT1. Therefore, if we use the (1 − α)-approximate approximation algorithm

to find a (1 − α)-approximate cut in Ḡ and drop the auxiliary vertices, then we obtain a

(1−α1)-approximate cut in G1 in polynomial time, which is a contradiction. 2

By the lemma above, the max-cut problem is strongly NP-hard when the degrees of all

vertices are even. In the proof Theorem 2.1, we will need the fact that the max-cut problem is

strongly NP-hard when the degrees of all vertices are divisible by four. We define the class of

graphs G4(β) = {G= (V,E) : |E| ≥ β |V |1.5 and all vertices in G have degrees divisible by four}. In

the next lemma, we repeat an argument similar to the one in the proof of Lemma A.1 to show that

an analogue of the result in Lemma A.1 holds for the graphs in G4(β).
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Lemma A.2 There exist constants α ∈ (0,1) and β > 0 such that it is hard to approximate the

max-cut problem over the graphs in G4(β) within a factor of 1−α.

Proof: Let α2 ∈ (0,1) and β2 > 0 be such that it is hard to approximate the max-cut problem over

the graphs in G2(β2) within a factor of 1−α2. The existence of α2 and β2 is guaranteed by Lemma

A.1. Fix any ε < α2/11. Set α = α2 − 11 ε and β = β2/6
1.5. To get a contradiction, we assume

that there exists a (1− α)-approximation algorithm for the max-cut problem over the graphs in

G4(β). We will show that the existence of this approximation algorithm implies the existence of

a (1− α2)-approximation algorithm for the max-cut problem over the graphs in G2(β2). Choose

any graph G2 = (V2,E2) ∈ G2(β2) and let n = |V2|. If n ≤ (2/(β2 ε))
2 or all of the vertices in G2

have degrees divisible by four, then we reach a contradiction by the same argument in the second

paragraph of the proof of Lemma A.1. Therefore, we assume that n> (2/(β2 ε))
2 and the degrees

of some of the vertices in G2 are not divisible by four.

Let k be the number of vertices in G2 with degrees not divisible by four. Since G2 ∈ G2(β2), these

vertices must have even degrees. If k≥ 3, then we can add k vertices and 3k edges to G2 to obtain a

graph Ḡ= (V̄ , Ē) with all the vertices having degrees divisible by four. In particular, let {i1, . . . , ik}
be the vertices with even degree but not divisible by four. We add k auxiliary vertices {j1, . . . , jk} to

the graph G2. Using additional edges, for s= 1, . . . , k− 1, we connect is to js and js+1. Also, we

connect ik to jk and j1. Finally, we add the edges (j1, j2), (j2, j3), . . . , (jk−1, jk), (jk, j1). We denote

this new graph by Ḡ= (V̄ , Ē). In Figure 2.a, we show the k vertices {i1, . . . , ik} in G2 with even

degrees but not divisible by four, along with the k auxiliary vertices {j1, . . . , jk}. The solid edges

are the ones that we add to G2 to get Ḡ. The dotted edges are already in G2. By our construction,

all of the vertices in Ḡ have degrees divisible by four.

If k= 1, then we can add 5 vertices and 11 edges to G2 get a graph Ḡ= (V̄ , Ē) with all vertices

having degrees divisible by four. In Figure 2.b, we show the only vertex in G2 with even degree

but not divisible by four, along with the 5 vertices and 11 edges that we add to get the graph

Ḡ. If k = 2, then we can add 5 vertices and 12 edges to G2 to get a graph Ḡ = (V̄ , Ē) with all

vertices having degrees divisible by four. In Figure 2.b, we show the two vertices in G2 with even

degrees but not divisible by four, along with the 5 vertices and 12 edges that we add to get the

graph Ḡ. Collecting the three cases discussed in the previous and this paragraph together, if k is

the number of vertices in G2 with even degrees but not divisible by four, then we can add at most

5k vertices and 11k edges to G2 to obtain Ḡ. Note that |Ē| ≥ |E2| ≥ β2 |V2|1.5 = β2
61.5

(6 |V2|)1.5 ≥
β2

61.5
(|V2|+ 5k)1.5 ≥ β2

61.5
|V̄ |1.5 = β |V̄ |1.5, which implies that Ḡ∈ G4(β).

In this case, we can use precisely the same argument in the last two paragraphs of the proof of

Lemma A.1 to show that if we have a (1−α)-approximate cut in Ḡ, then we can obtain a (1−α2)
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Figure 2 Constructing a graph with all vertices having degrees divisible by four.

approximate cut in G2 in polynomial time. Since our choice of the graph G2 ∈ G(β2) is arbitrary,

we obtain a contradiction Lemma A.1. 2

Therefore, by Lemma A.2, the max-cut problem is strongly NP-hard when the degrees of the

vertices are divisible by four. We use the decision variable yi ∈ {−1,+1} to capture whether vertex

i is included in the cut, where yi = +1 if and only if the vertex is included. If vertex i is included in

the cut and vertex j is not, then we have yi yj =−1. Thus, we can formulate the max-cut problem

over the graph G= (V,E) as

max
y∈{−1,+1}|V |

{
1

2

∑

(i,j)∈E
(1− yi yj)

}
,

where we use the decision variables y= {yi : i∈ V }. Using the change of variables yi = 2xi−1 with

xi ∈ {0,1} and letting di be the degree of vertex i, the objective function of the problem above
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is 1
2

∑
(i,j)∈E(1− (2xi− 1) (2xj − 1)) = 1

2

∑
(i,j)∈E(2xi + 2xj − 4xi xj) =

∑
i∈V di xi− 2

∑
(i,j)∈E xi xj,

which implies that the problem maxx∈{0,1}|V |{
∑

i∈V di xi − 2
∑

(i,j)∈E xi xj} is strongly NP-hard

when di is divisible by four for all i∈ V .

To show Theorem 2.1, we use a feasibility version of the max-cut problem. Given an undirected

graph G = (V,E), we assume that di is divisible by four for all i ∈ V . For a fixed target

objective value K, we consider the problem of whether there exists x = {xi : i ∈ V } ∈ {0,1}|V |

such that
∑

i∈V di xi − 2
∑

(i,j)∈E xi xj ≥ K. We refer to this problem as the max-cut feasibility

problem. By the discussion in the previous paragraph, the max-cut feasibility problem is strongly

NP-complete. Below is the proof of Theorem 2.1.

Proof of Theorem 2.1: Throughout the proof, we use the formulation of the PCL

model, where the set of nests is given by M = {(i, j) ∈ N 2 : i < j}. We observe that the

formulation that we use in the paper is equivalent to the formulation with the set of nests

M = {(i, j)∈N 2 : i < j}. In particular, if we are given an assortment problem with the set of

nests M = {(i, j)∈N 2 : i < j}, the dissimilarity parameters {γij : (i, j) ∈M} and the no purchase

preference weight v0, then we can define an assortment problem with the set of nests M ′ =

{(i, j)∈N 2 : i 6= j}, the dissimilarity parameters {γ′ij : (i, j) ∈M ′} and the no purchase preference

weight v′0, where γ′ij = γ′ji = γij and v′0 = 2v0. In this case, the expected revenues obtained by any

subset of products are identical in the two problems.

Assume that we have an instance of the max-cut feasibility problem over the graph G= (V,E)

with target objective value K. Letting di be the degree of vertex i, we assume that di is divisible

by four for all i ∈ V . We construct an instance of our assortment problem in such a way that

there exists x= {xi : i ∈ V } ∈ {0,1}|V | that satisfies
∑

i∈V di xi− 2
∑

(i,j)∈E xi xj ≥K if and only if

there exists a subset of products in our assortment problem that provides an expected revenue of

K + 8 (|V | − 1)2 or more. Thus, an instance of the max-cut feasibility problem can be reduced to

an instance of the feasibility version of our assortment problem, in which case, the desired result

follows. We construct the instance of our assortment problem as follows.

Let n= |V |. In the instance of our assortment problem, there are 2n− 1 products. We partition

the products into two subsets V and W so that the set of products is N = V ∪W . Since |N | =
2n − 1 and |V | = n, we have |W | = n − 1. We index the products in V by {1, . . . , n} and the

products in W by {n+ 1, . . . ,2n− 1}. The set of nests is M = {(i, j)∈N 2 : i < j}. Letting T =

K+ 8(n− 1)2, the revenues of the products are given by pi = 1 +T for all i∈ V and pi = 4 +T for

all i∈W . The preference weights of the products are given by vi = 2 for all i∈ V and vi = 1 for all

i∈W . The preference weight of the no purchase option is v0 = 1. Since E is the set of edges in an
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undirected graph, we follow the convention that i < j for all (i, j)∈E. The dissimilarity parameters

of the nests are

γij =





0 if i∈ V, j ∈ V, (i, j)∈E
1 if i∈ V, j ∈ V, (i, j) 6∈E
1 if i∈ V, j ∈W, j ∈ {n+ 1, . . . , n+ di/4}
0 if i∈ V, j ∈W, j ∈ {n+ 1 + di/4 . . . ,2n− 1}
1 if i∈W, j ∈W .

In the feasibility version of the assortment problem, we are interested in whether there exists

a vector x ∈ {0,1}2n−1 such that
∑

(i,j)∈M Vij(x)γij Rij(x)/(v0 +
∑

(i,j)∈M Vij(x)γij ) ≥ T . In other

words, arranging the terms in this inequality, we are interested in whether there exists a vector

x ∈ {0,1}2n−1 such that
∑

(i,j)∈M Vij(x)γij (Rij(x) − T ) ≥ v0 T . By the definition of Rij(x) and

Vij(x), we observe that we have

Rij(x)−T =
pi v

1/γij
i xi + pj v

1/γij
j xj

Vij(x)
−T =

(pi−T )v
1/γij
i xi + (pj −T )v

1/γij
j xj

Vij(x)
.

Note that pi−T = 1 or pi−T = 4 for all i∈N . For notational brevity, let R̂ij(x) =Rij(x)−T . In

this case, we are interested in whether there exists a vector x ∈ {0,1}2n−1 such that
∑

(i,j)∈M Vij(x)γij R̂ij(x)≥ v0 T . It is simple to check that we can offer all of the products with the

largest revenue without degrading the expected revenue from a subset of products. Noting that the

products in the set W have the largest revenue, we can set xi = 1 for all i ∈W in the feasibility

version of the assortment problem. Therefore, the only question is which of the products in V

to include in the subset of products x such that
∑

(i,j)∈M Vij(x)γij R̂ij(x) ≥ v0 T . We proceed to

computing Vij(x)γij R̂ij(x) for all (i, j)∈M . Since we offer the products in the set W , if i∈W and

j ∈W , then noting that γij = 1, pi = pj = 4 +T and vi = vj = 1, we have Vij(x)γij = 2 and R̂ij = 4.

Therefore, we have
∑

(i,j)∈M 1(i∈W, j ∈W )Vij(x)γij R̂ij(x) = 8(n−1) (n−2)/2, where we use the

fact that |W |= n− 1 and we have i < j for all (i, j) ∈M . Similarly, considering the dissimilarity

parameters of the other nests, along with the revenues and the preference weights of the products

in these nests, if i∈ V and j ∈W , then we have

Vij(x)γij R̂ij(x) =





6 if xi = 1, j ∈ {n+ 1, . . . , n+ di/4}
2 if xi = 1, j ∈ {n+ 1 + di/4, . . . ,2n− 1}
4 if xi = 0,

where, once again, we use the fact that we offer all of the products in the set W . We can

write the expression above succinctly as 4 + 2xi for all j ∈ {n+ 1, . . . , n+ di/4} and 4− 2xi for

all j ∈ {n+ 1 + di/4, . . . ,2n− 1}. Therefore, we have
∑

(i,j)∈M 1(i ∈ V, j ∈W )Vij(x)γij R̂ij(x) =
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∑
i∈V
∑

j∈W
[
1(j ∈ {n+ 1, . . . , n+ di/4}) (4 + 2xi) + 1(j ∈ {n+ 1 + di/4, . . . ,2n− 1}) (4− 2xi)

]
=

∑
i∈V
[
di
4

(4 + 2xi) + (n− 1− di
4

) (4− 2xi)
]
. Next, if i∈ V and j ∈ V , then we have

Vij(x)γij R̂ij(x) =





2 if xi = 1, xj = 1, (i, j)∈E
2 if xi = 1, xj = 0, (i, j)∈E
2 if xi = 0, xj = 1, (i, j)∈E
0 if xi = 0, xj = 0, (i, j)∈E
4 if xi = 1, xj = 1, (i, j) 6∈E
2 if xi = 1, xj = 0, (i, j) 6∈E
2 if xi = 0, xj = 1, (i, j) 6∈E
0 if xi = 0, xj = 0, (i, j) 6∈E.

If (i, j) ∈ E, then we can write the expression above succinctly as 2xi + 2xj − 2xi xj. So,

we have
∑

(i,j)∈M 1(i ∈ V, j ∈ V, (i, j) ∈ E)Vij(x)γij R̂ij(x) =
∑

(i,j)∈E(2xi + 2xj − 2xi xj),

where we use the fact that having (i, j) ∈ E implies that i ∈ V , j ∈ V and i < j, which,

in turn, implies that (i, j) ∈ M . On the other hand, if (i, j) 6∈ E, then we can write the

expression above succinctly as 2xi + 2xj. Note that
∑

i∈V
∑

j∈V 1(i < j, (i, j) 6∈ E) (xi +xj) =
∑

i∈V xi
∑

j∈V
[
1(i < j, (i, j) 6∈E) + 1(j < i, (j, i) 6∈E)

]
=
∑

i∈V xi (n− 1− di), where the last

equality uses the fact that
∑

j∈V
[
1(i < j, (i, j) 6∈E) + 1(j < i, (j, i) 6∈E)

]
corresponds to the

number of vertices that are not connected to vertex i with an edge, which is given by n−1−di. Thus,

we obtain
∑

(i,j)∈M 1(i ∈ V, j ∈ V, (i, j) 6∈ E)Vij(x)γij R̂ij(x) =
∑

i∈V
∑

j∈V 1(i < j, (i, j) 6∈E) ×
(2xi + 2xj) =

∑
i∈V 2 (n− 1− di)xi. Putting the discussion so far together, we have

∑

(i,j)∈M
Vij(x)γij R̂ij(x) =

∑

(i,j)∈M
1(i∈W, j ∈W )Vij(x)γij R̂ij(x)

+
∑

(i,j)∈M
1(i∈ V, j ∈W )Vij(x)γij R̂ij(x) +

∑

(i,j)∈M
1(i∈ V, j ∈ V, (i, j)∈E)Vij(x)γij R̂ij(x)

+
∑

(i,j)∈M
1(i∈ V, j ∈ V, (i, j) 6∈E)Vij(x)γij R̂ij(x)

= 4(n− 1) (n− 2) +
∑

i∈V

{
di
4

(4 + 2xi) +

(
n− 1− di

4

)
(4− 2xi)

}

+
∑

(i,j)∈E
(2xi + 2xj − 2xi xj) +

∑

i∈V
2 (n− 1− di)xi

= 4(n− 1) (n− 2) +
∑

i∈V
di +

∑

i∈V

di
2
xi + 4n (n− 1)−

∑

i∈V
2 (n− 1)xi−

∑

i∈V
di +

∑

i∈V

di
2
xi

+
∑

i∈V
2di xi−

∑

(i,j)∈E
2xi xj +

∑

i∈V
2 (n− 1)xi−

∑

i∈V
2di xi

= 8(n− 1)2 +
∑

i∈V
di xi− 2

∑

(i,j)∈E
xi xj.

Therefore, there exists x ∈ {0,1}|V | that satisfies
∑

i∈V di xi − 2
∑

(i,j)∈E xi xj ≥K if and only if

there exists x= {0,1}2n−1 that satisfies
∑

(i,j)∈M Vij(x)γij R̂ij(x)≥K + 8(n− 1)2. 2
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Appendix B: An Example with Different Levels of Correlation Between the Utilities

Consider the path choices of commuters traveling from the origin node to the destination node in the

network shown in Figure 3. The edges in the network are labeled as {e1, e2, e3, e4, f1, f2, f3, f4}. The

disutility of a path is the sum of the travel times on the edges that are included in the path. Possibly

due to traffic conditions, the travel time on the edges are random but each commuter knows the

travel times (or generates predictions) before deciding which path to take. Each commuter chooses

the path that provides the largest utility. The modeler is interested in estimating the frequency

with which each path is utilized over different days. We assume that the travel times on different

edges are independent, but since two different paths may use a common edge, the utilities provided

by two different paths can be correlated. Only for the brevity of discussion, we limit the paths that

a commuter can choose to five possible paths, although our argument holds when there are other

paths in consideration. In particular, a commuter chooses among the five paths given by

P1 : e1→ e2→ e3→ e4 P2 : e1→ e2→ e3→ f4 P3 : e1→ e2→ f3→ f4

P4 : e1→ f2→ f3→ f4 P5 : f1→ f2→ f3→ f4.

In this example, the utilities of different pairs of paths may have different levels of correlation and

the correlation structure of the utilities may not satisfy the “transitivity” property. In particular,

since different pairs of paths have different numbers of common edges, we expect their utilities to

have different levels of correlation. Paths P1 and P2 have three common edges, so we expect the

correlation between their utilities to be relatively high. Paths P1 and P4 have only one common

edge, so we expect the correlation between their utilities to be relatively low. Also, the correlation

structure of the utilities does not satisfy the “transitivity” property. The utilities of paths P1 and

P3 are correlated since these paths have common edges. Similarly, the utilities of paths P3 and P5

are correlated as well. However, the utilities of paths P1 and P5 are uncorrelated, since these paths

do not have any common edges. As the PCL model allows different levels of correlation between

the utilities of different pairs of alternatives and accommodates utilities that do not satisfy the

“transitivity” property, it can be a viable option to capture the path choices.

Numerical Study: We give a brief numerical study to check the ability of the PCL model to

predict the path choices of commuters in the specific setting in Figure 3. In Appendix E, we give a

more detailed numerical study to check the prediction ability of the PCL model. Consider the case

where the utility provided by each edge is a normal random variable with mean 3 and standard

deviation 1. The utility of a path is the sum of the utilities of the edges included in the path. A

commuter chooses the path that provides the largest utility. Assuming that the commuters choose

among the paths according to such a ground choice model, we generate the choice history from τ
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origin destination 

Figure 3 Network for a commuter that needs to travel from the origin node to the destination node.

commuters. We capture this choice history by {(St, it) : t= 1, . . . , τ}, where St is the subset of paths

offered to commuter τ and it is the path chosen by commuter t. To generate the subset St, we

include each path in the subset with probability 0.5. Given that we offer the subset St, we sample the

path it according to the ground choice model. We refer to the choice history {(St, it) : t= 1, . . . , τ}
as the training data. We vary τ to work with different levels of of data availability. Note that

the ground choice model that governs the choices in the training data is not the PCL model. We

fit a PCL model to the training data by using standard maximum likelihood estimation; see, for

example, Vulcano et al. (2012). We use the fmincon routine in Matlab to maximize the likelihood

functions. For comparison purpose, we also fit a multinomial logit model. Using the same approach

that we use for generating the training data, we also generate the choice history for another 10,000

commuters from the ground choice model. We refer to this choice history as the testing data and

use it to test the performance of the fitted choice models.

Using the testing data, we compute the out of sample log-likelihoods of the fitted PCL and

multinomial logit models. A larger out of sample log-likelihood indicates that the fitted choice

model does a better job of predicting the choices of the commuters that are not in the training

data. Furthermore, we compute the mean absolute errors in the choice probabilities of the

fitted choice models. In particular, using φGR
i (S) and φPCL

i (S) to, respectively, denote the choice

probability of path i out of the subset of paths S under the ground choice model and the fitted

PCL model, letting N = {P1, . . . , P5} be the set of all paths, the mean absolute error in the choice

probabilities of the fitted PCL model is given by 1∑
S⊆N |S|

∑
S⊆N

∑
i∈S |φPCL

i (S)−φGR
i (S)|. We focus

on mean absolute, rather than mean percent, errors because calculating mean percent errors may

require divisions by small choice probabilities, putting disproportionate weight on misestimating

small choice probabilities. We compute the mean absolute error in the choice probabilities of the

fitted multinomial logit model similarly.

We give our numerical results in Figure 4. On the left side of the figure, we focus on the out

of sample log-likelihoods of the fitted choice models. The horizontal axis shows the number of

commuters τ in the training data set, capturing different levels of data availability to fit the
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Figure 4 Out of sample log-likelihoods and mean absolute errors in the choice probabilities of the fitted PCL and

multinomial logit models in the commuter path choice setting.

choice models. The two data series show the out of sample log-likelihoods of the fitted PCL

and multinomial logit models when we have different levels of data availability to fit the two

choice models. On the right side of the figure, we focus on the mean absolute errors in the choice

probabilities of the fitted choice models. The two data series show the mean absolute errors of the

fitted PCL and multinomial logit models when we have different levels of data availability to fit

the two choice models. To eliminate the effect of noise, we replicated our numerical experiments

100 times. The data series in Figure 4 show the averages of our results over 100 replications. Using

multiple replications smoothed out the data series, but in each replication, the data series had

qualitatively the same nature, except that they were less smooth.

The results in Figure 4 indicate that if τ is reasonably large so that we have a reasonably large

amount of data for fitting the choice models, then the out of sample log-likelihoods and the mean

absolute errors of the fitted PCL model are significantly better than those of the fitted multinomial

logit model. The performance of the two fitted choice models is comparable when we have too little

data. The number of parameters for the PCL model is O(|N |2), whereas the number of parameters

for the multinomial logit model is O(|N |). If we have too little data, then it may be difficult to

estimate the larger number of parameters for the PCL model, but as the data availability increases,

the fitted PCL model yields significantly better out of sample log-likelihoods and mean absolute

errors when compared with the fitted multinomial logit model.
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Appendix C: Motivation for the Utilities under the Paired Combinatorial Logit Model

As we discuss at the beginning of Section 2.2, the PCL model is compatible with the random utility

maximization principle. In this section, we give a motivation for the specific form of the utilities

under the PCL model. Consider a process where a customer makes a choice by comparing the

pairs of products. When the customer compares the pair of products {i, j}, she assigns the random

value X i
{i,j} to product i and the random value Xj

{i,j} to product j. The pair {i, j} is unordered

in the sense that we treat the pairs {i, j} and {j, i} as the same. After comparing every pair of

products, the customer has the collection of values {X i
{i,j} : j ∈N, j 6= i} associated with product

i. The customer assigns a utility to product i by aggregating these values. One way to aggregate

the values is to average them. Another way to aggregate the values is by taking the maximum. In

the latter case, the utility of product i is given by

Utilityi = max
{
X i
{i,j} : j ∈N, j 6= i

}
. (3)

Intuitively, in (3), the customer assigns the utility to product i based on her “best experience”

among the pairwise comparisons of product i with all other products. If X i
{i,j} and Xj

{i,j} follow a

specific form, then the pairwise comparison process described above yields the PCL model.

In particular, let ηi{i,j} and ηj{i,j} each have the Gumbel distribution with location and scale

parameters (0,1). For a fixed γ{i,j} ∈ [0,1], let Y{i,j} have the C distribution with parameter γ{i,j};

see Cardell (1997). Consider the case where X i
{i,j} and Xj

{i,j} have the form

X i
{i,j} = µi +Y{i,j}+ γ{i,j} η

i
{i,j} and Xj

{i,j} = µj +Y{i,j}+ γ{i,j} η
j
{i,j}, (4)

where µi and µj are deterministic constants. Lastly, to capture the utility of the no purchase option,

let Utility0 have the Gumbel distribution with location and scale parameters (0,1). We assume that

{Y{i,j} : (i, j) ∈N 2, i < j} ∪ {ηk{i,j} : (i, j) ∈N 2, i < j, k ∈ {i, j}} ∪ {Utility0} are all independent of

each other. In this case, by Theorem 2.1 in Cardell (1997), if the random variables X i
{i,j} and Xj

{i,j}

have the form in (4), then they have the Gumbel distribution with location and scale parameters,

respectively, (µi,1) and (µj,1). Also, if the utility of product i has the form in (3)-(4) above and the

customer chooses the alternative that provides the largest utility, then we can follow the same line

of reasoning in Section 3 of Cardell (1997) to show that the probability that a customer chooses

each product is precisely the same as the choice probability under the PCL model.

We can interpret the form of X i
{i,j} and Xj

{i,j} in (4) as follows. The deterministic constants

µi and µj, respectively, reflect the intrinsic values of products i and j. The random variable

Y{i,j} captures the contribution to the value based on the common characteristics of products
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i and j when the customer compares the two products. The random variables γ{i,j} η
i
{i,j} and

γ{i,j} η
j
{i,j} represent idiosyncratic noises. Using the fact that the maximum of independent Gumbel

random variables with the same shape parameter is also a Gumbel random variable with the

same shape parameter, it follows that Utilityi has the Gumbel distribution with location and scale

parameters (µi,1). However, since X i
{i,j} and Xj

{i,j} both depend on Y{i,j}, Utilityi and Utilityj can be

correlated. Also, it is instructive to consider special cases. If γ{i,j} = 0, then X i
{i,j} = µi +Y{i,j} and

Xj
{i,j} = µi + Y{i,j}, making them perfectly correlated, corresponding to the case where products i

and j are perfectly similar to each other. Since the C distribution with parameter 1 is a degenerate

distribution with a point mass at zero, if γ{i,j} = 1, then X i
{i,j} = µi + ηi{i,j} and Xj

{i,j} = µj + ηj{i,j},

making X i
{i,j} and Xj

{i,j} independent of each other, in which case, products i and j do not share

any common characteristics.

The discussion in this section provides some motivation for the utilities of the products under

the PCL model and can shed light into the aspects of the choice process that are captured by

the PCL model, but not by other choice models such as the multinomial logit or nested logit

models. Nevertheless, we emphasize that using the PCL model does not imply that the customers

necessarily make a choice through pairwise comparisons. The important point is that the PCL

model is a choice model that is based on the random utility maximization principle, where the

utility of each product has the Gumbel distribution and there can be different levels of correlation

between the utilities of different pairs of products.

Appendix D: Using the Same Paired Combinatorial Logit Model for Different Assortments

In the Assortment problem, we use the PCL model with the same parameters to capture the

choices of the customers within different assortments. We simply drop the products that are not

available in the offered assortment from the choice model. In this section, we justify this approach

by using the fact that the PCL model is based on the random utility maximization principle.

In particular, the PCL model is a generalized extreme value (GEV) model, which is a broad

class of choice models based on the random utility maximization principle. In a GEV model, if

we offer the assortment x, then a customer associates the random utilities {µi(xi) + εi : i∈N}
with the products, where µi(xi) is the deterministic component and εi is the random shock

for the utility of product i. For some fixed βi ∈ R, the deterministic component is given by

µi(xi) = βi if xi = 1, whereas µi(xi) =−∞ if xi = 0. Therefore, if a product is not offered, then

its utility is negative infinity. Similarly, a customer associates the random utility µ0 + ε0 with the

no purchase option. The no purchase option is always available, but for notational uniformity, we

use µ0(x0) to denote the deterministic component of its utility. For some fixed β0 ∈R, we have
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µ0(x0) = β0. The random shocks (ε0, ε1, . . . , εn) have a cumulative distribution function of the form

P{ε0 ≤ u0, ε1 ≤ u1, . . . , εn ≤ un} = exp(−G(e−u0 , e−u1 , . . . , e−un)) for some function G :Rn+1
+ →R+.

Different choices of G(·, ·, . . . , ·) yield different GEV models. A customer chooses the alternative

with the largest utility. Therefore, if we offer the assortment x, then a customer chooses product i

with probability P{µi(xi) + εi = maxj∈N∪{0} µj(xj) + εj}.

Theorem 1 in McFadden (1978) shows that if the function G(·, ·, . . . , ·) satisfies a number

of properties that ensure that F (u0, u1, . . . , un) = exp(−G(e−u0 , e−u1 , . . . , e−un)) is a cumulative

distribution function, then the purchase probability of product i under a GEV model is given by

P{µi(xi) + εi = maxj∈N∪{0} µj(xj) + εj} = eµi(xi) ∂iG(eµ0(x0),eµ1(x1),...,eµn(xn))

G(eµ0(x0),eµ1(x1),...,eµn(xn))
, where ∂iG(y0, y1, . . . , yn)

is the partial derivative of G(·, ·, . . . , ·) with respect to the i-th coordinate evaluated at

(y0, y1, . . . , yn). The PCL model is a GEV model with the choice of G(·, ·, . . . , ·) given by

G(y0, y1, . . . , yn) = y0 +
∑

(i,j)∈M(y
1/γij
i + y

1/γij
j )γij with γij = γji. The preference weight vi of

product i in Section 2.1 is related to the deterministic component of the utility of this product

through the relationship vi = eβi . Therefore, noting that µi(xi) = βi = log vi if xi = 1, whereas

µi(xi) =−∞ if xi = 0, we get eµi(xi) = vi xi. In this case, if we offer the assortment x, then the

purchase probability of product i under the PCL model is

P
{
µi(xi) + εi = max

j∈N∪{0}
µj(xj) + εj

}
=

eµi(xi) ∂iG(eµ0(x0), eµ1(x1), . . . , eµn(xn))

G(eµ0(x0), eµ1(x1), . . . , eµn(xn))

=

eµi(xi)
∑

j∈N :(i,j)∈M
2eµi(xi) (1/γij−1)(eµi(xi)/γij + eµj(xj)/γij )γij−1

eµ0(x0) +
∑

(k,`)∈M
(eµk(xk)/γk` + eµ`(x`)/γk`)γk`

=

∑

j∈N :(i,j)∈M
2
v

1/γij
i xi
Vij(x)

Vij(x)γij

v0 +
∑

(k,`)∈M
Vk`(x)γk`

, (5)

where the second equality follows directly by differentiating G(·, ·, . . . , ·) and noting that γij =

γji, whereas the third equality holds since eµi(xi)/γij + eµj(xj)/γij = v
1/γij
i xi + v

1/γij
j xj = Vij(x).

In the choice process discussed in Section 2.1, if we offer the assortment x, then a customer

chooses nest (i, j) with probability Pij(x) = Vij(x)γij/(v0 +
∑

(k,`)∈M Vk`(x)γk`). When γij = γji,

if the customer chooses nest (i, j) or nest (j, i), then she purchases product i with probability

qiij(x) = v
1/γij
i xi/Vij(x). Thus, the purchase probability of product i under any assortment x in the

choice process discussed in Section 2.1, which is given by
∑

j∈N :j 6=i(Pij(x) qiij(x) + Pji(x) qiji(x)),

is the same as the purchase probability in (5), which is obtained by using the random utility

maximization principle, justifying the use of the PCL model with the same parameters to capture

choices within different assortments.
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Appendix E: Prediction Ability of the Paired Combinatorial Logit Model

We give a numerical study to check the ability of the PCL model to capture the choices of the

customers within different assortments. We work with both synthetically generated data sets and

data sets that are based on a real-world hotel revenue management application.

E.1. Synthetically Generated Data

In this set of numerical experiments, we synthetically generate the past purchase history of the

customers under the assumption that the customers choose according to a complicated ground

choice model. We fit a PCL model to this past purchase history. For comparison purpose, we

also fit a multinomial logit model. Our goal is to understand the benefits from the PCL model

from the perspective of predicting the choices of the customers within different assortments. In the

ground choice model, there are m customer types. A customer of a particular type ranks a subset

of the products according to a certain preference order and purchases the highest ranking available

product. If none of the products in her preference list is available for purchase, then the customer

leaves the system without a purchase. Thus, customers of different types are differentiated only by

their preference lists. We use βg to denote the probability that a customer of type g arrives into

the system. Letting kg be the number of products in the preference list of customers of type g, we

use the tuple (ig(1), . . . , ig(kg)) to denote the preference list of customers of type g, where ig(`)∈N
is the product with the `-th highest ranking in the preference list. Therefore, the parameters of

the ground choice model are (β1, . . . , βm) and {(ig(1), . . . , ig(kg)) : g= 1, . . . ,m}.

Generating the Ground Choice Model and Estimation: We generate the parameters of

the ground choice model as follows. We assume that the products {1, . . . , n} are indexed in the

order of decreasing quality, where product 1 has the highest quality and product n has the lowest

quality. A product with a higher quality also has a higher price. A customer of a particular type has

a certain minimum acceptable quality and a maximum acceptable price. She drops products not

satisfying these criteria from consideration. Also, she generally prefers a product with higher quality,

but we add some noise to enrich the choice behavior. In particular, to generate the preference list

for customers of type g, we sample `g from the uniform distribution over {1, . . . , n} and ug from

the uniform distribution over {`g, . . . , n}. Focusing on the products {`g, . . . , ug}, we drop each one

of these products with probability 0.1. We denote the remaining products by {jg(1), . . . , jg(kg)},
where product jg(1) has the highest quality and product jg(kg) has the lowest quality. With

probability 0.5, we randomly pick one of the products in {jg(1), . . . , jg(kg−1)} and flip its ordering

in the tuple (jg(1), . . . , jg(kg)) with its successor to obtain the tuple (ig(1), . . . , ig(kg)), yielding

the preference list for customers of type g. With the remaining probability of 0.5, we keep the
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tuple (jg(1), . . . , jg(kg)) unchanged to obtain the tuple (ig(1), . . . , ig(kg)), once again, yielding the

preference list for customers of type g. The approach that we use to generate the ground choice

model follows the one in Feldman and Topaloglu (2017). A customer of each type g arrives with

probability βg = 1/m. In our numerical study, we set m= 50 and n= 10.

The design of our numerical study is similar to the one in Appendix B. Once we generate the

ground choice model as in the previous paragraph, we generate the purchase history of τ customers

under the assumption that the customers choose according to the ground choice model. We

denote this purchase history by {(St, it) : t= 1, . . . , τ}, where St is the subset of products offered

to customer t and it is the product purchased by customer t. To generate the subset of products

St, we include each product in the subset with probability 0.5. Given that we offer the subset

St, we sample product it according to the ground choice model. If the customer does not make

a purchase, then we set it = 0. We use τ ∈ {1000,1750,2500} to capture three levels of data

availability in the purchase history. We refer to these purchase histories as training data. We fit

a PCL model and a multinomial logit model to the training data by using standard maximum

likelihood estimation; see, for example, Vulcano et al. (2012). We use the fmincon routine in

Matlab to maximize the likelihood functions. To use as testing data, using the same approach for

generating the training data, we generate the purchase history of another 2500 customers under

the assumption that these customers also choose according to the same ground choice model. We

use the testing data to test the performance of the fitted choice models.

Out of Sample Log-Likelihoods: One approach to compare the fitted PCL and multinomial

logit models is to check their out of sample log-likelihoods on the testing data. A larger out of

sample log-likelihood indicates that the corresponding fitted choice model does a better job of

predicting the choices of the customers that are not in the training data. To compare the out

of sample log-likelihoods, we generate 10 different ground choice models. For each ground choice

model, we generate three past purchase histories with τ ∈ {1000,1750,2500} customers. We fit a

PCL model and a multinomial logit model to the three past purchase histories. When estimating

the parameters of the PCL model, the fmincon routine in Matlab terminated with convergence to a

local maximizer for all of our test problems and took 121 to 356 seconds depending on the number

customers in the past purchase history. Once we fit a PCL and a multinomial logit model to a

past purchase history, we check the out of sample log-likelihoods of the two fitted choice models

on the testing data. We give our results in Table 3. Each row in the table shows the results for

one of the 10 ground choice models. There are three blocks of three columns in the table. Each

block corresponds to a different value of τ , capturing a different level of data availability. The first

and second columns in each block show the out of sample log-likelihoods of the fitted PCL and
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τ = 1000 τ = 1750 τ = 2500
Grnd. Log-Li. Log-Li. % Log-Li. Log-Li. % Log-Li. Log-Li. %
Mod. PCL MNL Gap PCL MNL Gap PCL MNL Gap

1 −4171 −4189 0.42% −4166 −4182 0.37% −4164 −4181 0.40%
2 −4268 −4291 0.53% −4266 −4294 0.64% −4264 −4291 0.62%
3 −4189 −4212 0.56% −4177 −4204 0.64% −4179 −4207 0.68%
4 −4099 −4114 0.37% −4093 −4112 0.47% −4090 −4110 0.50%
5 −4228 −4237 0.21% −4208 −4224 0.37% −4203 −4220 0.42%
6 −4228 −4249 0.48% −4220 −4243 0.53% −4217 −4240 0.56%
7 −4242 −4261 0.45% −4234 −4255 0.49% −4231 −4254 0.54%
8 −4293 −4306 0.30% −4289 −4304 0.35% −4290 −4305 0.35%
9 −4213 −4223 0.22% −4202 −4221 0.46% −4200 −4220 0.47%
10 −4162 −4174 0.30% −4162 −4173 0.28% −4162 −4176 0.33%

Avg. 0.38% 0.46% 0.49%

Table 3 Out of sample log-likelihoods of the fitted PCL and multinomial logit models.

multinomial logit models. The third column shows the percent gap between the two log-likelihoods.

Our results indicate that the fitted PCL model provides consistent improvements over the fitted

multinomial logit model. The average gap between the out of sample log-likelihoods is 0.44%.

Shortly, we also comment on the statistical significance of these gaps.

The PCL model has O(n2) parameters, corresponding to the preference weights of the products

and the dissimilarity parameters of the nests, whereas the multinomial logit model has O(n)

parameters, corresponding to the mean utilities of the products. Due to its larger number of

parameters, we expect that the PCL model provides more flexibility in modeling the choice behavior

of the customers. However, due to its larger number of parameters, the PCL model may also over-

fit to the training data, especially when we have too few customers in the training data. In this

case, the PCL model may not provide satisfactory performance when we check its out of sample

log-likelihoods on the testing data. Therefore, we cannot claim that the out of sample log-likelihoods

of the fitted PCL model will always exceed those of the fitted multinomial logit model. In our

numerical study, nevertheless, the possibility of over-fitting does not appear to be problematic

for the PCL model, even when we have as few as 1000 customers in the training data and we

estimate more than 100 parameters. As discussed in Section 1.1 in Bishop (2006), the possibility of

over-fitting is a concern when working with a model with a large number of parameters, but this

concern goes away when the amount of training data increases. Thus, the multinomial logit model

may be preferable to the PCL model when the training data is scarce. As the amount of training

data increases, the PCL model may be preferable to the multinomial logit model.

When over-fitting is a concern, one approach is to regularize the log-likelihood function by

subtracting the penalty term λ
∑

(i,j)∈M(1− γij) from the log-likelihood function, where λ is an

adjustable penalty multiplier. As discussed in Section 2.2, if γij = 1 for all (i, j) ∈M , then the

utilities are uncorrelated, so the PCL model becomes equivalent to the multinomial logit model.
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τ = 1000 τ = 1750 τ = 2500
Grnd. Err. Err. % Err. Err. % Err. Err. %
Mod. PCL MNL Gap PCL MNL Gap PCL MNL Gap

1 0.049 0.051 5.42% 0.048 0.051 5.60% 0.047 0.050 6.29%
2 0.047 0.050 5.79% 0.045 0.050 9.34% 0.045 0.049 8.94%
3 0.049 0.051 5.65% 0.047 0.050 7.29% 0.047 0.051 7.57%
4 0.049 0.051 5.65% 0.047 0.050 7.02% 0.046 0.050 7.55%
5 0.047 0.048 3.40% 0.044 0.047 5.60% 0.044 0.047 6.89%
6 0.048 0.051 6.22% 0.046 0.050 7.61% 0.046 0.050 7.96%
7 0.051 0.054 5.82% 0.050 0.053 6.43% 0.049 0.053 7.45%
8 0.048 0.050 3.18% 0.047 0.049 3.98% 0.047 0.049 4.08%
9 0.051 0.054 6.10% 0.050 0.054 7.59% 0.050 0.054 7.62%
10 0.044 0.047 6.18% 0.044 0.046 6.36% 0.044 0.047 6.70%

Avg. 5.34% 6.68% 7.10%

Table 4 Mean absolute errors in the choice probabilities of the fitted PCL and multinomial logit models.

Thus, the penalty term discourages moving away from the specification of the multinomial logit

model unless it is clearly beneficial to do so. One can experiment with different values for the

penalty multiplier λ to obtain a different fitted PCL model for each value. By checking the out of

sample log-likelihoods of the fitted PCL model, one can pick the best one. This approach closely

follows the standard regularization idea in model selection; see Section 3.5 in Hastie et al. (2017).

Another approach to address over-fitting is to fit two versions of the PCL model after setting some

or all of the dissimilarity parameters {γij : (i, j)∈M} to one. In this case, one can use the likelihood

ratio test to compare the fit of the two models. Likelihood ratio test is a common approach in the

choice modeling literature to avoid over-specifying the model; see, for example, Horowitz (1982),

Gunn and Bates (1982), and Hausman and McFadden (1984).

Errors in Choice Probabilities: We also compare the errors in the purchase probabilities of

the fitted choice models. In particular, we use φGR
i (S) and φPCL

i (S) to, respectively, denote the

purchase probability of product i out of assortment S under the ground choice model and the

fitted PCL model. For the testing data {(St, it) : t= 1, . . . ,2500}, the mean absolute error in the

purchase probabilities of the fitted PCL model is 1
2500

∑2500

t=1
1
|St|
∑

i∈St |φ
PCL
i (St)−φGR

i (St)|. We can

compute the mean absolute error of the fitted multinomial logit model similarly. We give our results

in Table 4. The layout of this table is identical to that of Table 3. The only difference is that

smaller mean absolute errors indicate better performance. The fitted PCL model has consistent

improvements over the fitted multinomial logit model. Over all of our test problems, the average

percent gap between the mean absolute errors of the two fitted choice models is 6.38%.

The results in Tables 3 and 4 are based on one training data set for each ground choice model

and for each value of τ . To check the statistical significance of the results in these tables, we use

bootstrapping. In particular, for each ground choice model and for each value of τ , we generate 10

past purchase histories to use as the training data. For each of the 10 bootstrapped past purchase



Zhang, Rusmevichientong, and Topaloglu: Assortment Optimization under the PCL Model
19

τ = 1000 τ = 1750 τ = 2500
Grnd. Mean Std. Mean Std. Mean Std.
Mod. Diff. Dev. t-Sta. p-Val. Diff. Dev. t-Sta. p-Val. Diff. Dev. t-Sta. p-Val.

1 0.38 0.08 14.92 5.9× 10−8 0.40 0.08 16.51 2.5× 10−8 0.42 0.08 17.60 1.4× 10−8

2 0.43 0.07 18.76 8.0× 10−9 0.49 0.07 20.71 3.3× 10−9 0.51 0.07 23.89 9.4× 10−10

3 0.48 0.06 23.22 1.2× 10−9 0.53 0.09 19.17 6.6× 10−9 0.54 0.08 20.64 3.4× 10−9

4 0.40 0.14 9.04 4.1× 10−6 0.49 0.09 16.54 2.4× 10−8 0.55 0.07 23.70 1.0× 10−9

5 0.31 0.08 12.75 2.3× 10−7 0.36 0.08 14.40 8.1× 10−8 0.39 0.07 17.42 1.5× 10−8

6 0.42 0.06 21.70 2.2× 10−9 0.46 0.06 22.35 1.7× 10−9 0.48 0.07 21.25 2.7× 10−9

7 0.53 0.13 12.88 2.1× 10−7 0.58 0.11 17.05 1.8× 10−8 0.59 0.09 21.43 2.5× 10−9

8 0.24 0.11 6.86 3.7× 10−5 0.29 0.06 15.49 4.3× 10−8 0.31 0.08 13.06 1.9× 10−7

9 0.46 0.17 8.89 4.7× 10−6 0.53 0.08 21.33 2.6× 10−9 0.58 0.06 28.35 2.1× 10−10

10 0.34 0.07 15.66 3.9× 10−8 0.37 0.06 19.27 6.3× 10−9 0.39 0.05 25.15 6.0× 10−10

Table 5 Statistical comparison of the out of sample log-likelihoods of the two fitted choice models.

histories, we replicate the results in Tables 3 and 4. In this case, we can check whether the gaps

in the performance of the fitted PCL and multinomial logit models are statistically significant. It

turns out that a sample size of 10 is enough to ensure that our results are statistically significant

at a high significance level. In Table 5, we check the statistical significance of the gaps between

the out of sample log-likelihoods of the fitted PCL and multinomial logit models. Each row in

this table corresponds to a different ground choice model, whereas each block of four columns

corresponds to a different value of τ . In each block, the first column shows the average percent

gap between the out of sample log-likelihoods of the fitted PCL and multinomial logit models,

where the average is computed over the 10 bootstrapped training data sets. The second column

shows the standard deviation of the percent gaps between the out of sample log-likelihoods of the

fitted PCL and multinomial logit models. In other words, using LLPCL
s and LLMNL

s to, respectively,

denote the out of sample log-likelihoods of the fitted PCL and multinomial logit models from the

s-th bootstrapped training data set, the first and second columns show the average and standard

deviation of the data {100× (LLPCL
s − LLMNL

s )/|LLPCL
s | : s = 1, . . . ,10}. The third column shows

the t-statistic in the paired t-test to check the statistical significance of the gap between the out of

sample log-likelihoods of the fitted PCL and multinomial logit models. The fourth column shows

the p-value of the same test. The results in Table 5 indicate that the p-values are essentially zero for

all ground choice models and all values of τ . Therefore, for all ground choice models and all levels

of data availability, with extremely high statistical significance, the out of sample log-likelihoods

of the fitted PCL model are better than those of the fitted multinomial logit model.

In Table 6, we use a similar approach to check the statistical significance of the gaps between

the mean absolute errors of the choice probabilities from the fitted PCL and multinomial logit

models. The layout of this table is identical to that of Table 5. The only difference is that if

we use MAEPCL
s and MAEMNL

s to, respectively, denote the mean absolute errors of the fitted

PCL and multinomial logit models that are obtained by using the s-th bootstrapped training
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τ = 1000 τ = 1750 τ = 2500
Grnd. Mean Std. Mean Std. Mean Std.
Mod. Diff. Dev. t-Sta. p-Val. Diff. Dev. t-Sta. p-Val. Diff. Dev. t-Sta. p-Val.

1 4.96 0.56 27.91 2.4× 10−10 5.65 0.71 25.26 5.7× 10−10 5.88 0.58 31.80 7.4× 10−11

2 6.23 1.62 12.20 3.3× 10−7 8.14 1.31 19.67 5.3× 10−9 8.59 0.89 30.42 1.1× 10−10

3 5.96 0.49 38.29 1.4× 10−11 6.58 0.79 26.33 4.0× 10−10 7.17 0.45 49.90 1.3× 10−12

4 5.28 1.17 14.31 8.5× 10−8 6.43 1.04 19.56 5.5× 10−9 7.25 0.53 43.66 4.3× 10−12

5 5.19 1.17 14.07 9.8× 10−8 5.95 0.88 21.36 2.5× 10−9 6.49 0.88 23.40 1.1× 10−9

6 6.47 0.72 28.42 2.0× 10−10 7.49 0.64 36.80 2.0× 10−11 8.18 0.65 39.62 1.0× 10−11

7 6.83 1.18 18.37 9.6× 10−9 7.78 1.16 21.14 2.8× 10−9 8.19 0.81 31.82 7.4× 10−11

8 3.76 0.81 14.76 6.5× 10−8 4.52 0.62 23.01 1.3× 10−9 4.75 0.60 24.97 6.4× 10−10

9 6.06 1.37 13.99 1.0× 10−7 6.76 0.65 32.83 5.6× 10−11 7.48 0.84 28.18 2.2× 10−10

10 5.56 0.84 20.99 3.0× 10−9 6.42 1.03 19.78 5.0× 10−9 6.82 0.73 29.59 1.4× 10−10

Table 6 Statistical comparison of the mean absolute errors of the two fitted choice models.

data set, the first and second columns show the average and standard deviation of the data

{100× (MAEMNL
s −MAEPCL

s )/MAEPCL
s : s= 1, . . . ,10}. Once again, for all ground choice models

and all levels of data availability, the p-values in Table 6 are essentially zero, indicating that the

mean absolute errors of the choice probabilities predicted by the fitted PCL model are, with very

high statistical significance, smaller than those predicted by the fitted multinomial logit model.

E.2. Hotel Revenue Management Data

In this set of numerical experiments, we use a data set from Bodea et al. (2009), which is based on

a real-world hotel revenue management application. In this data set, we have customer purchase

records for five different hotels from March 12, 2007 to April 15, 2007. Each purchase record gives

the room type availability at the time of the booking and the room type that was booked. Room

types take values such as king non-smoking and queen smoking. Each room type corresponds

to a different product. We consider the choice behavior of the customers between the different

products. In van Ryzin and Vulcano (2015), the authors also use this data set in their numerical

experiments. We focus on the purchase records for each hotel separately. For one of the hotels,

letting D be the number of days over which we have purchase records and R` be the number of

purchase records on day `, we use {(Srec
`,r , i

rec
`,r ) : `= 1, . . . ,D, r= 1, . . . R`} to denote the purchase

records in the data set, where Srec
`,r is the subset of products that is available when the purchase

record r on day ` occurred and irec
`,r is the product that was purchased within this subset. The

purchase records in the data set do not include no purchase events by arriving customers.

Data Set to Fit the Choice Models: To obtain a data set that we can use to fit a PCL and

a multinomial logit model, we build on the purchase records as follows. In the purchase records,

the subsets of products that are offered on day ` are {Srec
`,r : ` = 1, . . . ,R`}. There are R` subsets

that are offered on day `, but some of these subsets can be identical to each other. We assume

that each subset Srec
`,r was offered for a duration of 24/R` hours on day `. During this duration
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of time, there was one purchase for product irec
r,` and no other purchases. Timing of this purchase

does not affect our fitting results, so we place this purchase at the beginning of the duration of

24/R` hours. In the duration of 24/R` hours, there may or may not have been other customer

arrivals. The fact that there are no other purchases during this duration may be due to the fact

that there were no customer arrivals or the arriving customers did not purchase anything. Thus,

during the D days in the purchase records, we have access to the subsets of products that were

offered at each time instant and the timing of the purchases. To obtain a data set that we can use

to fit a PCL and a multinomial logit model, we divide each day into K time slots, each time slot

representing a small enough duration of time that there is at most one customer arrival in each

time slot. Since each time slot corresponds to a particular time interval on a particular day, we

look up the subset of products offered in each time slot. Furthermore, on day `, out of the time

slots in which the subset Srec
`,r was offered, we assume that product irec

`,r was purchased in one of the

time slots and no products were purchased in the other time slots. This approach yields the subset

that was offered and the product, if any, that was purchased in each time slot and on each day.

We capture this data by {(S`,k, i`,k) : `= 1, . . . ,D, k= 1, . . . ,K}, where S`,k is the subset offered in

time slot k on day ` and i`,k is the product purchased in time slot k on day `. If there is no purchase

in time slot k on day `, then we set i`,k = 0. In this way, the frequency with which each subset

is offered in the data set {(S`,k, i`,k) : `= 1, . . . ,D, k = 1, . . . ,K} is roughly equal to the frequency

with which each subset is offered in the purchase records {(Srec
`,r , i

rec
`,r ) : `= 1, . . . ,D, r = 1, . . . R`},

but there are small rounding errors due to the fact that we divide each day into K discrete time

slots. Furthermore, the number of purchases of each product out of each subset in the data set

{(S`,k, i`,k) : `= 1, . . . ,D, k= 1, . . . ,K} is exactly equal to the number of purchases of each product

out of each subset in the purchase records {(Srec
`,r , i

rec
`,r ) : `= 1, . . . ,D, r= 1, . . . R`}.

Estimation: We use the data set {(S`,k, i`,k) : ` = 1, . . . ,D, k = 1, . . . ,K} to fit a PCL and a

multinomial logit model. We split the DK offered subset-purchased product pairs in this data set

into training and testing data sets. The training data set includes 9/10 fraction of the randomly

chosen offered subset-purchased product pairs, whereas the testing data set includes the remaining

pairs. We use {(St, it) : t = 1, . . . , τ} to denote the offered subset-purchased product pairs in the

training data set. Using v= {vi : i∈N} and γ = {γij : (i, j)∈M} to capture the parameters of the

PCL model, we use φPCL
i (S |v,γ) to denote purchase probability of product i out of the subset S

under the PCL model with parameters v and γ. Similarly, we use φPCL
0 (S |v,γ) to denote the no

purchase probability under the PCL model with parameters v and γ when we offer the subset S.

We assume that customers arrive according to a Poisson process with a stationary arrival rate. Our

results qualitatively remained the same when we worked with different arrival rates in different
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Problem instance characteristics Out of sample log-likelihoods
Hotel 1 Hotel 2 Hotel 3 Hotel 4 Hotel 5 Hotel 1 Hotel 2 Hotel 3 Hotel 4 Hotel 5

No. Prd. 10 14 9 9 8 PCL −434.77 −196.96 −390.19 −109.14 −97.24∑D
`=1R` 1341 487 1271 309 260 MNL −436.62 −198.17 −390.47 −109.29 −97.66
DK 3596 1456 3477 1020 987 % Gap 0.42% 0.61% 0.07% 0.14% 0.43%

Table 7 Numerical results for the hotel revenue management data.

weeks. Using α to denote the probability that there is a customer arrival in each time slot, the

log-likelihood function to fit a PCL model is

L(v,γ, α) =
τ∑

t=1

log
(
1(it 6= 0)αφPCL

it
(St |v,γ) + 1(it = 0)

{
(1−α) +αφPCL

it
(St |v,γ)

})
.

In the log-likelihood function above, we use the fact that if there is a purchase for product i in a

time slot, then there was a customer arrival in this time slot and the customer purchased product

i, whereas if there is no purchase in a time slot, then either there was no customer arrival or there

was a customer arrival and the arriving customer did not purchase anything. We fit a PCL model

to the training data by maximizing the log-likelihood function above subject to the constraints

that vi ≥ 0 for all i ∈N , γij ∈ [0,1] for all (i, j) ∈M and α ∈ [0,1]. We use the fmincon routine in

Matlab to maximize the log-likelihood function. Once we fit a PCL model, we compute the out of

sample log-likelihood of the fitted PCL model by using the testing data. The log-likelihood function

that we use for this purpose is the same as the one above, but we use the offered subset-purchased

product pairs in the testing data instead of those in the training data. By using a similar approach,

we fit a multinomial logit model to the training data and compute the out of sample log-likelihood

of the fitted multinomial logit model by using the testing data.

Out of Sample Log-Likelihoods: We give our results in Table 7. On the left side of the table,

we show statistics for the data sets for each hotel. The first row shows the number of products.

The second row shows the number of purchase records {(Srec
`,r , i

rec
`,r ) : ` = 1, . . . ,D, r = 1, . . . ,R`},

which is given by
∑D

`=1R`. The third row shows the total number of data points in the training

and testing data sets {(S`,k, i`,k) : ` = 1, . . . ,D, k = 1, . . . ,K}, which is given by DK. The value

of DK is different for different hotels because the booking requests arrive over different numbers

of days for different hotels and we divide a day into different numbers of time slots for different

hotels depending on the number of booking arrivals per day. On the right side of the table, we

show the out of sample log-likelihoods of the fitted PCL and multinomial logit models, along with

the percent gap between the out of sample log-likelihoods of the two fitted choice models. The

gaps range between 0.07% and 0.61%, favoring the fitted PCL model. The results in this table are

based on one partition of the data points between the training and testing data sets.

We use bootstrapping to check the statistical significance of the gaps between the out of sample

log-likelihoods of the two fitted choice models. We generate 100 randomly chosen partitions of
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Hotel 1 Hotel 2 Hotel 3 Hotel 4 Hotel 5

Mean Diff. 0.51% 0.27% 0.18% 0.45% 0.50%
Std. Dev. 0.22% 0.73% 0.25% 1.41% 0.77%
t-Sta. 23.01 3.74 7.02 3.22 6.52
p-Val. 7.97× 10−42 1.54× 10−4 1.41× 10−10 8.79× 10−4 1.48× 10−9

Table 8 Statistical comparison of the out of sample log-likelihoods for the hotel revenue management data.

the data points between the training and testing data sets, where, for each partition, the training

data set includes 9/10 fraction of the data points and the testing data set includes the remaining

data points. For each bootstrapped partition, we replicate the results in Table 7. In this way, we

have the out of sample log-likelihoods for the two fitted choice models from each bootstrapped

partition. In Table 8, we check the statistical significance of the gaps between the out of sample

log-likelihoods of the two fitted choice models. Each column in this table focuses on a different

hotel. The first row shows the average percent gap between the out of sample log-likelihoods of the

fitted PCL and multinomial logit models, where the average is computed over the 100 bootstrapped

partitions. The second row shows the standard deviation of the percent gaps between the out

of sample log-likelihoods of the fitted PCL and multinomial logit models. In particular, using

LLPCL
s and LLMNL

s to, respectively, denote the out of sample log-likelihoods of the fitted PCL and

multinomial logit models from the s-th bootstrapped partition, the first and second rows show

the average and standard deviation of the data {100× (LLPCL
s −LLMNL

s )/|LLPCL
s | : s= 1, . . . ,100}.

The third row shows the t-statistic in the paired t-test to check the statistical significance between

the out of sample log-likelihoods of the fitted PCL and multinomial logit models. The fourth row

shows the p-value of the same test. In Table 8, the p-values are very close to zero. Therefore, for

the data sets originating from each of the hotels, with very high statistical significance, the out

of sample log-likelihoods of the fitted PCL model are better than those of the fitted multinomial

logit model. Note that since we do not have access to the actual ground choice model that governs

the choices of the customers in the data sets, we do not compare the mean absolute errors in the

predicted purchase probabilities of the two fitted choice models.

Appendix F: Existence and Uniqueness of the Fixed Point

In the next lemma, we show that f(z) given by the optimal objective value of the Function Evaluation

problem is continuous in z and satisfies f(0)≥ 0.

Lemma F.1 Letting f(z) be the optimal objective value of the Function Evaluation problem, f(z)

is continuous in z and satisfies f(0)≥ 0.

Proof: Setting x = 0 ∈ Rn is a feasible solution to the Function Evaluation problem. Noting

that Vij(0) = 0, this solution provides an objective value of zero for the Function Evaluation
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problem. Therefore, we have f(z)≥ 0 for all z ∈R. Next, we show that f(z) is continuous in z. For

fixed x∈F ,
∑

(i,j)∈M Vij(x)γij (Rij(x)−z) is linear in z. Furthermore, there are at most 2n possible

values of x∈F . So, noting the Function Evaluation problem, f(z) is the pointwise maximum of at

most 2n linear functions of z. The pointwise maximum of linear functions is continuous. 2

Appendix G: Simplifying the Upper Bound

In the next lemma, we show that we can drop some of the decision variables from the Upper Bound

problem without changing the optimal objective value of this problem. This lemma becomes useful

to obtain the Compact Upper Bound problem.

Lemma G.1 There exists an optimal solution x∗ = {x∗i : i ∈N} and y∗ = {yij : (i, j) ∈M} to the

Upper Bound problem such that x∗i = 0 for all i /∈N(z) and y∗ij = 0 for all (i, j) /∈M(z).

Proof: Letting (x∗,y∗) be an optimal solution to the Upper Bound problem, we define the solution

(x̂, ŷ) as follows. We set x̂i = x∗i for all i∈N(z), x̂i = 0 for all i 6∈N(z), ŷij = y∗ij for all (i, j)∈N(z)2

with i 6= j and ŷij = 0 for all (i, j) 6∈N(z)2 with i 6= j. Observe that x̂i ≤ x∗i and ŷij ≤ y∗ij. We claim

that the solution (x̂, ŷ) is feasible to the Upper Bound problem. To establish the claim, we note

that if (i, j) ∈N(z)2, then we have ŷij = y∗ij ≥ x∗i + x∗j − 1 = x̂i + x̂j − 1, where the two equalities

follow from the definition of (x̂, ŷ) and the inequality follows from the fact that (x∗,y∗) is a feasible

solution to the Upper Bound problem, so it satisfies the first constraint in this problem. Also, if

(i, j) 6∈N(z)2, then we have ŷij = 0≥ x̂i + x̂j − 1, where the equality follows from the definition of

(x̂, ŷ) and the inequality follows from the fact that if (i, j) 6∈N(z)2, then we have x̂i = 0 or x̂j = 0,

along with x̂i ≤ x∗i ≤ 1 and x̂j ≤ x∗j ≤ 1. Therefore, the solution (x̂, ŷ) satisfies the first constraint

in the Upper Bound problem. On the other than, if (i, j)∈N(z)2, then we have ŷij = y∗ij ≤ x∗i = x̂i,

where the two equalities follow from the definition of (x̂, ŷ) and the inequality follows from the

fact that (x∗,y∗) is a feasible solution to the Upper Bound problem. If (i, j) 6∈ N(z)2, then we

have ŷij = 0 ≤ x̂i, where the equality is by the definition of (x̂, ŷ) and the inequality is simply

by the fact that x̂i ≥ 0. Therefore, the solution (x̂, ŷ) satisfies the second constraint in the Upper

Bound problem. We can use the same approach to show that the solution (x̂, ŷ) satisfies the third

constraint in the Upper Bound problem. Finally, since x̂i ≤ x∗i for all i ∈ N , we have
∑

i∈N x̂i ≤∑
i∈N x

∗
i ≤ c. Thus, the solution (x̂, ŷ) is feasible to the Upper Bound problem.

Next, we claim that the objective value provided by the solution (x̂, ŷ) for the Upper Bound

problem is at least as large as the objective value provided by the solution (x∗,y∗). Nest (i, j)

contributes the quantity µij(z)yij + θi(z)xi+ θj(z)xj to the objective function of the Upper Bound

problem. To establish the claim, we show that the the contribution of each nest under the solution
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(x̂, ŷ) is at least as large as the contribution under the solution (x∗,y∗). If i∈N(z) and j ∈N(z),

then we have µij(z)y
∗
ij +θi(z)x

∗
i +θj(z)x

∗
j = µij(z) ŷij +θi(z) x̂i+θj(z) x̂j. If i 6∈N(z) and j 6∈N(z),

then by the definition of N(z), we have ρij(z)≤ 0, θi(z)≤ 0 and θj(z)≤ 0. In this case, we obtain

µij(z)y
∗
ij+θi(z)x

∗
i +θj(z)x

∗
j = ρij(z)y

∗
ij+θi(z) (x∗i −y∗ij)+θj(z) (x∗i −y∗ij)≤ 0 = µij(z) ŷij+θi(z) x̂i+

θj(z) x̂j, where the inequality follows by noting that (x∗,y∗) is a feasible solution to the Upper

Bound problem so that y∗ij ≤ x∗i and y∗ij ≤ x∗j , whereas the equality is by the fact that ŷij = 0, x̂i = 0

and x̂j = 0 whenever i 6∈N(z) and j 6∈N(z). If i∈N(z) and j 6∈N(z), then we have

(
v

1/γij
i

v
1/γij
i + v

1/γij
j

)γij
(pi− z)≥

v
1/γij
i

v
1/γij
i + v

1/γij
j

(pi− z)≥
(pi− z)v1/γij

i + (pj − z)v1/γij
j

v
1/γij
i + v

1/γij
j

,

where the first inequality follows by noting that aγ ≥ a for a ∈ [0,1] and γ ∈ [0,1], along with

the fact that i ∈ N(z) so that pi ≥ z, whereas the second inequality follows from the fact that

j 6∈ N(z) so that pj < z. Focusing on the first and last expressions in the chain of inequalities

above and noting the definitions of ρij(z) and θi(z), we obtain θi(z)≥ ρij(z). In this case, we have

µij(z)y
∗
ij +θi(z)x

∗
i +θj(z)x

∗
j = (ρij(z)−θi(z))y∗ij +θi(z)x

∗
i +θj(z) (x∗i −y∗ij)≤ θi(z)x∗i = µij(z) ŷij +

θi(z) x̂i + θj(z) x̂j, where the inequality follows from the fact that ρij(z)− θi(z)≤ 0 and j 6∈N(z)

so that θj(z)< 0, whereas the second equality follows from the fact that i ∈N(z) and j 6∈N(z),

in which case, we have ŷij = 0, x̂i = x∗i and x̂j = 0. If i 6∈N(z) and j ∈N(z), then we can use the

same approach to show that µij(z)y
∗
ij +θi(z)x

∗
i +θj(z)x

∗
j ≤ µij(z) ŷij +θi(z) x̂i+θj(z) x̂j. The only

difference is that we need to interchange the roles of the decision variables xi and xj. Therefore, in

all of the four cases considered, the contribution of nest (i, j) under the solution (x̂, ŷ) is at least

as large as the contribution of nest (i, j) under the solution (x∗,y∗). 2

In the next lemma, we show that µij(z)≤ 0 for all (i, j)∈M(z). This lemma is used at multiple

places throughout the paper.

Lemma G.2 For all z ∈R and (i, j)∈M(z), we have µij(z)≤ 0.

Proof: Since (i, j) ∈M(z), we have i ∈ N(z) and j ∈ N(z), which implies that pi − z ≥ 0 and

pj − z ≥ 0. Using the fact that a≤ aγ for a∈ [0,1] and γ ∈ [0,1], we obtain

(pi− z)v1/γij
i + (pj − z)v1/γij

j

v
1/γij
i + v

1/γij
j

≤ (pi− z)
(

v
1/γij
i

v
1/γij
i + v

1/γij
j

)γij
+ (pj − z)

(
v

1/γij
j

v
1/γij
i + v

1/γij
j

)γij
.

Multiplying both sides of this inequality with (v
1/γij
i + v

1/γij
j )γij and using the definitions of ρij(z)

and θi(z), we get ρij(z)≤ θi(z) + θj(z). Thus, we have µij(z) = ρij(z)− θi(z)− θj(z)≤ 0. 2
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Appendix H: Improving the Performance Guarantee

We give the full proof for Theorem 4.1 with the 0.6-approximation guarantee. The proof is lengthy,

so we begin with an outline. In particular, the proof uses the following four steps.

Step 1: Using the vector θ= {θi : i∈ N̂}, we will construct a function F :R|N̂ |+ →R+ that satisfies
∑

(i,j)∈M E{Vij(X̂)γij (Rij(X̂)− ẑ)} ≥ fR− 1
2
F (θ).

Step 2: We will also construct a function G :R|N̂ |+ ×Z3
+→R+ that satisfies fR ≥G(θ, k1, k2, |N̂ |)

for any 1≤ k1 ≤ k2 ≤ |N̂ |.

To establish Step 1, we observe that
∑

(i,j)∈M E{Vij(X̂)γij (Rij(X̂)− ẑ)} ≥ fR + 1
4

∑
(i,j)∈M̂ µij by

the discussion in the proof of Theorem 4.1 in the main body of the paper. Thus, it will be enough

to give a lower bound on µij as a function of θi and θj. To establish Step 2, we construct a feasible

solution to the problem that computes fR at the beginning of Section 4. In particular, recalling

that θi ≥ 0 for all i∈ N̂ , we index the products so that θ1 ≥ θ2 ≥ . . .≥ θ|N̂ | ≥ 0. The solution (x̂, ŷ)

obtained by setting x̂i = 1 for all i∈ {1, . . . , k1}, x̂i = 1
2

for all i∈ {k1 + 1, . . . , k2} and x̂i = 0 for all

i∈ {k2 + 1, . . . , |N̂ |} along with ŷij = [x̂i + x̂j − 1]+ for all (i, j)∈ M̂ is feasible to the problem that

computes fR at the beginning of Section 4. In this case, fR will be lower bounded by the objective

function of the problem evaluated at this solution. Using Steps 1 and 2, we get

∑

(i,j)∈M
E{Vij(X̂)γij (Rij(X̂)− ẑ)} ≥ fR− 1

2
F (θ) =

(
1− F (θ)

2fR

)
fR

≥
(

1− F (θ)

2× max
(k1, k2) :

1≤ k1 ≤ k2 ≤ |N̂ |

G(θ, k1, k2, |N̂ |)

)
fR =

(
1− 1

2
× min

(k1, k2) :

1≤ k1 ≤ k2 ≤ |N̂ |

{
F (θ)

G(θ, k1, k2, |N̂ |)

})
fR

≥
(

1− 1

2
× min

(k1, k2) :

1≤ k1 ≤ k2 ≤ |N̂ |

{
max

(θ1, . . . , θ|N̂|) :
θ1 ≥ . . .≥ θ|N̂| ≥ 0

{
F (θ)

G(θ, k1, k2, |N̂ |)

}})
fR. (6)

Step 3: Letting a∨ b= max{a, b}, we will construct functions Γ1 : Z3
+→R+, Γ2 :Z3

+→R+ and

Γ3 :Z3
+→R+ that, for any 1≤ k1 ≤ k2 ≤ |N̂ |, satisfy

max
(θ1, . . . , θ|N̂|) :

θ1 ≥ . . .≥ θ|N̂| ≥ 0

{
F (θ)

G(θ, k1, k2, |N̂ |)

}
≤ Γ1(k1, k2, |N̂ |)∨Γ2(k1, k2, |N̂ |)∨Γ3(k1, k2, |N̂ |).

Step 4: For any |N̂ |, we will show that there exist k1 and k2 such that 1 ≤ k1 ≤ k2 ≤ |N̂ |,
Γ1(k1, k2, |N̂ |)≤ 0.8, Γ2(k1, k2, |N̂ |)≤ 0.8 and Γ3(k1, k2, |N̂ |)≤ 0.8.

To establish Step 3, we note that F (θ) and G(θ, k1, k2, |N̂ |) are linear in θ in our construction.

Thus, the objective function of the problem max(θ1,...,θ|N̂|):θ1≥...≥θ|N̂|≥0

{
F (θ)

G(θ,k1,k2,|N̂ |)

}
is quasi-linear
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in θ, so an optimal solution occurs at an extreme point of the set of feasible solutions. In this

case, we construct the functions Γ1(·, ·, ·), Γ2(·, ·, ·) and Γ3(·, ·, ·) by checking the objective value of

the last maximization problem at the possible extreme points of the set of feasible solutions. To

establish Step 4, we show that if |N̂ | is large enough, then we can choose k1 and k2 as fixed fractions

of |N̂ | to obtain Γ1(k1, k2, |N̂ |) ≤ 0.8, Γ2(k1, k2, |N̂ |) ≤ 0.8 and Γ3(k1, k2, |N̂ |) ≤ 0.8. In particular,

using d·e to denote the round up function and fixing β̂1 = 0.088302 and β̂2 = 0.614542 we show

that if |N̂ | ≥ 786, then we have Γ1(dβ̂1 |N̂ |e, dβ̂2 |N̂ |e, |N̂ |)≤ 0.8, Γ2(dβ̂1 |N̂ |e, dβ̂2 |N̂ |e, |N̂ |)≤ 0.8 and

Γ3(dβ̂1 |N̂ |e, dβ̂2 |N̂ |e, |N̂ |)≤ 0.8. On the other hand, if |N̂ |< 786, then we enumerate all values of

(k1, k2)∈Z2 with 1≤ k1 ≤ k2 ≤ |N̂ | to numerically check that Γ1(k1, k2, |N̂ |)≤ 0.8, Γ2(k1, k2, |N̂ |)≤
0.8 and Γ3(k1, k2, |N̂ |)≤ 0.8. Using Steps 3 and 4, we get

min
(k1, k2) :

1≤ k1 ≤ k2 ≤ |N̂ |

{
max

(θ1, . . . , θ|N̂|) :
θ1 ≥ . . .≥ θ|N̂| ≥ 0

{
F (θ)

G(θ, k1, k2, |N̂ |)

}}

≤ min
(k1, k2) :

1≤ k1 ≤ k2 ≤ |N̂ |

{
Γ1(k1, k2, |N̂ |)∨Γ2(k1, k2, |N̂ |)∨Γ3(k1, k2, |N̂ |)

}
≤ 0.8. (7)

Therefore, by (6) and (7), we get
∑

(i,j)∈M E{Vij(X̂)γij (Rij(X̂)− ẑ)} ≥ 0.6fR, which is the desired

result. In Appendix H.1, we establish Steps 1 and 2. In Appendix H.2, we establish Step 3. In

Appendix H.3, we establish Step 4.

H.1. Preliminary Bounds

In this section, we establish Steps 1 and 2 in our outline of the proof of Theorem 4.1. Throughout

this section, we let (x∗,y∗) be an optimal solution to the LP that computes fR at the beginning

of Section 4. Also, we recall that the random subset of products X̂ = {X̂i : i ∈ N} is defined

as follows. For all i ∈ N̂ , we have X̂i = 1 with probability x∗i and X̂i = 0 with probability

1−x∗i . Lastly, we have X̂i = 0 for all i∈N \ N̂ . Different components of the vector X̂ are

independent of each other. For notational brevity, we let m= |N̂ |. In this case, since n= |N |, we

write the LP that computes fR at the beginning of Section 4 as

fR = max

{ ∑

(i,j)∈M̂

(µij yij + θi xi + θj xj) + 2(n−m)
∑

i∈N̂

θi xi : yij ≥ xi +xj − 1 ∀ (i, j)∈ M̂,

0≤ xi ≤ 1 ∀ i∈ N̂ , yij ≥ 0 ∀ (i, j)∈ M̂
}
. (8)

We index the elements of N̂ as {1, . . . ,m} and the elements of N \ N̂ as {m+ 1, . . . , n}. Without

loss of generality, we assume that the products in N̂ are indexed such that θ1 ≥ θ2 ≥ . . .≥ θm. In

the next lemma, we give a lower bound on
∑

(i,j)∈M E{Vij(X̂)γij (Rij(X̂)− ẑ)}.
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Lemma H.1 We have
∑

(i,j)∈M E{Vij(X̂)γij (Rij(X̂)− ẑ)} ≥
(

1−
∑m
i=1(m−i)θi

2fR

)
fR.

Proof: Noting the discussion in the proof of Theorem 4.1 in the main body of the paper, we

have
∑

(i,j)∈M E{Vij(X̂)γij (Rij(X̂)− ẑ)} ≥ fR + 1
4

∑
(i,j)∈M̂ µij. Lemma H.2 given below shows that

µij ≥−max{θi, θj} for all (i, j)∈ M̂ . In this case, we obtain

∑

(i,j)∈M
E{Vij(X̂)γij (Rij(X̂)− ẑ)} ≥ fR +

1

4

∑

(i,j)∈M̂

µij ≥ fR− 1

4

∑

(i,j)∈M̂

max{θi, θj}

= fR− 1

4

∑

i∈N̂

∑

j∈N̂

1(i < j) max{θi, θj}−
1

4

∑

i∈N̂

∑

j∈N̂

1(i > j) max{θi, θj}

= fR− 1

4

∑

i∈N̂

∑

j∈N̂

1(i < j)θi−
1

4

∑

i∈N̂

∑

j∈N̂

1(i > j)θj

= fR− 1

4

∑

i∈N̂

{∑

j∈N̂

1(i < j)

}
θi−

1

4

∑

j∈N̂

{∑

i∈N̂

1(i > j)

}
θj

= fR− 1

4

∑

i∈N̂

(m− i)θi−
1

4

∑

j∈N̂

(m− j)θj =

(
1−

∑
i∈N̂(m− i)θi

2fR

)
fR,

where the second equality uses the fact that θ1 ≥ θ2 ≥ . . . ≥ θm and the fourth equality uses the

fact that |N̂ |=m. 2

We use the next lemma in the proof of Lemma H.1.

Lemma H.2 For all z ∈R and (i, j)∈M(z), we have µij(z)≥−max{θi(z), θj(z)}.

Proof: For (i, j)∈M(z), we have i∈N(z) and j ∈N(z), which implies that pi ≥ z and pj ≥ z. Using

the definitions of ρij(z) and θi(z), we get

ρij(z) = (v
1/γij
i + v

1/γij
j )γij

(pi− z)v1/γij
i + (pj − z)v1/γij

j

v
1/γij
i + v

1/γij
j

=
(pi− z)v1/γij

i + (pj − z)v1/γij
j

(v
1/γij
i + v

1/γij
j )1−γij

= (pi− z)vi
(

v
1/γij
i

v
1/γij
i + v

1/γij
j

)1−γij

+ (pj − z)vj
(

v
1/γij
j

v
1/γij
i + v

1/γij
j

)1−γij

= θi(z)

(
v

1/γij
i

v
1/γij
i + v

1/γij
j

)1−γij

+ θj(z)

(
v

1/γij
j

v
1/γij
i + v

1/γij
j

)1−γij

≥ θi(z)

(
v

1/γij
i

v
1/γij
i + v

1/γij
j

)
+ θj(z)

(
v

1/γij
j

v
1/γij
i + v

1/γij
j

)
≥ min{θi(z), θj(z)},

where the first inequality uses the fact that a1−γ ≥ a for a∈ [0,1] and γ ∈ [0,1]. In this case, we get

µij(z) = ρij(z)− θi(z)− θj(z)≥min{θi(z), θj(z)}− θi(z)− θj(z) =−max{θi(z), θj(z)}. 2

Using the vector θ = (θ1, . . . , θm), the function
∑m

i=1(m − i)θi in Lemma H.1 corresponds to

the function F (θ) in Step 1 in our outline of the proof of Theorem 4.1. Therefore, Lemma H.1
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establishes Step 1. Next, we focus on establishing Step 2. In particular, we construct a function

G :Rm+ ×Z3
+→R+ that satisfies fR ≥G(θ, k1, k2,m) for any 1≤ k1 ≤ k2 ≤m.

Lemma H.3 We have

fR ≥ max
(k1, k2) :

1≤ k1 ≤ k2 ≤m

{
k1∑

i=1

(2n− k1− k2 + 2 i− 2)θi +

k2∑

i=k1+1

(n− 1)θi

}
.

Proof: Consider the solution (x̂, ŷ) ∈R|N̂ |+ ×R|M̂ |+ to problem (8) that is obtained by letting x̂i = 1

for all i ∈ {1, . . . , k1}, xi = 1
2

for all i ∈ {k1 + 1, . . . , k2} and x̂i = 0 for all i ∈ {k2 + 1, . . . ,m} and

ŷij = [x̂i + x̂j − 1]+. The solution (x̂, ŷ) is feasible but not necessarily optimal to problem (8), in

which case, noting that the optimal objective value of problem (8) is fR, we get

fR ≥
∑

(i,j)∈M̂

(µij ŷij + θi x̂i + θj x̂j) + 2(n−m)
∑

i∈N̂

θi x̂i

=
∑

(i,j)∈M̂

µij ŷij +
∑

i∈N̂

∑

j∈N̂

1(i 6= j) (θi x̂i + θj x̂j) + 2(n−m)
∑

i∈N̂

θi x̂i.

Since |N̂ | = m, we have
∑

i∈N̂
∑

j∈N̂ 1(i 6= j)θi x̂i = (m − 1)
∑

i∈N̂ θi x̂i. Similarly, we have
∑

j∈N̂
∑

i∈N̂ 1(i 6= j)θj x̂j = (m− 1)
∑

j∈N̂ θj x̂j. Thus, the chain of inequalities above yields

fR ≥
∑

(i,j)∈M̂

µij ŷij + 2(m− 1)
∑

i∈N̂

θi x̂i + 2(n−m)
∑

i∈N̂

θi x̂i

=
∑

(i,j)∈M̂

µij ŷij + 2(n− 1)
∑

i∈N̂

θi x̂i

≥ −
∑

(i,j)∈M̂

max{θi, θj} ŷij + 2(n− 1)
∑

i∈N̂

θi x̂i,

where the last inequality follows from the fact that we have µij ≥−max{θi, θj} for all (i, j) ∈ M̂
by Lemma H.2. We compute each one of the two sums on the right side of the inequality above

separately. Considering the sum
∑

i∈N̂ θi x̂i, the definition of x̂i implies that

∑

i∈N̂

θi x̂i =

k1∑

i=1

θi +

k2∑

i=k1+1

θi
2
.

On the other hand, considering the sum
∑

(i,j)∈M̂ max{θi, θj} ŷij, we have
∑

(i,j)∈M̂ max{θi, θj} ŷij =
∑

(i,j)∈M̂ 1(i < j)θi ŷij+
∑

(i,j)∈M̂ 1(i > j)θj ŷij, where we use the fact that θ1 ≥ θ2 ≥ . . .≥ θm. Noting

the definition of x̂ and using the fact that ŷij = [x̂i+ x̂j−1]+ at the beginning of the proof, we have

ŷij = 1 for all i∈ {1, . . . , k1} and j ∈ {1, . . . , k1}. Similarly, we have ŷij = 1
2

for all i∈ {1, . . . , k1} and
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j ∈ {k1 + 1, . . . , k2}. Lastly, we have ŷij = 1
2

for all i ∈ {k1 + 1, . . . , k2} and j ∈ {1, . . . , k1}. For the

other cases not considered by the preceding three conditions, we have ŷij = 0. Thus, we get

∑

(i,j)∈M̂

1(i < j)θi ŷij =
∑

(i,j)∈M̂

1(i < j ≤ k1)θi +
∑

(i,j)∈M̂

1(i≤ k1 < j ≤ k2)θi
1

2

=
∑

i∈N̂

θi
∑

j∈N̂

1(i < j ≤ k1) +
1

2

∑

i∈N̂

θi
∑

j∈N̂

1(i≤ k1 < j ≤ k2)

=
∑

i∈N̂

θi 1(i≤ k1) (k1− i) +
1

2

∑

i∈N̂

θi 1(i≤ k1) (k2− k1)

=
∑

i∈N̂

1(i≤ k1)

{
1

2
k1 +

1

2
k2− i

}
θi =

k1∑

i=1

{
1

2
k1 +

1

2
k2− i

}
θi.

By the same computation in the chain of equalities above, we also have
∑

(i,j)∈M̂ 1(i > j)θj ŷij =
∑k1

j=1

(
k1
2

+ k2
2
− j
)
θj. Therefore, we obtain

fR ≥−
∑

(i,j)∈M̂

max{θi, θj} ŷij + 2(n− 1)
∑

i∈N̂

θi x̂i

=−
k1∑

i=1

{
1

2
k1 +

1

2
k2− i

}
θi−

k1∑

j=1

{
1

2
k1 +

1

2
k2− j

}
θj + 2(n− 1)

k1∑

i=1

θi + (n− 1)

k2∑

i=k1+1

θi

=

k1∑

i=1

(2n− k1− k2 + 2 i− 2)θi +

k2∑

i=k1+1

(n− 1)θi.

The inequality above holds for all choices of k1 and k2 such that 1≤ k1 ≤ k2 ≤m. In this case, the

desired follows by taking the maximum of the expression on the right side above over all (k1, k2)

that satisfies 1≤ k1 ≤ k2 ≤m. 2

Viewing the objective function of the maximization problem in Lemma H.3 as a function of

θ = (θ1, . . . , θm), k1, k2 and m, this objective function corresponds to the function G(θ, k1, k2,m)

in Step 2. Thus, Lemma H.3 establishes Step 2. In the proof of Lemma H.3, we construct a

feasible solution (x̂, ŷ) ∈R|N̂ |+ ×R|M̂ |+ to problem (8) by setting x̂i = 1 for all i ∈ {1, . . . , k1}, xi = 1
2

for all i∈ {k1 + 1, . . . , k2} and x̂i = 0 for all i ∈ {k2 + 1, . . . ,m} and ŷij = [x̂i + x̂j − 1]+ for all

(i, j) ∈ M̂ . Our choice of this solution is motivated by the fact that if we maximize the function

−∑(i,j)∈M̂ max{θi, θj} ŷij+2(n−1)
∑

i∈N̂ θi x̂i over the feasible set of problem (8), then there exists

an optimal solution to problem (8) of this form for some choices of k1 and k2. Our development

does not require showing this result explicitly, so we do not dwell on it further.

H.2. Removing Dependence on Product Revenues and Preference Weights

In this section, we establish Step 3. In Lemma H.1,
∑m

i=1(m− i)θi is a function of (θ1, . . . , θm).

Similarly, the optimal objective value of the maximization problem on the right side of the
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inequality in Lemma H.3 also depends on (θ1, . . . , θm). Next, we remove the dependence of these

bounds on (θ1, . . . , θm). In particular, by Lemma H.3, we have

∑m

i=1(m− i)θi
fR

≤
∑m

i=1(m− i)θi

max (k1, k2) :
1≤ k1 ≤ k2 ≤m

{
∑k1

i=1(2n− k1− k2 + 2 i− 2)θi +
∑k2

i=k1+1(n− 1)θi

}

= min
(k1, k2) :

1≤ k1 ≤ k2 ≤m

{ ∑m

i=1(m− i)θi∑k1
i=1(2n− k1− k2 + 2 i− 2)θi +

∑k2
i=k1+1(n− 1)θi

}

≤ min
(k1, k2) :

1≤ k1 ≤ k2 ≤m

{ ∑m

i=1(m− i)θi∑k1
i=1(2m− k1− k2 + 2 i− 2)θi +

∑k2
i=k1+1(m− 1)θi

}

≤ min
(k1, k2) :

1≤ k1 ≤ k2 ≤m

{
max

(θ1, . . . , θm) :
θ1 ≥ . . .≥ θm ≥ 0

{ ∑m

i=1(m− i)θi∑k1
i=1(2m− k1− k2 + 2 i− 2)θi +

∑k2
i=k1+1(m− 1)θi

}}
, (9)

where the second inequality is by the fact that n ≥m and 2m− k1 − k2 + 2 i− 2 ≥ 0 whenever

k1 ≤ k2 ≤m. There are two features of the maximization problem on the right side of (9). First, if

(θ∗1 , . . . , θ
∗
m) is an optimal solution to this problem, then (αθ∗1, . . . , α θ

∗
m) is also an optimal solution

for any α> 0. Thus, we can assume that θ1 ≤ 1. Second, the objective function of the maximization

problem on the right side above is quasi-linear. Thus, an optimal solution occurs at an extreme

point of the polyhedron {(θ1, . . . , θm)∈Rm : 1≥ θ1 ≥ θ2 ≥ . . .≥ θm ≥ 0}. It is simple to check that an

extreme point (θ̂1, . . . , θ̂m) of this polyhedron is of the form θ̂i = 1 for all i= 1, . . . , ` and θ̂i = 0 for all

i= `+ 1, . . . ,m for some `∈ {0, . . . ,m}. In particular, if we have 0< θi < 1 for some i∈ {0, . . . ,m},
then we can express (θ̂1, . . . , θ̂m) as a convex combination of two points in the polyhedron. This

argument shows that an optimal solution (θ̂1, . . . , θ̂m) to the maximization problem is of the form

θ̂i = 1 for all i= 1, . . . , ` and θ̂i = 0 for all i= `+ 1, . . . ,m for some `∈ {0, . . . ,m}. Building on these

observations, we give an upper bound on the optimal objective value of the maximization problem

on the right side of (9). Throughout the rest of our discussion, we will use the functions

Γ1(k1, k2,m) =
m (m− 1)/2

mk1 +mk2− k1 k2− k2

, (10)

Γ2(k1, k2,m) =
m− 1

2m− k1− k2

,

Γ3(k1, k2,m) = max
q∈R+

{
mq− q (q+ 1)/2

mk1− k1 k2 +mq− q

}
.

In the next lemma, we use Γ1(k1, k2,m), Γ2(k1, k2,m) and Γ3(k1, k2,m) to give an upper bound on

the optimal objective value of the maximization problem on the right side of (9).
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Lemma H.4 We have

max
(θ1, . . . , θm) :

θ1 ≥ . . .≥ θm ≥ 0

{ ∑m

i=1(m− i)θi∑k1
i=1(2m− k1− k2 + 2 i− 2)θi +

∑k2
i=k1+1(m− 1)θi

}

≤ Γ1(k1, k2,m)∨Γ2(k1, k2,m)∨Γ3(k1, k2,m). (11)

Proof: By the discussion right before the lemma, there exists an optimal solution (θ̂1, . . . , θ̂m) to the

maximization problem in (11) such that θ̂i = 1 for all i= 1, . . . , ` and θ̂i = 0 for all i= `+ 1, . . . ,m

for some ` ∈ {0, . . . ,m}. The denominator of the objective function of the maximization problem

in (11) does not depend on {θi : i= k2 +1, . . . ,m}, which implies that if ` > k2, then we can assume

that `=m. In particular, if ` > k2, then setting `=m increases the nominator without changing

the denominator. So, we assume that `≤ k2 or `=m. If `=m so that θ̂1 = . . .= θ̂m = 1, then the

objective value of the maximization problem in (11) at the optimal solution (θ̂1, . . . , θ̂m) is
∑m

i=1(m− i)
∑k1

i=1(2m− k1− k2 + 2 i− 2) +
∑k2

i=k1+1(m− 1)
=

m (m− 1)/2

k1 (2m− k1− k2) + k1 (k1− 1) + (k2− k1) (m− 1)

=
m (m− 1)/2

mk1 +mk2− k1 k2− k2

= Γ1(k1, k2,m). (12)

On the other hand, if `≤ k1 so that θ̂1 = . . .= θ̂` = 1 and θ̂`+1 = . . . θ̂m = 0, then the objective value

of the maximization problem in (11) is

∑`

i=1(m− i)
∑`

i=1(2m− k1− k2 + 2 i− 2)θi
=

m`− ` (`+ 1)/2

` (2m− k1− k2) + ` (`− 1)
=

m− (`+ 1)/2

2m− k1− k2 + `− 1
,

which is decreasing in `. Therefore, if we maximize the expression above over all ` satisfying

1≤ `≤ k1, then the maximizer occurs at `= 1. Thus, we get

∑`

i=1(m− i)
∑`

i=1(2m− k1− k2 + 2 i− 2)θi
≤ m− 1

2m− k1− k2

= Γ2(k1, k2,m). (13)

Finally, if k1 + 1≤ `≤ k2 so that θ̂1 = . . .= θ̂k1 = θ̂k1+1 = . . .= θ̂` = 1 and θ̂`+1 = . . . θ̂m = 0, then the

objective value of the maximization problem in (11) is

∑`

i=1(m− i)
∑k1

i=1(2m− k1− k2 + 2 i− 2) +
∑`

i=k1+1(m− 1)
=

m`− ` (`+ 1)/2

k1 (2m− k1− k2) + k1 (k1− 1) + (`− k1) (m− 1)

=
m`− ` (`+ 1)/2

mk1− k1 k2 +m`− ` ≤ Γ3(k1, k2,m). (14)

Putting (12), (13) and (14) together, the optimal objective value of the maximization problem in

(11) is no larger than Γ1(k1, k2,m)∨Γ2(k1, k2,m)∨Γ3(k1, k2,m). 2

In the objective function of the maximization problem in (11), recalling that F (θ) corresponds to

the function in the numerator and G(θ, k1, k2,m) corresponds to the function in the denominator,
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Lemma H.4 establishes Step 3. Note that Γ1(k1, k2,m) and Γ2(k1, k2,m) in (10) have explicit

expressions. Next, we give an explicit expression for Γ3(k1, k2,m) as well. Since we are interested in

the values of k2 satisfying k2 ≤m, the denominator of the fraction in the definition of Γ3(k1, k2,m) is

non-negative. Furthermore, the numerator in this fraction is concave in q. Therefore, the objective

function of the maximization problem in the definition of Γ3(k1, k2,m) is quasi-concave, which

implies that we can use the first order condition to characterize the optimal solution to this

problem. In particular, differentiating the fraction in the maximization problem in the definition

of Γ3(k1, k2,m) with respect to q, the first order condition is

(m− q− 1
2
) (mk1− k1 k2 +mq− q)− (mq− q (q+ 1)/2) (m− 1)

(mk1− k1 k2 +mq− q)2

=
−(m− 1) q2/2− k1 (m− k2) q+ k1 (m− k2) (m− 1

2
)

(mk1− k1 k2 +mq− q)2
= 0.

There is only one positive solution to the second equality above. Using q(k1, k2,m) to denote this

positive solution, we have

q(k1, k2,m) =

√
k2

1 (m− k2)2 + 2k1 (m− k2) (m− 1) (m− 1
2
)− k1 (m− k2)

m− 1
. (15)

To obtain an explicit expression for Γ3(k1, k2,m), consider the function h(q) = f(q)/g(q). Assume

that the derivative of h(q) at q̂ is zero. In other words, using f ′(q̂) and q′(q̂) to, respectively, denote

the derivatives of f(·) and g(·) evaluated at q̂, we have f ′(q̂)g(q̂) − f(q̂)g′(q̂) = 0. In this case,

we obtain f(q̂)/g(q̂) = f ′(q̂)/g′(q̂), which implies that h(q̂) = f(q̂)/g(q̂) = f ′(q̂)/g′(q̂). To use this

observation, we note that Γ3(k1, k2,m) is given by the value of the fraction in the definition of

Γ3(k1, k2,m) evaluated at q(k1, k2,m). Furthermore, the derivative of this fraction with respect to

q evaluated at q(k1, k2,m) is zero. Since the derivative of the numerator and denominator of this

fraction with respect to q are, respectively, m− q− 1
2

and m− 1, it follows that

Γ3(k1, k2,m) =
m− q(k1, k2,m)− 1

2

m− 1
= 1 +

1

2(m− 1)
− q(k1, k2,m)

m− 1
, (16)

which, noting (15), yields an explicit expression for Γ3(k1, k2,m). Therefore, we have explicit

expressions for Γ1(k1, k2,m), Γ2(k1, k2,m) and Γ3(k1, k2,m).

H.3. Uniform Bounds

In this section, we establish Step 4. In particular, for any value of m, we show that there exist

k1 and k2 satisfying 1≤ k1 ≤ k2 ≤m, Γ1(k1, k2,m)≤ 0.8, Γ2(k1, k2,m)≤ 0.8 and Γ3(k1, k2,m)≤ 0.8.

Since we have explicit expressions for Γ1(k1, k2,m), Γ2(k1, k2,m) and Γ3(k1, k2,m), if m is small,

then we can enumerate over all possible values of k1 and k2 that satisfy 1≤ k1 ≤ k2 ≤m to ensure
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that there exist k1 and k2 such that Γ1(k1, k2,m) ≤ 0.8, Γ2(k1, k2,m) ≤ 0.8 and Γ3(k1, k2,m) ≤
0.8. In particular, through complete enumeration, it is simple to numerically verify that if m<

786, then there exist k1 and k2 satisfying 1≤ k1 ≤ k2 ≤m, Γ1(k1, k2,m)≤ 0.8, Γ2(k1, k2,m)≤ 0.8

and Γ3(k1, k2,m) ≤ 0.8. Thus, we only need to consider the case where m ≥ 786. We begin with

some intuition for our approach. Assume that we always choose k1 and k2 as a fixed fraction of

m. In particular, we always choose k1 and k2 as k1 = β̂1m and k2 = β̂2m for some β̂1 ∈ (0,1],

β̂2 ∈ (0,1] and β̂1 ≤ β̂2. Recall that we want to find some k1 and k2 satisfying 1 ≤ k1 ≤ k2 ≤m,

Γ1(k1, k2,m)≤ 0.8, Γ2(k1, k2,m)≤ 0.8 and Γ3(k1, k2,m)≤ 0.8. Thus, there is no harm in trying to

choose k1 = β̂1m and k2 = β̂2m. Naturally, k1 and k2 need to be integers and we shortly address

this issue. By (10) and (16), if we choose k1 and k2 as k1 = β̂1m and k2 = β̂2m, then we have

Γ1(β̂1m, β̂2m,m) =
m (m− 1)/2

β̂1m2 + β̂2m2− β̂1 β̂2m2− β̂2m
, Γ2(β̂1m, β̂2m,m) =

m− 1

2m− β̂1m− β̂2m
,

Γ3(β̂1m, β̂2m,m) = 1 +
1

2(m− 1)
+
β̂1m (m− β̂2m)

(m− 1)2

−

√
β̂2

1 m
2 (m− β̂2m)2 + 2 β̂1m (m− β̂2m) (m− 1) (m− 1

2
)

(m− 1)2
.

We let γ1(β̂1, β̂2) = limm→∞Γ1(β̂1m, β̂2m,m), γ2(β̂1, β̂2) = limm→∞Γ2(β̂1m, β̂2m,m) and

γ3(β̂1, β̂2) = limm→∞Γ3(β̂1m, β̂2m,m). Thus, taking limits in the expressions above, we get

γ1(β̂1, β̂2) =
1

2 (β̂1 + β̂2− β̂1 β̂2)
, γ2(β̂1, β̂2) =

1

2− β̂1− β̂2

,

γ3(β̂1, β̂2) = 1 + β̂1 (1− β̂2)−
√
β̂2

1 (1− β̂2
2) + 2 β̂1 (1− β̂2).

Roughly speaking, if m is large and we choose k1 and k2 as k1 = β̂1m and k2 = β̂2m, then

Γ1(k1, k2,m) ∨ Γ2(k1, k2,m) ∨ Γ3(k1, k2,m) behaves similarly to γ1(β̂1, β̂2) ∨ γ2(β̂1, β̂2) ∨ γ3(β̂1, β̂2).

We want to find some k1 and k2 with 1 ≤ k1 ≤ k2 ≤ m such that Γ1(k1, k2,m) ∨ Γ2(k1, k2,m) ∨
Γ3(k1, k2,m)≤ 0.8. Using γ1(β̂1, β̂2)∨ γ2(β̂1, β̂2)∨ γ3(β̂1, β̂2) as an approximation to Γ1(k1, k2,m)∨
Γ2(k1, k2,m)∨Γ3(k1, k2,m), we choose β̂1 and β̂2 to ensure that γ1(β̂1, β̂2)∨γ2(β̂1, β̂2)∨γ3(β̂1, β̂2) is

as small as possible. In particular, we choose β̂1 and β̂2 as the solution to the system of equations

γ1(β̂1, β̂2) = γ2(β̂1, β̂2) and γ2(β̂1, β̂2) = γ3(β̂1, β̂2). Solving this system of equations numerically, we

obtain β̂1 ≈ 0.088302 and β̂2 ≈ 0.614542, yielding γ1(β̂1, β̂2)∨γ2(β̂1, β̂2)∨γ3(β̂1, β̂2)≈ 0.770917. Since

we need to ensure that k1 ≤ k2, we also need to ensure that β̂1 ≤ β̂2. Fortunately, the solution

to the system of equations γ1(β̂1, β̂2) = γ2(β̂1, β̂2) and γ2(β̂1, β̂2) = γ3(β̂1, β̂2) already satisfies this

requirement. Also, we do not need the precise solution to the last system of equations, since

our goal is to find some upper bound on γ1(β̂1, β̂2)∨ γ2(β̂1, β̂2)∨ γ3(β̂1, β̂2). An imprecise solution

simply yields a slightly looser upper bound. Lastly, since the best upper bound we can find on
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γ1(β̂1, β̂2)∨ γ2(β̂1, β̂2)∨ γ3(β̂1, β̂2) is roughly equal to 0.8, we will be able to show that there exist

k1 and k2 with 1≤ k1 ≤ k2 ≤m and Γ1(k1, k2,m)∨Γ2(k1, k2,m)∨Γ3(k1, k2,m)≤ 0.8.

The preceding discussion provides some intuition, but it is not precise. We need an upper bound

on Γ1(k1, k2,m)∨Γ2(k1, k2,m)∨Γ3(k1, k2,m), not on γ1(β̂1, β̂2)∨ γ2(β̂1, β̂2)∨ γ3(β̂1, β̂2). These two

quantities are different for finite values of m. Also, k1 and k2 need to be integers, but choosing

k1 = β̂1m and k2 = β̂2m does not necessarily provide integer values for k1 and k2. To address these

issues, we choose k1 and k2 as k1 = dβ̂1me and k2 = dβ̂1me. In this case, setting β̂1 = 0.088302 and

β̂2 = 0.614542, we proceed to showing that Γ1(dβ̂1me, dβ̂2me,m)≤ 0.8, Γ2(dβ̂1me, dβ̂2me,m)≤ 0.8

and Γ3(dβ̂1me, dβ̂2me,m) ≤ 0.8, as long as m ≥ 786. Therefore, for any value of m ≥ 786, there

exist values of k1 and k2 satisfying 1 ≤ k1 ≤ k2 ≤ m, Γ1(k1, k2,m) ≤ 0.8, Γ2(k1, k2,m) ≤ 0.8 and

Γ3(k1, k2,m)≤ 0.8, which establishes Step 4. Throughout this section, we fix β̂1 = 0.088302 and

β̂2 = 0.614542. In the next lemma, we give a bound on Γ1(dβ̂1me, dβ̂2me,m).

Lemma H.5 If m≥ 786, then we have Γ1(dβ̂1me, dβ̂2me,m)≤ 0.8.

Proof: We have β̂1m ≤ dβ̂1me ≤ β̂1m+ 1 and β̂2m ≤ dβ̂2me ≤ β̂2m+ 1. In this case, noting the

definition of Γ1(k1, k2,m), it follows that

Γ1(dβ̂1me, dβ̂2me,m) =
m (m− 1)/2

m dβ̂1me+m dβ̂2me− dβ̂1me dβ̂2me− dβ̂2me

≤ m2/2

β̂1m2 + β̂2m2− (β̂1m+ 1)(β̂2m+ 1)− β̂2m− 1
≤

1
2

β̂1 + β̂2− β̂1 β̂2− (β̂1 + 2 β̂2 + 2)/m
.

The expression on the right side above is decreasing in m. Computing this expression with β̂1 =

0.088302, β̂2 = 0.614542 and m= 786, we get a value that does not exceed 0.78. Therefore, we have

Γ1(dβ̂1me, dβ̂2me,m)≤ 0.8 for all m≥ 786. 2

In the proof of Lemma H.5, we can check that Γ1(dβ̂1me, dβ̂2me,m)≤ 0.8 for all m≥ 141, but

we need to impose a lower bound of 786 on m anyway when dealing with Γ3(dβ̂1me, dβ̂2me,m)

shortly. In the next lemma, we give an upper bound on Γ2(dβ̂1me, dβ̂2me,m).

Lemma H.6 If m≥ 786, then we have Γ2(dβ̂1me, dβ̂2me,m)≤ 0.8.

Proof: Similar to our approach in the proof of Lemma H.5, we have β̂1m≤ dβ̂1me ≤ β̂1m+ 1 and

β̂2m≤ dβ̂2me ≤ β̂2m+ 1. Noting the definition of Γ2(k1, k2,m), it follows that

Γ2(dβ̂1me, dβ̂2me,m) =
m− 1

2m−dβ̂1me− dβ̂2me
≤ m

2m− (β̂1m+ 1)− (β̂2m+ 1)
=

1

2− β̂1− β̂2− 2/m
.

The expression on the right side above is decreasing in m. If we compute this expression with

β̂1 = 0.088302, β̂2 = 0.614542 and m= 786, then we get a value that does not exceed 0.78. 2

In the next lemma, we come up with an upper bound on Γ3(dβ̂1me, dβ̂2me,m).
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Lemma H.7 If m≥ 786, then we have Γ3(dβ̂1me, dβ̂2me,m)≤ 0.8.

Proof: We begin by providing bounds for several quantities. These bounds become useful later in

the proof. For m≥ 786, we bound dβ̂1me/(m− 1) and (m−dβ̂2me)/(m− 1) as

β̂1 ≤
dβ̂1me
m− 1

≤ β̂1 +
2

m
(17)

1− β̂2−
1

m
≤ m−dβ̂2me

m− 1
≤ 1− β̂2 +

1

m
. (18)

In particular, we have dβ̂1me/(m− 1) ≤ (β̂1m+ 1)/(m− 1) = β̂1 + (β̂1 + 1)/(m− 1) ≤ β̂1 + 2/m,

where the last inequality uses the fact that β̂1 = 0.088302 so that we have (β̂1 + 1)/(m − 1) ≤
2/m for all m ≥ 3, but we already assume that m ≥ 786. Also, we have dβ̂1me/(m − 1) ≥
β̂1m/(m− 1)≥ β̂1. Therefore, the chain of inequalities in (17) holds. On the other hand, we have

(m−dβ̂2me)/(m− 1)≤ (m− β̂2m)/(m− 1) = 1− β̂2 + (1− β̂2)/(m− 1)≤ 1− β̂2 + 1/m, where the

last inequality uses the fact that β̂2 = 0.614542 so that we have (1− β̂2)/(m− 1) ≤ 1/m for all

m≥ 2, but once again, we already assume that m≥ 786. Also, we have (m− dβ̂2me)/(m− 1)≥
(m− β̂2m− 1)/(m− 1) = 1− β̂2 − β̂2/(m− 1)≥ 1− β̂2 − 1/m, where the last inequality uses the

fact that β̂2/(m− 1)≤ 1/m for all m≥ 3. Therefore, the chain of inequalities in (18) holds as well.

Next, we define the function Λ(k1, k2,m) and the constant λ(β̂1, β̂2) as

Λ(k1, k2,m) =
k2

1 (m− k2)2 + 2k1 (m− k2) (m− 1) (m− 1
2
)

(m− 1)4

λ(β̂1, β̂2) = β̂2
1 (1− β̂2)2 + 2 β̂1 (1− β̂2).

Relating Λ(dβ̂1me, dβ̂2me,m) to λ(β̂1, β̂2), we will relate Γ3(dβ̂1me, dβ̂2me,m) to γ3(β̂1, β̂2). We

claim that

√
Λ(dβ̂1me, dβ̂2me,m)≥

√
λ(β̂1, β̂2)− 8/m. To see the claim, note that

dβ̂1me2 (m−dβ̂2me)2

(m− 1)4
≥ β̂2

1

(
1− β̂2−

1

m

)2

= β̂2
1

(
(1− β̂2)2− 2

m
(1− β̂2) +

1

m2

)

≥ β̂2
1 (1− β̂2)2− 2

m
β̂2

1 (1− β̂2)≥ β̂2
1 (1− β̂2)2− 1

m
,

where the first inequality uses (17) and (18), whereas the third inequality uses the fact that

β̂2
1 (1− β̂2)2 ≤ 1

2
. Furthermore, we have

dβ̂1me (m−dβ̂2me) (m− 1) (m− 1
2
)

(m− 1)4
≥ β̂1

(
1− β̂2−

1

m

)(
m− 1

2

m− 1

)

≥ β̂1

(
1− β̂2−

1

m

)
≥ β̂1(1− β̂2)− 1

m
,

where the first inequality uses (17) and (18) and the third inequality uses the fact that β̂1 ≤ 1.

Multiplying the inequality above by two, adding the last two inequalities and noting the definition of
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Λ(k1, k2,m), we get Λ(dβ̂1me, dβ̂2me,m)≥ λ(β̂1, β̂2)−3/m. Since β̂1 = 0.088302 and β̂2 = 0.614542,

we can compute the value of λ(β̂1, β̂2) to check that

√
λ(β̂1, β̂2)≥ 1/4. Therefore, for all m≥ 64,

we have 16

√
λ(β̂1, β̂2)− 64/m≥ 4− 64/m≥ 3, in which case, we obtain

Λ(dβ̂1me, dβ̂2me,m) ≥ λ(β̂1, β̂2)− 3

m
≥ λ(β̂1, β̂2)− 16

m

√
λ(β̂1, β̂2) +

64

m2
=

(√
λ(β̂1, β̂2)− 8

m

)2

.

Taking the square root above, we obtain

√
Λ(dβ̂1me, dβ̂2me,m) ≥

√
λ(β̂1, β̂2) − 8/m, which

establishes the desired claim. Noting (15) and the definition of Λ(k1, k2,m), we have

q(dβ̂1me, dβ̂2me,m)

m− 1
=

√
Λ(dβ̂1me, dβ̂2me,m)− dβ̂1me (m−dβ̂2me)

(m− 1)2

≥
√

Λ(dβ̂1me, dβ̂2me,m)−
(
β̂1 +

2

m

)(
1− β̂2 +

1

m

)

≥
√
λ(β̂1, β̂2)− 8

m
−
(
β̂1 +

2

m

)(
1− β̂2 +

1

m

)

=

√
λ(β̂1, β̂2)− β̂1 (1− β̂2)− 1

m
(8 + β̂1 + 2(1− β̂2))− 2

m2

≥
√
λ(β̂1, β̂2)− β̂1 (1− β̂2)− 10

m
,

where the first inequality uses (17) and (18), whereas the third inequality holds since 8 + β̂1 +

2(1− β̂2)≤ 9 and 2/m2 ≤ 1/m for all m≥ 2. Using (16) and the inequality above, we get

Γ3(dβ̂1me, dβ̂2me,m) = 1 +
1

2(m− 1)
− q(dβ̂1me, dβ̂2me,m)

m− 1

≤ 1 +
1

2(m− 1)
−
√
λ(β̂1, β̂2) + β̂1 (1− β̂2) +

10

m

≤ 1−
√
λ(β̂1, β̂2) + β̂1 (1− β̂2) +

11

m
≤ 0.786 +

11

m
,

where the second inequality uses the fact that 1/(2 (m− 1)) ≤ 1/m for all m ≥ 2 and the third

inequality follows from the fact that

√
λ(β̂1, β̂2)≥ 1/4 and β̂1 ≤ 0.09 and β̂2 ≥ 0.6. The result follows

by noting that 0.786 + 11/m≤ 0.8 for all m≥ 786. 2

Putting Lemmas H.5, H.6 and H.7 together establishes Step 4.

Appendix I: Method of Conditional Expectations for the Uncapacitated Problem

Assume that we have a random subset of products X̂ = {X̂i : i ∈ N} that satisfies the

inequality
∑

(i,j)∈M E{Vij(X̂)γij (Rij(X̂)− ẑ)} ≥ 0.6fR. In the method of condition expectations,

we inductively construct a subset of products x(k) = (x̂1, . . . , x̂k, X̂k+1, . . . , X̂n) for all k ∈ N ,

where the first k products in this subset are deterministic and the last n − k products
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are random variables. Each one of these subsets of products is constructed to ensure that

we have
∑

(i,j)∈M E{Vij(x(k))γij (Rij(x
(k)) − ẑ)} ≥ 0.6fR for all k ∈ N . In this case, the

subset of products x(n) = (x̂1, . . . , x̂n) is a deterministic subset of products that satisfies
∑

(i,j)∈M Vij(x
(n))γij (Rij(x

(n)) − ẑ) ≥ 0.6fR, as desired. To inductively construct the subset of

products x(k) = (x̂1, . . . , x̂k, X̂k+1, . . . , X̂n) for all k ∈N , we start with x(0) = X̂. By Theorem 4.1, we

have
∑

(i,j)∈M E{Vij(x(0))γij (Rij(x
(0))− ẑ)} ≥ 0.6fR. Assuming that we have a subset of products

x(k) that satisfies
∑

(i,j)∈M E{Vij(x(k))γij (Rij(x
(k))− ẑ)} ≥ 0.6fR, we show how to construct a

subset of products x(k+1) that satisfies
∑

(i,j)∈M E{Vij(x(k+1))γij (Rij(x
(k+1))− ẑ)} ≥ 0.6fR. By the

induction assumption, we have 0.6fR ≤∑(i,j)∈M E{Vij(x(k))γij (Rij(x
(k)) − ẑ)}. Conditioning on

X̂k+1, we write the last inequality as

0.6fR ≤ P{X̂k+1 = 1}
∑

(i,j)∈M
E{Vij(x(k))γij (Rij(x

(k))− ẑ) | X̂k+1 = 1}

+P{X̂k+1 = 0}
∑

(i,j)∈M
E{Vij(x(k))γij (Rij(x

(k))− ẑ) | X̂k+1 = 0}.

We define the two subsets of products as x̃(k) = (x̂1, . . . , x̂k,1, X̂k+2, . . . , X̂n) and as x̄(k) =

(x̂1, . . . , x̂k,0, X̂k+2, . . . , X̂n). By the definition of x(k), given that X̂k+1 = 1, we have x(k) =

x̃(k). Given that X̂k+1 = 0, we have x(k) = x̄(k). So, we write the inequality above as

0.6fR ≤ P{X̂k+1 = 1}
∑

(i,j)∈M
E{Vij(x̃(k))γij (Rij(x̃

(k))− ẑ)}

+P{X̂k+1 = 0}
∑

(i,j)∈M
E{Vij(x̄(k))γij (Rij(x̄

(k))− ẑ)}

≤max
{ ∑

(i,j)∈M
E{Vij(x̃(k))γij (Rij(x̃

(k))− ẑ)},
∑

(i,j)∈M
E{Vij(x̄(k))γij (Rij(x̄

(k))− ẑ)}
}
.

Thus, either
∑

(i,j)∈M E{Vij(x̃(k))γij (Rij(x̃
(k))− ẑ)} or

∑
(i,j)∈M E{Vij(x̄(k))γij (Rij(x̄

(k))− ẑ)} is at

least 0.6fR, indicating that we can use x̃(k) or x̄(k) as x(k+1). In both x̃(k) and x̄(k), the first k+ 1

products are deterministic and the last n− k− 1 products are random variables, as desired.

Considering the computational effort for the method of conditional expectations, we can

compute
∑

(i,j)∈M E{Vij(x(0))γij (Rij(x
(0)) − ẑ)} in O(n2) operations. The subset of products

x̃(k) differs from the subset of products x(k) only in product k + 1, which implies that the

quantity E{Vij(x̃(k))γij (Rij(x̃
(k))− ẑ)} differs from E{Vij(x(k))γij (Rij(x

(k))− ẑ)} only for the nests

that include product k + 1. There are O(n) such nests. Therefore, if we know the value of
∑

(i,j)∈M E{Vij(x(k))γij (Rij(x
(k))− ẑ)}, then we can compute

∑
(i,j)∈M E{Vij(x̃(k))γij (Rij(x̃

(k))− ẑ)}
in O(n) operations. Similarly, if we know the value of

∑
(i,j)∈M E{Vij(x(k))γij (Rij(x

(k))− ẑ)}, then

we can compute
∑

(i,j)∈M E{Vij(x̄(k))γij (Rij(x̄
(k))− ẑ)} in O(n) operations. Therefore, given the
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subset of products x(k) and the value of
∑

(i,j)∈M E{Vij(x(k))γij (Rij(x
(k))− ẑ)}, we can construct

the subset of products x(k+1) in O(n) operations. In the method of conditional expectations, we

construct O(n) subsets of products of the form x(k) = (x̂1, . . . , x̂k, X̂k+1, . . . , X̂n). Thus, the method

of conditional expectations takes O(n2) operations.

Appendix J: Semidefinite Programming Relaxation

We describe an approximation algorithm for the uncapacitated problem that provides an

α-approximate solution with α = 2
π

minθ∈[0,arccos(−1/3)](2π − 3θ)/(1 + 3 cosθ) ≥ 0.79. Our

development generally follows the one in the main text. We develop an upper bound fR(·) on f(·).
This upper bound is based on an SDP relaxation of the Function Evaluation problem. Next, we

show how to obtain a random subset of products X̂ such that
∑

(i,j)∈M E{Vij(X̂)γij (Rij(X̂)− ẑ)} ≥
0.79fR(ẑ), where ẑ satisfies fR(ẑ) = v0 ẑ. We also show how to find the value of ẑ that satisfies

fR(ẑ) = v0 ẑ. Lastly, we discuss how to de-randomize the random subset of products X̂.

J.1. Constructing an Upper Bound

We build on an approximation algorithm for quadratic optimization problems given in Goemans

and Willamson (1995). Recall that we can represent Vij(x)γij (Rij(x)− z) in the objective function

of the Function Evaluation problem by ρij(z)xi xj + θi(z)xi (1− xj) + θj(z)xj (1−xi). Instead of

using the decision variables x= (x1, . . . , xn)∈ {0,1}n to capture the subset of offered products, we

use y= (y0, y1, . . . , yn)∈ {−1,1}n+1, where we have y0 yi = 1 if we offer product i, whereas y0 yi =−1

if we do not offer product i. In this case, the decision variable xi is captured by (1+y0 yi)/2. Thus,

the expression ρij(z)xi xj + θi(z)xi (1−xj) + θj(z)xj (1−xi) is equivalent to

ρij(z)
1 + y0 yi

2

1 + y0 yj
2

+ θi(z)
1 + y0 yi

2

1− y0 yj
2

+ θj(z)
1− y0 yi

2

1 + y0 yj
2

=
ρij(z)

4
(1 + y0 yi + y0 yj + yi yj) +

θi(z)

4
(1 + y0 yi− y0 yj − yi yj)

+
θi(z)

4
(1− y0 yi + y0 yj − yi yj).

We define the function q(y0, yi, yj) = 1 + y0 yi + y0 yj + yi yj so that the expression above can be

written as ρij(z) q(y0, yi, yj)/4 + θi(z) q(y0, yi,−yj)/4 + θj(z) q(y0,−yi, yj)/4. In this case, if there is

no capacity constraint, then the Function Evaluation problem is equivalent to

f(z) = max
y ∈ {−1,1}n+1 :

yi =−y0 ∀ i∈N \N(z)

{
1

4

∑

(i,j)∈M
(ρij(z) q(y0, yi, yj) + θi(z) q(y0, yi,−yj) + θj(z) q(y0,−yi, yj))

}
, (19)

where the constraint yi =−y0 for all i∈N \N(z) follows from the fact that we can use an argument

similar to the one in the proof of Lemma G.1 to show that if i 6∈ N(z), then there exists an
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optimal solution to the Function Evaluation problem that does not offer product i. To construct

an upper bound on f(·), letting a · b denote the scalar product of the two vectors a and b, for

(u,v,w)∈Rn+1×Rn+1×Rn+1, we define the function p :Rn+1×Rn+1×Rn+1→R as p(u,v,w) =

1 +u ·v+u ·w+v ·w. In this case, using the decision variables v= (v0,v1, . . . ,vn) with vi ∈Rn+1

for all i= 0,1, . . . , n, we define fR(z)

fR(z) = max
1

4

∑

(i,j)∈M
(ρij(z)p(v

0,vi,vj) + θi(z)p(v
0,vi,−vj) + θj(z)p(v

0,−vi,vj)) (20)

s.t. vi ·vi = 1 ∀ i∈N ∪{0}, vi =−v0 ∀ i∈N \N(z)

p(v0,vi,vj)≥ 0 ∀ (i, j)∈M, p(v0,vi,−vj)≥ 0 ∀ (i, j)∈M

p(v0,−vi,vj)≥ 0 ∀(i, j)∈M.

Using a feasible solution y ∈ {−1,1}n+1 to problem (19), we can come up with a feasible solution

v= (v0,v1, . . . ,vn) to problem (20) such that the two solutions provide the same objective values. In

particular, we can set vik = yi/
√
n+ 1 for all i, k ∈N ∪{0}. Thus, we have fR(z)≥ f(z).

Next, we formulate problem (20) as an SDP. We define the (n+ 1)-by-(n+ 1) symmetric matrix

Λ(z) = {Λij(z) : (i, j)∈ (N ∪{0})× (N ∪{0})} as

Λij(z) =





0 if i= j
1

4
(ρij(z)− θi(z) + θj(z)) if (i, j)∈N 2 and i < j
∑

k∈N\{j}

1

4
(ρkj(z) + θj(z)− θk(z)) if i= 0 and j ∈N .

Since Λ(z) is symmetric, we give only the entries that are above the diagonal. We use Sn+1
+ to

denote the set of (n+ 1)-by-(n+ 1) symmetric positive semidefinite matrices. In this case, using

the decision variables X = {Xij : (i, j)∈ (N ∪{0})× (N ∪{0})} ∈R(n+1)×(n+1), we can equivalently

formulate problem (20) as the SDP given by

fR(z) = max
X∈Sn+1

+

{
tr(Λ(z)X) +

1

4

∑

(i,j)∈M
(ρij(z) + θi(z) + θj(z)) : Xii = 1 ∀ i∈N ∪{0},

Xi0 =X0i =−1 ∀ i∈N \N(z), X0i +X0j +Xij ≥−1 ∀ (i, j)∈N 2 with i < j,

X0i−X0j −Xij ≥−1 ∀ (i, j)∈N 2 with i < j, −X0i +X0j −Xij ≥−1 ∀ (i, j)∈N 2 with i < j,

Xi0 +Xj0 +Xij ≥−1 ∀ (i, j)∈N 2 with i > j, Xi0−Xj0−Xij ≥−1 ∀ (i, j)∈N 2 with i > j,

−Xi0 +Xj0−Xij ≥−1 ∀ (i, j)∈N 2 with i > j
}
. (21)

Problem (21) is useful to demonstrate that we can compute the upper bound fR(z) at any point

z by solving an SDP, but to show the performance guarantee for the approximation algorithm we

propose, we primarily work with problem (20). Later in our discussion, we use the dual of problem

(21) to find the value of ẑ that satisfies fR(ẑ) = v0 ẑ.
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J.2. Randomized Rounding and Performance Guarantee

Fix any z ∈R+. To obtain a random assortment X̂ such that
∑

(i,j)∈M E{Vij(X̂)γij (Rij(X̂)− z)} ≥
0.79fR(z), we study the following randomized rounding algorithm. Using ‖ · ‖ to denote the

Euclidean norm, the inputs of the algorithm are v= (v0,v1, . . . ,vn) and u= (u0, u1, . . . , un)∈Rn+1,

where we have vi ∈Rn+1 and ‖vi‖= 1 for all i= 0,1, . . . , n.

Randomized Rounding

Step 1: If v0 ·u≥ 0, then set y0 = 1. Otherwise, set y0 =−1.

Step 2: For all i∈N \N(z), set yi =−y0.

Step 3: For all i∈N(z), if vi ·u≥ 0, then set yi = 1; otherwise, set yi =−1.

Step 4: Let X = (X1, . . . ,Xn)∈ {0,1}n be such that Xi = 1 if y0 yi = 1; otherwise, Xi = 0.

As a function of its input (v,u), we let XRR(v,u) be the output of the randomized rounding

algorithm. To get a random subset of products X̂ satisfying
∑

(i,j)∈M E{Vij(X̂)γij (Rij(X̂)− z)} ≥
0.79fR(z), we will use the input (v̂, û), where v̂ is an optimal solution to problem (20) and the

components of û are independent and have the standard normal distribution.

Considering the input (v,u) for the randomized rounding algorithm, we will write (v,u)∈ I
if and only if for each i ∈ {0,1, . . . , n}, there exists some k ∈ {0,1, . . . , n} such that

vik 6= 0, uk has a normal distribution with non-zero variance and uk is independent of

{uj : j ∈ (N ∪{0}) \ {k}}. Observe that if we have (v,u) ∈ I, then for each i ∈ {0,1, . . . , n}, there

exists some k ∈ {0,1, . . . , n} such that vik uk has a normal distribution with non-zero variance

and vik uk is independent of {vij uj : j ∈ (N ∪{0}) \ {k}}, in which case, it follows that vi · u =
∑

j∈N∪{0} v
i
j uj is non-zero with probability one.

Letting v̂ be an optimal solution to problem (20), by the first constraint in this problem,

we have ‖vi‖ = 1 for each i = 0,1, . . . , n. Therefore, for each i ∈ {0,1, . . . , n}, there exists some

k ∈ {0,1, . . . , n} such that v̂ik 6= 0. In this case, letting û be a vector with all components being

independent and having the standard normal distribution, we have (v̂, û) ∈ I. In this section, we

show that if we execute the randomized rounding algorithm with the input (v̂, û), then its output

XRR(v̂, û) satisfies
∑

(i,j)∈M E{Vij(XRR(v̂, û))γij (Rij(X
RR(v̂, û))− z)} ≥ 0.79fR(z). We use the

following two lemmas from Goemans and Willamson (1995).

Lemma J.1 For all y ∈ [−1,1], we have 1
π

arccos(y)≥ χ (1− y)/2 for some fixed χ∈ [0.87,∞).

The lemma above is from Lemmas 3.4 and 3.5 in Goemans and Willamson (1995). For any

(v,u) ∈ I, we define Su(vi,vj) as Su(vi,vj) = P{sign(vi · u) = sign(vj · u)}, where sign(x) = 1
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if x > 0, whereas sign(x) = −1 if x < 0. Since (v,u) ∈ I, for all i = 0,1, . . . , n, vi · u is non-zero

with probability one. Therefore, we do not specify sign(x) for x= 0. For (v,u)∈ I, an elementary

computation in probability yields the identity

P{sign(v0 ·u) = sign(vi ·u) = sign(vj ·u)}=
1

2

[
Su(v0,vi) +Su(v0,vj) +Su(vi,vj)− 1

]
. (22)

Goemans and Willamson (1995) show this identity in the proof of Lemma 7.3.1 in their paper. In

the next lemma, letting p(·, ·, ·) be as defined right before problem (20), we give a lower bound on

the probability above when the components of the vector u are standard normal.

Lemma J.2 Assume that the components of the vector u are independent and have the standard

normal distribution and ‖v0‖= 1, ‖vi‖= 1 and ‖vj‖= 1. For some fixed α∈ [0.79,0.87], we have

1

2

[
Su(v0,vi) +Su(v0,vj) +Su(vi,vj)− 1

]

= 1− 1

2π
(arccos(v0 ·vi) + arccos(v0 ·vj) + arccos(vi ·vj))≥ α

4
p(v0,vi,vj).

The lemma above is from Lemmas 7.3.1 and 7.3.2 in Goemans and Willamson (1995). In the next

lemma, we give an equivalent expression for
∑

(i,j)∈M E{Vij(XRR(v,u))γij (Rij(X
RR(v,u))− z)}.

Lemma J.3 For any input (v,u) ∈ I of the randomized rounding algorithm, the output of the

algorithm XRR(v,u) satisfies

∑

(i,j)∈M
E{Vij(XRR(v,u))γij (Rij(X

RR(v,u))− z)}

=
1

2

∑

(i,j)∈M(z)

{
ρij(z)

[
Su(v0,vi) +Su(v0,vj) +Su(vi,vj)− 1

]

+ θi(z)
[
Su(v0,vi) +Su(v0,−vj) +Su(vi,−vj)− 1

]

+ θj(z)
[
Su(v0,−vi) +Su(v0,vj) +Su(−vi,vj)− 1

]}

+ 2 |N \N(z)|
∑

i∈N(z)

θi(z)Su(v0,vi). (23)

Proof: Fixing the input (v,u), for notational brevity, we use X̃ to denote the output of the

randomized rounding algorithm for the fixed input. By the discussion at the beginning of

Section 3.2, we have
∑

(i,j)∈M E{Vij(X̃)γij (Rij(X̃)− z)} =
∑

(i,j)∈M(ρij(z)P{X̃i = 1, X̃j = 1} +

θi(z)P{X̃i = 1, X̃j = 0}+ θj(z)P{X̃i = 0, X̃j = 1}). We consider four cases.

Case 1: Suppose i ∈ N(z) and j ∈ N(z) with i 6= j. By Steps 3 and 4 of the randomized

rounding algorithm, to have X̃i = 1, we need to have y0 yi = 1, which, in turn, requires that we
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have sign(y0) = sign(yi). The last equality holds if and only if sign(v0 · u) = sign(vi · u). In this

case, by (22), it follows that P{X̃i = 1, X̃j = 1} = P{sign(v0 · u) = sign(vi · u) = sign(vj · u)} =

1
2
(Su(v0,vi) +Su(v0,vj) +Su(vi,vj)− 1). Similarly, to have X̃j = 0, we need to have y0 yi = −1,

which, in turn, requires that we have sign(y0) = −sign(yi). The last equality holds if and only

if sign(v0 · u) = −sign(vj · u), which we can equivalently write as sign(v0 · u) = sign(−vj ·u).

Thus, by (22), we get P{X̃i = 1, X̃j = 0} = P{sign(v0 · u) = sign(vi · u) = sign(−vj · u)} =

1
2
(Su(v0,vi) +Su(v0,−vj) +Su(vi,−vj)− 1). Interchanging the roles of X̃i and X̃j in the last chain

of equalities, we also have P{X̃i = 0, X̃j = 1} = P{sign(v0 · u) = sign(−vi · u) = sign(vj · u)} =

1
2
(Su(v0,−vi) +Su(v0,vj) +Su(−vi,vj)− 1).

Case 2: Suppose i ∈ N(z) and j 6∈ N(z). By Steps 2 and 4 of the randomized rounding

algorithm, we have X̃j = 0. By an argument similar to the one in Case 1, we also have P{X̃i = 1}=

P{sign(v0 ·u) = sign(vi ·u)}= Su(v0,vi). So, we get P{X̃i = 1, X̃j = 0}= Su(v0,vi).

Case 3: Suppose i 6∈ N(z) and j ∈ N . By the same argument in Case 2, we have

P{X̃i = 0, X̃j = 1}= Su(v0,vj).

Case 4: Suppose i 6∈ N(z) and j 6∈ N(z) with i 6= j. In this case, we have X̃i = 0 and X̃j =

0. Putting all of the cases together, under Case 1, if X̃i or X̃j is non-zero, then we may have X̃i = 1,

X̃j = 1, or X̃i = 1, X̃j = 0, or X̃i = 0, X̃j = 1. Under Case 2, if X̃i or X̃j is non-zero, then we must

have X̃i = 1 and X̃j = 0. Under Case 3, if X̃i or X̃j is non-zero, then we must have X̃i = 0 and

X̃j = 1. Collecting these observations, we obtain

∑

(i,j)∈M
E{Vij(X̃)γij (Rij(X̃)− z)}

=
∑

(i,j)∈M

{
ρij(z)P{X̃i = 1, X̃j = 1}+ θi(z)P{X̃i = 1, X̃j = 0}+ θj(z)P{X̃i = 0, X̃j = 1}

}

=
∑

(i,j)∈M
1(i∈N(z), j ∈N(z))

{
ρij(z)P{X̃i = 1, X̃j = 1}

+ θi(z)P{X̃i = 1, X̃j = 0}+ θj(z)P{X̃i = 0, X̃j = 1}
}

+
∑

(i,j)∈M
1(i∈N(z), j 6∈N(z))θi(z)P{X̃i = 1, X̃j = 0}

+
∑

(i,j)∈M
1(i 6∈N(z), j ∈N(z))θj(z)P{X̃i = 0, X̃i = 1},

in which case, plugging the expressions for the probabilities P{X̃i = 1, X̃j = 1}, P{X̃i = 1, X̃j = 0}
and P{X̃i = 0, X̃j = 1} that we have under Cases 1, 2 and 3 above yields the desired result. 2

In the next theorem, we give a performance guarantee for the subset of products obtained by

the randomized rounding algorithm. Throughout our discussion, α is as given in Lemma J.2.
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Theorem J.4 For a fixed value of z ∈ R+, let the subset of products XRR(v̂, û) be the output of

the randomized rounding algorithm with the input (v̂, û), where we have v̂ = (v̂0, v̂1, . . . , v̂n) with

v̂i ∈ Rn+1 and ‖v̂i‖= 1 for all i= 0,1, . . . , n and the components of the vector û are independent

and have the standard normal distribution. If v̂i =−v̂0 for all i∈N \N(z), then we have

∑

(i,j)∈M
E{Vij(XRR(v̂, û))γij (Rij(X

RR(v̂, û))− z)}

≥ α

4

∑

(i,j)∈M

{
ρij(z)p(v̂

0, v̂i, v̂j) + θi(z)p(v̂
0, v̂i,−v̂j) + θj(z)p(v̂

0,−v̂i, v̂j)
}
.

In particular, if we choose v̂ in the input (v̂, û) as an optimal solution to problem (20), then we

have
∑

(i,j)∈M E{Vij(XRR(v̂, û))γij (Rij(X
RR(v̂, û))− z)} ≥ 0.79fR(z).

Proof: For notational brevity, we use X̂ to denote the output of the randomized rounding algorithm

with the input (v̂, û). Note that (v̂, û)∈ I. We consider four cases.

Case 1: Suppose i ∈ N(z) and j ∈ N(z) with i 6= j. By Lemma J.2, we have the inequality

1
2
(Sû(v̂0, v̂i) + Sû(v̂0, v̂j) + Sû(v̂i, v̂j) − 1) ≥ α

4
p(v̂0, v̂i, v̂j), in which case, since ρij(z) ≥ 0

whenever i∈N(z) and j ∈ N(z), we obtain 1
2
ρij(z) (Sû(v̂0, v̂i) +Sû(v̂0, v̂j) +Sû(v̂i, v̂j)− 1) ≥

α
4
ρij(z)p(v̂

0, v̂i, v̂j). We also get 1
2
θi(z) (Sû(v̂0, v̂i) + Sû(v̂0,−v̂j) + Sû(v̂i,−v̂j) − 1) ≥

α
4
θi(z)p(v̂

0, v̂i,−v̂j) and 1
2
θj(z) (Sû(v̂0,−v̂i)+Sû(v̂0, v̂j)+Sû(−v̂i, v̂j)−1)≥ α

4
θj(z)p(v̂

0,−v̂i, v̂j)
by following the same reasoning. Adding the last three inequalities, we have

1

2

{
ρij(z)

[
Sû(v̂0, v̂i) +Sû(v̂0, v̂j) +Sû(v̂i, v̂j)− 1

]

+ θi(z)
[
Sû(v̂0, v̂i) +Sû(v̂0,−v̂j) +Sû(v̂i,−v̂j)− 1

]

+ θj(z)
[
Sû(v̂0,−v̂i) +Sû(v̂0, v̂j) +Sû(−v̂i, v̂j)− 1

]}

≥ α

4

{
ρij(z)p(v̂

0, v̂i, v̂j) + θi(z)p(v̂
0, v̂i,−v̂j) + θj(z)p(v̂

0,−v̂i, v̂j)
}
. (24)

Case 2: Suppose i ∈ N(z) and j 6∈ N(z). By Lemma J.1, for all y ∈ [−1,1], we

have 1− 1
π

arccos(y) = 1
π

(π− arccos(y)) = arccos(−y)/π≥ χ (1 + y)/2. The definition of Su(vi,vj)

implies that Sû(v̂i, v̂i) = 1. In this case, by Lemma J.2, we obtain

Sû(v̂i, v̂j) =
1

2

[
Sû(v̂0, v̂i) +Sû(v̂0, v̂i) +Sû(v̂i, v̂i)− 1

]

= 1− 1

2π
(2 arccos(v̂0 · v̂i) + arccos(v̂i · v̂i)) = 1− 1

π
arccos(v̂0 · v̂i) ≥ χ

2
(1 + v̂0 · v̂i),

where the third equality uses the fact that ‖v̂i‖ = 1. On the other hand, since j ∈N \N(z), we

have v̂j =−v̂0. Therefore, we obtain p(v̂0, v̂i, v̂j) = p(v̂0, v̂i,−v̂0) = 1− v̂0 · v̂0 = 0, where the second

equality uses the definition of p(·, ·, ·) and the last equality uses the fact that ‖v̂0‖= 1. By the same
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argument, we have p(v̂0,−v̂i, v̂j) = 0. Also, we have p(v̂0, v̂i,−v̂j) = p(v̂0, v̂i, v̂0) = 2 + 2 v̂0 · v̂i ≥ 0,

where the inequality uses the fact that ‖v̂0‖ = ‖v̂i‖ = 1 so that v̂0 · v̂i ≥ −1. Since i ∈ N(z), we

have θi(z)≥ 0. In this case, multiplying the chain of inequalities above by θi(z), we get

θi(z)Sû(v̂i, v̂j) ≥ θi(z)
χ

2
(1 + v̂0 · v̂i) ≥ θi(z)

α

2
(1 + v̂0 · v̂i)

=
α

4

{
ρij(z)p(v̂

0, v̂i, v̂j) + θi(z)p(v̂
0, v̂i,−v̂j) + θj(z)p(v̂

0,−v̂i, v̂j)
}
, (25)

where the second inequality holds since χ∈ [0.87,∞), α∈ [0.79,0.87] and v̂0 · v̂i ≥−1, whereas the

equality uses the fact that p(v̂0, v̂i, v̂j) = 0 = p(v̂0,−v̂i, v̂j) and p(v̂0, v̂i,−v̂j) = 2 + 2 v̂0 · v̂i.

Case 3: Suppose i 6∈N(z) and j ∈N . Interchanging the roles of products i and j in Case 2, the

same reasoning in Case 2 yields

θj(z)Sû(v̂i, v̂j)≥ α

4

{
ρij(z)p(v̂

0, v̂i, v̂j) + θi(z)p(v̂
0, v̂i,−v̂j) + θj(z)p(v̂

0,−v̂i, v̂j)
}
. (26)

Case 4: Suppose i 6∈ N(z) and j 6∈ N(z) with i 6= j. Since i 6∈ N(z) and j 6∈ N(z), we have

v̂i = v̂j = −v̂0. In this case, we obtain p(v̂0, v̂i, v̂j) = p(v̂0,−v̂0,−v̂0) = 1 − v̂0 · v̂0 = 0, where

the second equality uses the definition of p(·, ·, ·) and the third equality uses the fact that

‖v̂0‖= 1. Similarly, we have p(v̂0, v̂i,−v̂j) = 0 and p(v̂0,−v̂i, v̂j) = 0 as well. Therefore, it follows

that α
4

(ρij(z)p(v̂
0, v̂i, v̂j) + θi(z)p(v̂

0, v̂i,−v̂j) + θj(z)p(v̂
0,−v̂i, v̂j)) = 0. To put the four cases

considered above together, recalling that we use X̂ to denote the output of the randomized rounding

algorithm with the input (v̂, û), by Lemma J.3, we have

∑

(i,j)∈M
E{Vij(X̂)γij (Rij(X̂)− z)}

=
1

2

∑

(i,j)∈M
1(i∈N(z), j ∈N(z))

{
ρij(z)

[
Sû(v̂0, v̂i) +Sû(v̂0, v̂j) +Sû(v̂i, v̂j)− 1

]

+ θi(z)
[
Sû(v̂0, v̂i) +Sû(v̂0,−v̂j) +Sû(v̂i,−v̂j)− 1

]

+ θj(z)
[
Sû(v̂0,−v̂i) +Sû(v̂0, v̂j) +Sû(−v̂i, v̂j)− 1

]}

+
∑

(i,j)∈M
1(i∈N(z), j 6∈N(z))θi(z)Sû(v̂0, v̂i) +

∑

(i,j)∈M
1(i 6∈N(z), j ∈N(z))θj(z)Sû(v̂0, v̂j)

≥ α

4

∑

(i,j)∈M

{
ρij(z)p(v̂

0, v̂i, v̂j) + θi(z)p(v̂
0, v̂i,−v̂j) + θj(z)p(v̂

0,−v̂i, v̂j)
}
,

where the inequality follows from (24), (25) and (26), along with the fact that p(v̂0, v̂i, v̂j) =

p(v̂0, v̂i,−v̂j) = p(v̂0,−v̂i, v̂j) = 0 when i 6∈ N(z) and j 6∈ N(z). The chain of inequalities above

establishes the first inequality in the lemma. To see the second inequality in the lemma, choosing v̂

as an optimal solution to problem (20) in the chain of inequalities above and noting the objective
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function of problem (20), we obtain
∑

(i,j)∈M E{Vij(X̂)γij (Rij(X̂) − z)} ≥ αfR(z). The optimal

objective value of problem (20) is non-negative since setting v̂i = −v̂0 for all i ∈ N provides a

feasible solution to this problem with an objective value of zero. Therefore, noting that fR(z)≥ 0

and α≥ 0.79, the last inequality yields
∑

(i,j)∈M E{Vij(X̂)γij (Rij(X̂)− z)} ≥ 0.79fR(z). 2

Thus, by Theorem J.4, letting v̂ be an optimal solution to problem (20) and û be a vector whose

components are independent and have the standard normal distribution, if we use the randomized

rounding algorithm with the input (v̂, û), then the output of the algorithm XRR(v̂, û) satisfies
∑

(i,j)∈M E{Vij(XRR(v̂, û))γij (Rij(X
RR(v̂, û))− z)} ≥ 0.79fR(z).

The vector û is a random variable, so the subset of products XRR(v̂, û) is a random variable

as well, but to use Theorem 3.1 to get an approximate solution, we need a deterministic

subset of products x̂ that satisfies the Sufficient Condition. Since we construct the upper

bound fR(·) by using an SDP relaxation, the method of conditional expectations discussed

in Section 4 does not work. Nevertheless, Mahajan and Ramesh (1999) give a procedure

to de-randomize the solutions that are obtained through SDP relaxations. We shortly adopt

their de-randomization procedure to de-randomize the subset of products XRR(v̂, û). This

de-randomization procedure is rather involved. As an alternative, we can simply simulate many

realizations of the random variable XRR(v̂, û). In particular, since we know the distribution

of û, we can simulate many realizations of the random variable û and compute XRR(v̂, û)

for each realization. Therefore, simulating many realizations of XRR(v̂, û) is straightforward.

Since we have
∑

(i,j)∈M E{Vij(XRR(v̂, û))γij (Rij(X
RR(v̂, û))− z)} ≥ 0.79fR(z), there must be

realizations x̂ of the random variable XRR(v̂, û) with strictly positive probability that satisfy
∑

(i,j)∈M Vij(x̂)γij (Rij(x̂)− z) ≥ 0.79fR(z). Also, since we know the value of fR(z), if we find a

realization x̂ that satisfies
∑

(i,j)∈M Vij(x̂)γij (Rij(x̂)− z) ≥ αfR(z) for some α other than 0.79,

then we can be sure that this subset is an α-approximate solution. Therefore, it is entirely possible

that simulating many realizations of the random variable XRR(v̂, û) may provide a deterministic

subset of products x̂ that satisfies
∑

(i,j)∈M Vij(x̂)γij (Rij(x̂)− z)≥ αfR(z) for a value of α that is

larger than 0.79. Furthermore, since we know the values of both
∑

(i,j)∈M Vij(x̂)γij (Rij(x̂)− z) and

fR(z), we can compute the value of α. In the next section, we show how to compute the fixed point

of fR(·)/v0 by solving an SDP. After this discussion, we show how to de-randomize the output

XRR(v̂, û) of the randomized rounding algorithm, if desired.

J.3. Computing the Fixed Point

In Section 3.3, we use the dual of the Upper Bound problem to find the value of ẑ satisfying

fR(ẑ) = v0 ẑ, where fR(z) is given by the optimal objective value of the Upper Bound problem.
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In this section, we use the dual of problem (21) to find the value of ẑ satisfying fR(ẑ) = v0 ẑ,

where the fR(z) is given by the optimal objective value of the SDP in (21). To formulate the

dual of problem (21), we let β = {βi : i∈N ∪{0}} be the dual variables associated with the

first constraint in problem (21). Writing the second and third constraints as Xi0 = −1 and

X0i = −1, we let {ψi0 : i∈N \N(z)} and {ψ0i : i ∈ N \ N(z)} be the dual variables associated

with the second and third constraints in problem (21). Also, we let {γ1
ij : (i, j)∈N 2 with i < j},

{γ2
ij : (i, j)∈N 2 with i < j} and {γ3

ij : (i, j) ∈ N 2 with i < j} be the dual variables associated

with the fourth, fifth and sixth constraints. Similarly, we let {γ1
ij : (i, j) ∈ N 2 with i > j},

{γ2
ij : (i, j)∈N 2 with i > j} and {γ3

ij : (i, j) ∈N 2 with i > j} be the dual variables associated with

the last three constraints. We define the (n+ 1)-by-(n+ 1) symmetric matrix of decision variables

Γ = {Γij : (i, j)∈ (N ∪{0})× (N ∪{0})} as

Γij =





0 if i= j

γ1
ij − γ2

ij − γ3
ij if (i, j)∈N 2 and i < j∑

k∈N\{j}
γ1
ij + γ2

ij − γ3
ij if i= 0 and j ∈N .

Shortly, we restrict Γ to be a symmetric matrix. Therefore, we give only the entries that

are above the diagonal. Also, we define the (n + 1)-by-(n + 1) matrix of decision variables

Ψ = {ψij : (i, j)∈ (N ∪{0})× (N ∪{0})}}, where all entries other than {ψi0 : i ∈ N \N(z)} and

{ψ0i : i∈N \N(z)} are set to zero. For fixed value of z, the dual of problem (21) is given by

min
∑

i∈N∪{0}
βi −

∑

i∈N\N(z)

(ψi0 +ψ0i) +
∑

(i,j)∈M
(γ1
ij + γ2

ij + γ3
ij) +

1

4

∑

(i,j)∈M
(ρij(z) + θi(z) + θj(z))

s.t. diag(β) + Ψ−Γ−Λ(z)∈ Sn+1
+

β ∈Rn+1, Ψ∈R(n+1)×(n+1), Γ∈R(n+1)×(n+1)
+ ,

where we use diag(β) to denote the diagonal matrix with diagonal entries {βi : i∈N ∪{0}}. Similar

to our approach in Section 3.3, to find the value of ẑ that satisfies fR(ẑ) = v0 ẑ, we solve

min
∑

i∈N∪{0}
βi −

∑

i∈N\N(z)

(ψi0 +ψ0i) +
∑

(i,j)∈M
(γ1
ij + γ2

ij + γ3
ij) +

1

4

∑

(i,j)∈M
(ρij(z) + θi(z) + θj(z))

s.t. diag(β) + Ψ−Γ−Λ(z)∈ Sn+1
+

∑

i∈N∪{0}
βi −

∑

i∈N\N(z)

(ψi0 +ψ0i) +
∑

(i,j)∈M
(γ1
ij + γ2

ij + γ3
ij) +

1

4

∑

(i,j)∈M
(ρij(z) + θi(z) + θj(z)) = v0 z

β ∈Rn+1, Ψ∈R(n+1)×(n+1), Γ∈R(n+1)×(n+1)
+ , z ∈R.

By using precisely the same argument in the proof of Theorem 3.3, we can show that if (β̂, Ψ̂, Γ̂, ẑ)

is an optimal solution to the SDP above, then fR(ẑ) = v0 ẑ.
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J.4. Preliminary Bounds for De-Randomizing the Subset of Products

In this section and the next, we discuss how to de-randomize the output of our randomized

rounding algorithm. In this section, we provide preliminary bounds that will be useful in the

analysis of the de-randomization approach. In the next section, we give the de-randomization

approach and its analysis. In our de-randomization approach, we follow Mahajan and Ramesh

(1999), where the authors de-randomize an SDP relaxation-based approximation algorithm for

the 3-vertex coloring problem. We adapt the approach in Mahajan and Ramesh (1999) to our

assortment optimization setting. Letting v̂= (v̂0, v̂1, . . . , v̂n) be an optimal solution to problem (20),

the starting point in the de-randomization approach is to compute a so-called discretized version

of v̂. The discretized version is discussed in Section 3.1 and Appendix 1 in Mahajan and Ramesh

(1999). The next lemma summarizes this discussion. Here, for any vector v= (v0, v1, . . . , vn)∈Rn+1,

we use v[k, . . . , `]∈R`−k+1 to denote the vector (vk, vk+1, . . . , v`).

Lemma J.5 Letting v̂ = (v̂0, v̂1, . . . , v̂n) be an optimal solution to problem (20), in polynomial

time, we can obtain the solution v̄= (v̄0, v̄1, . . . , v̄n) that satisfies the following properties.

(a) We have ||v̄i||= 1 for all i∈N ∪{0} and v̄i =−v̄0 for all i∈N \N(z).

(b) We have |v̄i · v̄j − v̂i · v̂j|=O( 1
n

) for all i, j ∈N ∪ {0}; that is, the scalar product of any pair

of vectors changes by O( 1
n

).

(c) Letting v̄i = (v̄i0, v̄
i
1, . . . , v̄

i
n), we have |v̄ij|= Ω( 1

n2
) for all i, j ∈N ∪{0}.

(d) For all i, j ∈N(z)∪{0} and h∈N ∪{0}, if we rotate the coordinate system so that v̄i[h . . . n] =

(b1,0, . . . ,0) and v̄j[h . . . n] = (b′1, b
′
2, . . . ,0), then we have |b1|= Ω( 1

n2
) and |b′2|= Ω( 1

n4
).

Throughout our discussion, we use v̄ to denote the discretized version of v̂ as discussed in the

lemma above, where v̂ is an optimal solution to problem (20). We define C(z) as

C(z) =
1

4

{ ∑

(i,j)∈M(z)

(ρij(z) + θi(z) + θj(z)) + 2 |N \N(z)|
∑

i∈N(z)

θi(z)

}
.

In the next lemma, we give a simple bound on fR(z).

Lemma J.6 We have 1
4
fR(z)≤C(z)≤ fR(z).

Proof: Using ei ∈Rn+1 to denote the unit vector with a one in the i-th component, we define the

solution ṽ = (ṽ0, ṽ1, . . . , ṽn) to problem (20) as follows. For all i ∈N(z)∪ {0}, we set ṽi = ei. For

all i ∈N \N(z), we set ṽi = −ṽ0. If i ∈N(z) and j ∈N(z), then we have ṽ0 · ṽi = 0, ṽ0 · ṽj = 0

and ṽi · ṽj = 0, so that p(ṽ0, ṽi, ṽj) = p(ṽ0, ṽi,−ṽj) = p(ṽ0,−ṽi, ṽj) = 1. On the other hand, if

i ∈ N(z) and j ∈ N \ N(z), then we have ṽ0 · ṽi = 0, ṽ0 · ṽj = −1 and ṽi · ṽj = 0, so we get
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p(ṽ0, ṽi, ṽj) = 0, p(ṽ0, ṽi,−ṽj) = 2 and p(ṽ0,−ṽi, ṽj) = 0. Similarly, if i ∈N \N(z) and j ∈N(z),

then we have p(ṽ0, ṽi, ṽj) = 0, p(ṽ0, ṽi,−ṽj) = 0 and p(ṽ0,−ṽi, ṽj) = 2. Lastly, if i∈N \N(z) and

j ∈N \N(z), then we have p(ṽ0, ṽi, ṽj) = p(ṽ0, ṽi,−ṽj) = p(ṽ0,−ṽi, ṽj) = 0. Thus, the solution ṽ

is feasible to problem (20). Also, it is simple to check that this solution provides an objective value

of 1
4
{∑(i,j)∈M(z)(ρij(z) + θi(z) + θj(z)) + 4 |N \N(z)|∑i∈N(z) θi(z)} for problem (20). Since ṽ is a

feasible but not necessarily an optimal solution to problem (20), we obtain

fR(z) ≥ 1

4

{ ∑

(i,j)∈M(z)

(ρij(z) + θi(z) + θj(z)) + 4 |N \N(z)|
∑

i∈N(z)

θi(z)

}
≥ C(z).

Let v̂= (v̂0, v̂1, . . . , v̂n) be an optimal solution to problem (20). Since ‖v̂i‖= 1 for all i∈N ∪{0},
we have v̂i · v̂j ≤ 1 for all i, j ∈ N ∪ {0}, so we get p(v̂0, v̂i, v̂j) ≤ 4, p(v̂0, v̂i,−v̂j)≤ 4 and

p(v̂0,−v̂i, v̂j) ≤ 4. Also, if i ∈ N(z) and j ∈N \N(z), then v̂0 · v̂0 = 1 and v̂j = −v̂0 by

the first two constraints in problem (20), which imply that p(v̂0, v̂i, v̂j) = p(v̂0, v̂i,−v̂0) = 0

and p(v̂0,−v̂i, v̂j) = p(v̂0,−v̂i,−v̂0) = 0. Similarly, if i ∈ N \ N(z) and j ∈ N(z), then we have

p(v̂0, v̂i, v̂j) = p(v̂0,−v̂0, v̂j) = 0 and p(v̂0, v̂i,−v̂j) = p(v̂0,−v̂0,−v̂j) = 0. Lastly, if i ∈ N \N(z)

and j ∈N \N(z), then we have p(v̂0, v̂i, v̂j) = p(v̂0, v̂i,−v̂j) = p(v̂0,−v̂i, v̂j) = 0. So, we get

fR(z) =
1

4

∑

(i,j)∈M
(ρij(z)p(v̂

0, v̂i, v̂j) + θi(z)p(v̂
0, v̂i,−v̂j) + θj(z)p(v̂

0,−v̂i, v̂j))

=
1

4

∑

(i,j)∈M
1(i∈N(z), j ∈N(z))

{
ρij(z)p(v̂

0, v̂i, v̂j) + θi(z)p(v̂
0, v̂i,−v̂j) + θj(z)p(v̂

0,−v̂i, v̂j)
}

+
1

4

∑

(i,j)∈M
1(i∈N(z), j 6∈N(z))θi(z)p(v̂

0, v̂i,−v̂j)

+
1

4

∑

(i,j)∈M
1(i 6∈N(z), j ∈N(z))θj(z)p(v̂

0,−v̂i, v̂j)

≤
∑

(i,j)∈M
1(i∈N(z), j ∈N(z)) (ρij(z) + θi(z) + θj(z))

+
∑

(i,j)∈M
1(i∈N(z), j 6∈N(z))θi(z) +

∑

(i,j)∈M
1(i 6∈N(z), j ∈N(z))θj(z) = 4C(z), (27)

where the inequality holds since p(v̂0, v̂i, v̂j) ≤ 4, p(v̂0, v̂i,−v̂j) ≤ 4 and p(v̂0,−v̂i, v̂j) ≤ 4 for all

(i, j)∈M , along with ρij(z)≥ 0 for all (i, j)∈M(z) and θi(z)≥ 0 for all i∈N(z). 2

In the next lemma, we use C(z) to bound the loss in the objective value of problem (20) when

we use the discretized solution v̄ instead of the optimal solution v̂. We define gR(z) as

gR(z) =
1

4

∑

(i,j)∈M
(ρij(z)p(v̄

0, v̄i, v̄j) + θi(z)p(v̄
0, v̄i,−v̄j) + θj(z)p(v̄

0,−v̄i, v̄j)),

which is the objective value of problem (20) evaluated at v̄.



Zhang, Rusmevichientong, and Topaloglu: Assortment Optimization under the PCL Model
50

Lemma J.7 We have gR(z)≥ fR(z)−O( 1
n

)C(z).

Proof: By the second part of Lemma J.5, we have v̄i · v̄j ≥ v̂i · v̂j − O( 1
n

), which implies

that p(v̄0, v̄i, v̄j)≥ p(v̂0, v̂i, v̂j)−O( 1
n

), p(v̄0, v̄i,−v̄j)≥ p(v̂0, v̂i,−v̂j)−O( 1
n

) and p(v̄0,−v̄i, v̄j)≥
p(v̂0,−v̂i, v̂j)−O( 1

n
). Furthermore, noting that ||v̄i||= 1 for all i ∈N ∪ {0} and v̄i =−v̄0 for all

i ∈N \N(z) by the first part of Lemma J.5, using the same argument that we use to obtain the

second equality in (27), we obtain

gR(z) =
1

4

∑

(i,j)∈M
1(i∈N(z), j ∈N(z))

{
ρij(z)p(v̄

0, v̄i, v̄j) + θi(z)p(v̄
0, v̄i,−v̄j) + θj(z)p(v̄

0,−v̄i, v̄j)
}

+
1

4

∑

(i,j)∈M
1(i∈N(z), j 6∈N(z))θi(z)p(v̄

0, v̄i,−v̄j)

+
1

4

∑

(i,j)∈M
1(i 6∈N(z), j ∈N(z))θj(z)p(v̄

0,−v̄i, v̄j).

Since ρij(z)≥ 0 for all (i, j)∈M(z) and θi(z)≥ 0 for all i∈N(z), the desired result follows by noting

that p(v̄0, v̄i, v̄j)≥ p(v̂0, v̂i, v̂j)−O( 1
n

), p(v̄0, v̄i,−v̄j)≥ p(v̂0, v̂i,−v̂j)−O( 1
n

) and p(v̄0,−v̄i, v̄j)≥
p(v̂0,−v̂i, v̂j)−O( 1

n
), along with the definition of C(z) and the equivalent definition of fR(z) given

by the second equality in (27). 2

J.5. De-Randomization Algorithm and Analysis

In this section, we give the de-randomization algorithm and show that we can use this

algorithm to de-randomize the output of our randomized rounding algorithm. For any vector

w = (w0,w1, . . . ,wn,wn+1, . . . ,w2n+1) ∈ R2n+2, we define w(1) ∈ Rn+1 and w(2)∈Rn+1 as w(1) =

(w0,w1, . . . ,wn) andw(2) = (wn+1,wn+2, . . . ,w2n+1). Thus, the vectorsw(1) andw(2), respectively,

correspond to the first and last n+ 1 components of w. For a vector w ∈R2n+2, note that we can

express w(1)−w(2) as Dw for an appropriate matrix D∈R(n+1)×(2n+2). In particular, indexing

the elements of D by {dij : i= 0,1, . . . , n, j = 0,1, . . . ,2n+ 1}, it is enough to set dij = 1 when i= j,

dij =−1 when i+n+ 1 = j and dij = 0 otherwise. Throughout this section, for notational brevity,

we will write Dw instead of w(1)−w(2).

Consider using the input (v̄, û) in the randomized rounding algorithm, where v̄ is the discretized

version of the optimal solution v̂ to problem (20) and the components of the vector û are

independent and have the standard normal distribution. If we multiply û by a positive constant,

then the output of the randomized rounding algorithm does not change. Let W be a vector

taking values in R2n+2 such that its components are independent and have the standard normal

distribution. In this case, the components of the vector W (1)−W (2) = DW are independent and
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have normal distribution with mean zero and variance 2. Therefore, using the input (v̄,DW ) in

the randomized rounding algorithm is equivalent to using the input (v̄, û).

In our de-randomization approach, we start with the vector W taking values in R2n+2, where

the components of W are independent and have the standard normal distribution. Iteratively,

we fix one additional component of this vector. Therefore, after 2n+ 2 iterations, we obtain a

deterministic vector. Using w̄ ∈ R2n+2 to denote the deterministic vector obtained after 2n+ 2

iterations, we use the input (v̄,Dw̄) in the randomized rounding algorithm. Since Dw̄ is

deterministic, the output of the randomized rounding algorithm is also deterministic. We will

show that
∑

(i,j)∈M Vij(X
RR(v̄,Dw̄))γij

(
Rij(X

RR(v̄,Dw̄)
)
−z)≥ (0.79−O( 1

n
))fR(z), so the subset

of products XRR(v̄,Dw̄) satisfies the Sufficient Condition with α = 0.79 − O( 1
n

). We give the

de-randomization algorithm below. In this algorithm, for any random vector W taking values in

R2n+2, we let W (`, δ) be the vector also taking values in R2n+2 that is obtained by fixing the `-th

component of W at δ. Also, for any random vector W taking values in R2n+2, we define

Φ(W ) =
∑

(i,j)∈M
E
{
Vij(X

RR(v̄,DW ))γij
(
Rij(X

RR(v̄,DW ))− z
)}
,

where v̄ is the discretized version of the optimal solution to problem (20). Lastly, we use the

operator precedence DW (`, δ) = D(W (`, δ)), not DW (`, δ) = (DW )(`, δ).

De-Randomization

Step 1: Set `= 0. Define the random vector W (0) = (W 0,W 1, . . . ,W n,W n+1, . . . ,W 2n+1), where

W i has the standard normal distribution for all i= 0,1, . . . ,2n+ 1 and {W i : i= 0,1, . . . ,2n+ 1}
are independent.

Step 2: If ` < 2n+ 1, then define the set S as

S =
{
δ ∈ [−3

√
lnn,3

√
lnn] : δ is a multiple of

1

n9

}

⋃{
δ ∈ [−3

√
lnn,3

√
lnn] : Φ(W (`)(`, δ)) is not differentiable in δ

}
.

If ` = 2n + 1, then letting ∆ = {δ ∈ R : v̄i · DW (`)(`, δ) = 0 for some i∈N ∪{0}}, δmax =

maxδ∈∆ δ and δmin = minδ∈∆, define the set S as S = ∆∪{δmin− ε, δmax + ε} for any ε > 0.

Step 3: For each δ ∈ S, find f(δ) such that |f(δ) − Φ(W (`)(`, δ))| = O
(

1
n5

)
C(z). Set w̄` =

arg maxδ∈S f(δ).

Step 4: Define the random vector W (`+1) = (w̄0, w̄1, . . . , w̄`,W `+1, . . . ,W 2n+1). Increase ` by

one. If `≤ 2n+ 1, then go to Step 2; otherwise, return w̄= (w̄0, w̄1, . . . , w̄2n+1).

If we have ` = 2n + 1, then the vector W (`)(`, δ) is of the form (w̄0, w̄1, . . . , w̄2n, δ), which is

deterministic. In this case, we can compute the elements of ∆ in Step 2 by solving the linear
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equation v̄i ·DW (`)(`, δ) = 0 for δ for all i = N ∪ {0}. Thus, we can obtain the elements of ∆

explicitly and |∆| = O(n). Therefore, we can execute Step 2 in the de-randomization algorithm

efficiently when ` = 2n + 1. On the other hand, if ` < 2n + 1, then the vector W (`)(`, δ) is of

the form (w̄0, w̄1, . . . , w̄`−1, δ,W `+1, . . . ,W 2n+1) and the last 2n+ 1− ` components of this vector

are independent and have the standard normal distribution. By the third part of Lemma J.5,

we have v̄ik 6= 0 for all i, k ∈ N ∪ {0}. Therefore, we have (v̄,DW (`)(`, δ)) ∈ I. In Section 5 in

Mahajan and Ramesh (1999), the authors discuss how to compute the points of non-differentiability

for Φ(W (`)(`, δ)) efficiently. At the end of this section, we argue that the number of points of

non-differentiability for Φ(W (`)(`, δ)) is polynomial in n. Thus, we can execute Step 2 in the

de-randomization algorithm efficiently when ` < 2n + 1 as well. At the end of this section, we

also discuss how to construct f(δ) for each δ ∈ S. In this case, we can find w̄` in Step 3 of the

de-randomization algorithm by checking the value of f(δ) for each δ ∈ S.

Next, establish the performance guarantee for the output of the de-randomization algorithm. In

the random vector W (`)(`, δ), the `-th component is fixed at δ, whereas in the random vector

W (`), the `-th component has the standard normal distribution. In the next lemma, we show that

Φ(W (`)(`, δ)) is not too much smaller Φ(W (`)), as long as we choose some δ ∈ [−3
√

lnn,3
√

lnn]

to maximize the former quantity. After the next lemma, we build on this result to show that

Φ(W (`)(`, δ)) is not too much smaller Φ(W (`)), as long as we choose some δ ∈ S.

Lemma J.8 For any ` < 2n+ 1, we have

max
δ∈[−3

√
lnn,3

√
lnn]

{
Φ(W (`)(`, δ))

}
≥ Φ(W (`))−O

( 1

n4.5

)
C(z).

Proof: Letting v̄ be the discretized version of the optimal solution to problem (20), for any random

vector W taking values in R2n+2 such that (v̄,DW )∈ I, we define T (W ) as

T (W ) =
1

2

∑

(i,j)∈M(z)

{
ρij(z)

[
SDW (−v̄0, v̄i) +SDW (−v̄0, v̄j) +SDW (−v̄i, v̄j)

]

+ θi(z)
[
SDW (−v̄0, v̄i) +SDW (−v̄0,−v̄j) +SDW (−v̄i,−v̄j)

]

+ θj(z)
[
SDW (−v̄0,−v̄i) +SDW (−v̄0, v̄j) +SDW (v̄i, v̄j)

]}

+ 2 |N \N(z)|
∑

i∈N(z)

θi(z)SDW (−v̄0, v̄i). (28)

Note that Φ(W ) can be obtained by setting u = DW and vi = v̄i for all i ∈ N ∪ {0} in the

expression on the right side of (23). Furthermore, since (v̄,DW ) ∈ I, the definition of Su(vi,vj)

implies that SDW (v̄i, v̄j)+SDW (−v̄i, v̄j) = 1 for all i, j ∈N ∪{0} with i 6= j. In this case, noting the
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definition of C(z), it follows that T (W )+Φ(W ) = 4C(z). Also, since ρij(z)≥ 0 for all (i, j)∈M(z)

and θi(z)≥ 0 for all i∈N(z), we have T (W )≥ 0. In this case, noting that (v̄,DW (`)(`, δ))∈ I by

the discussion right after the de-randomization algorithm, we obtain

min
δ∈[−3

√
lnn,3

√
lnn]

T (W (`)(`, δ)) ≤

∫ 3
√

lnn

−3
√

lnn

T (W (`)(`, δ))e−
δ2

2 dδ

∫ 3
√

lnn

−3
√

lnn

e−
δ2

2 dδ

≤

∫ ∞

−∞
T (W (`)(`, δ))e−

δ2

2 dδ

∫ 3
√

lnn

−3
√

lnn

e−
δ2

2 dδ

=
T (W (`))

∫ 3
√

lnn

−3
√

lnn

e−
δ2

2 dδ

≤ T (W (`))

1−O
(

1
n4.5

) . (29)

In the chain of inequalities above, the second inequality holds since T (W )≥ 0. To see the equality,

consider each term in the sum on the right side of (28) when we compute T (W (`)). By the

definition of Su(vi,vj), we have SDW (−v̄0, v̄i) = P{sign(−DW (`) · v̄0) = sign(DW (`) · v̄i)}. The

corresponding term is given by P{sign(−DW (`)(`, δ) · v̄0) = sign(DW (`)(`, δ) · v̄i)}, when we

compute T (W (`)(`, δ)). The vectors W (`) and W (`)(`, δ) agree in all components except

for the `-th component. The `-th component ofW (`) has the standard normal distribution, whereas

the `-th component of W (`)(`, δ) is fixed at δ. Therefore, by conditioning, we get

P{sign(−DW (`) · v̄0) = sign(DW (`) · v̄i)}

=

∫ ∞

−∞
P{sign(−DW (`)(`, δ) · v̄0) = sign(DW (`)(`, δ) · v̄i)}e− δ

2

2 dδ.

Using the same argument for each term in the sum on the right side of (28), we get T (W (`)) =
∫∞
−∞ T (W (`)(`, δ))e−

δ2

2 dδ. The last inequality in (29) holds since 1 −
∫ 3
√

lnn

−3
√

lnn
e−

δ2

2 dδ = O( 1
n4.5

),

which is shown in the proof of Lemma 4.2 in Mahajan and Ramesh (1999).

We can compute Φ(W (`)) by replacing u with DW (`) and v with v̄ on the right side of (23). By

(22), each expression delineated with square brackets on the right side of (23) corresponds to a

probability. Thus, Φ(W (`))≥ 0. Since T (W (`)(`, δ)) + Φ(W (`)(`, δ)) = 4C(z), we get

max
δ∈[−3

√
lnn,3

√
lnn]

Φ(W (`)(`, δ)) = 4C(z) − min
δ∈[−3

√
lnn,3

√
lnn]

T (W (`)(`, δ))

≥ 4C(z) − T (W (`))

1−O
(

1
n4.5

) =
4C(z)−T (W (`))−O

(
1

n4.5

)
C(z)

1−O
(

1
n4.5

)

=
Φ(W (`))−O

(
1

n4.5

)
C(z)

1−O
(

1
n4.5

) ≥ Φ(W (`))−O
( 1

n4.5

)
C(z),

where the first inequality uses (29) and the second inequality holds since Φ(W (`))≥ 0. 2

Next, we will show that the lemma above holds when δ ∈ S instead of δ ∈ [−3
√

lnn,3
√

lnn]. We

need the following lemma from Appendix 2 in Mahajan and Ramesh (1999).
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Lemma J.9 Letting h
(`)
δ (v̄i, v̄j) = SDW (`)(`,δ)(v̄

i, v̄j) for i, j ∈ N ∪ {0} with i 6= j, we have
dh

(`)
δ

(v̄i,v̄j)

dδ
=O(n4) whenever the derivative exists.

In the next lemma, we build on Lemmas J.8 and J.9 to show that the inequality in Lemma J.8

continues to hold when we choose δ ∈ S and consider any `≤ 2n+ 1.

Lemma J.10 For any `≤ 2n+ 1, we have

max
δ∈S

{
Φ(W (`)(`, δ))

}
≥ Φ(W (`))−O

( 1

n4.5

)
C(z).

Proof: First, fix ` < 2n+ 1. Let δ∗ = arg maxδ∈[−3
√

lnn,3
√

lnn] Φ(W (`)(`, δ)). By the definition of S in

the de-randomization algorithm, there exists δ̂ ∈ S such that |δ∗− δ̂|=O( 1
n9

) and SDW (`)(`,δ)(v̄
i, v̄j)

is differentiable in δ over the interval (min{δ∗, δ̂},max{δ∗, δ̂}). So, by Lemma J.9, we get

|SDW (`)(`,δ∗)(v̄
i, v̄j)−SDW (`)(`,δ̂)(v̄

i, v̄j)| = O
( 1

n5

)
.

Since (v̄,DW (`)(`, δ∗)) ∈ I, we can compute Φ(W (`)(`, δ∗)) by replacing u with DW (`)(`, δ∗) and

v with v̄ on the right side of (23). Similarly, we can compute Φ(W (`)(`, δ̂)) by replacing u with

DW (`)(`, δ̂) and v with v̄ on the right side of (23). So, using the equality above, we get

|Φ(W (`)(`, δ∗))−Φ(W (`)(`, δ̂))|

≤ 1

2

∑

(i,j)∈M(z)

3
{
ρij(z) + θi(z) + θj(z)

}
O
( 1

n5

)
+ 2 |N \N(z)|

∑

i∈N(z)

θi(z)O
( 1

n5

)

= O
( 1

n5

)
C(z), (30)

where the last equality uses the fact that 6C(z) ≥ 3
2

∑
(i,j)∈M(z)(ρij(z) + θi(z) + θj(z)) +

2 |N \N(z)|∑i∈N(z) θi(z). Thus, it follows that

max
δ∈S

{
Φ(W (`)(`, δ))

}
≥ Φ(W (`)(`, δ̂)) ≥ Φ(W (`)(`, δ∗))−O

( 1

n5

)
C(z)

= max
δ∈[−3

√
lnn,3

√
lnn]

{
Φ(W (`)(`, δ))

}
−O

( 1

n5

)
C(z) ≥ Φ(W (`))−O

( 1

n4.5

)
C(z),

where the second inequality uses (30) and the third inequality uses Lemma J.8 along with the fact

that O( 1
n5

) +O( 1
n4.5

) =O( 1
n4.5

).

Second, fix ` = 2n + 1. Noting the discussion right after the de-randomization algorithm,

W (`)(`, δ) is a deterministic vector of the form (w̄0, w̄1, . . . , w̄2n, δ). Furthermore, by the definition

of S, for any i ∈ N ∪ {0}, the sign of v̄i · DW (`)(`, δ) does not change when δ takes values

between two consecutive elements of S. Observe that if we execute the randomized rounding

algorithm with the input (v̄,DW (`)(`, δ)), the output of the algorithm depends only on the signs
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of {v̄i ·DW (`)(`, δ) : i∈N ∪{0}}. Therefore, as δ takes values between two consecutive elements

of S, the value of XRR(v̄,DW (`)(`, δ)) does not change. Noting the definition of Φ(W ), it follows

that the value of Φ(W (`)(`, δ)) does not change either as δ takes values between two consecutive

elements of S. Furthermore, as δ takes values smaller than δmin − ε or larger than δmax + ε, the

value of Φ(W (`)(`, δ)) does not change. Therefore, we obtain

max
δ∈S

{
Φ(W (`)(`, δ))

}
= max

δ∈R

{
Φ(W (`)(`, δ))

}
≥
∫ ∞

−∞
Φ(W (`)(`, δ))e−

δ2

2 dδ = Φ(W (`)),

where the last equality follows from the same argument that we use to show that
∫∞
−∞ T (W (`)(`, δ))e−

δ2

2 dδ= T (W (`)) in the proof of Lemma J.8. 2

In the next theorem, we give the performance guarantee for the output of the de-randomization

algorithm.

Theorem J.11 Letting w̄ be the output of the de-randomization algorithm and x̂=XRR(v̄,Dw̄),

x̂ is a deterministic subset of products that satisfies

∑

(i,j)∈M
Vij(x̂)γij (Rij(x̂)− z) ≥

(
0.79−O

( 1

n

))
fR(z).

Proof: Since the vector w̄ in Step 4 of the de-randomization algorithm is deterministic, it

follows that x̂ is a deterministic subset of products. Noting Step 4 of the de-randomization

algorithm, we have W (`+1) = W (`)(`, w̄`). In this case, since Φ(W (`)(`, δ)) ≥ f(δ) − O
(

1
n5

)
C(z)

for each δ ∈ S in Step 3 of the de-randomization algorithm, we get Φ(W (`+1)) = Φ(W (`)(`, w̄`))≥
f(w̄`)−O

(
1
n5

)
C(z). Furthermore, since, we also have f(δ)≥Φ(W (`)(`, δ))−O

(
1
n5

)
C(z) for each

δ ∈ S in Step 3 of the de-randomization algorithm, we get maxδ∈S f(δ)≥maxδ∈S Φ(W (`)(`, δ))−
O
(

1
n5

)
C(z). In this case, since w̄` = arg maxδ∈S f(δ) in Step 3, we obtain

Φ(W (`+1)) = Φ(W (`)(`, w̄`)) ≥ f(w̄`)−O
(

1

n5

)
C(z)

= max
δ∈S
{f(δ)}−O

(
1

n5

)
C(z) ≥ max

δ∈S

{
Φ(W (`)(`, δ))

}
−O

(
1

n5

)
C(z).

Noting Lemma J.10 and the fact that O( 1
n5

) + O( 1
n4.5

) = O( 1
n4.5

), the chain of inequalities

above implies that Φ(W (`+1)) ≥ Φ(W (`)) − O( 1
n4.5

)C(z). There are 2n + 2 iterations in the

de-randomization algorithm. Adding the last inequality over ` = 0,1, . . . ,2n + 1, we obtain

Φ(W (2n+2))≥Φ(W (0))−O( 1
n3.5

)C(z).

We have W (2n+2) = w̄ at the last iteration of the de-randomization algorithm. Also, W (0)

is the random vector taking values in R2n+2, where the components are independent and have

the standard normal distribution. As discussed at the beginning of this section, using the input
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(v̄,DW (0)) in the randomized rounding algorithm is equivalent to using the input (v̄, û), where û

is a vector taking values in Rn+1 with the components being independent and having the standard

normal distribution. Therefore, we obtain

∑

(i,j)∈M
Vij(x̂)γij (Rij(x̂)− z) =

∑

(i,j)∈M
Vij(X

RR(v̄,Dw̄))γij (Rij(X
RR(v̄,Dw̄))− z)

= Φ(w̄) = Φ(W (2n+2)) ≥ Φ(W (0))−O
( 1

n3.5

)
C(z)

=
∑

(i,j)∈M
E{Vij(XRR(v̄,DW (0)))γij (Rij(X

RR(v̄,DW (0)))− z)}−O
( 1

n3.5

)
C(z)

=
∑

(i,j)∈M
E{Vij(XRR(v̄, û))γij (Rij(X

RR(v̄, û))− z)}−O
( 1

n3.5

)
C(z)

≥ α

4

∑

(i,j)∈M

{
ρij(z)p(v̄

0, v̄i, v̄j) + θi(z)p(v̄
0, v̄i,−v̄j) + θj(z)p(v̄

0,−v̄i, v̄j)
}
−O

( 1

n3.5

)
C(z)

= αgR(z)−O
( 1

n3.5

)
C(z),

where the second and fourth equalities follow from the definition of Φ(W ) and the second inequality

is by Theorem J.4. Thus, we have
∑

(i,j)∈M Vij(x̂)γij (Rij(x̂)−z)≥ αgR(z)−O( 1
n3.5

), in which case,

noting Lemma J.7 and the fact that O( 1
n

) +O( 1
n3.5

) =O( 1
n

), we get

∑

(i,j)∈M
Vij(x̂)γij (Rij(x̂)− z) ≥ αgR(z)−O

( 1

n3.5

)
C(z) ≥ αfR(z)−O

( 1

n

)
C(z)

≥ 0.79fR(z)−O
( 1

n

)
C(z) ≥

(
0.79−O

( 1

n

))
fR(z).

Here, the third inequality uses the fact that α≥ 0.79 and the fact that the optimal objective value

of problem (20) is non-negative as discussed at the end of the proof of Theorem J.4. The last

inequality holds since fR(z)≥C(z) by Lemma J.6. 2

By the theorem above, for any ε > 0, these exists a constant K such that if n≥K/ε, then we

can use the de-randomization algorithm to obtain a deterministic subset of products that satisfies

Vij(x̂)γij (Rij(x̂)− z)≥ (0.79− ε)fR(z). If n <K/ε, then we can enumerate all possible subsets in

constant time. Thus, we have a 0.79− ε approximation algorithm for any ε > 0.

Closing this section, we consider any iteration ` < 2n + 1 in the de-randomization algorithm

and argue that the set S in Step 2 includes a polynomial number of elements and discuss how

to construct f(δ) for each δ ∈ S in Step 3. By Lemma 3.4 in Mahajan and Ramesh (1999),

SDW (`)(`,δ) is non-differentiable in δ at no more than two values of δ. Furthermore, in Section 5 in

Mahajan and Ramesh (1999), the authors show how to compute the points of non-differentiability

for SDW (`)(`,δ) efficiently. Noting (23), we can express Φ(W (`)(`, δ)) as a linear combination
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of {SDW (`)(`,δ)(∓v̄i,∓v̄j) : i, j ∈N ∪{0} with i 6= j}. Since there are O(n2) elements in the set

{(i, j) : i, j ∈N with i 6= j}, Φ(W (`)(`, δ)) is non-differentiable in δ at no more than O(n2) values of

δ. Also, the set {δ ∈ [−3
√

lnn,3
√

lnn] : δ is a multiple of 1
n9
} has O(n9

√
lnn) elements. Next, we

focus on constructing f(δ) such that |f(δ)−Φ(W (`)(`, δ))|=O
(

1
n5

)
C(z) for each δ ∈ S. In Section 7

in Mahajan and Ramesh (1999), the authors give an algorithm to construct an approximation to

SDW (`)(`,δ)(v̄
i, v̄j) with an error of O( 1

n5
). Using S̃DW (`)(`,δ)(v̄

i, v̄j) to denote the approximation, we

construct f(δ) in Step 3 of the de-randomization algorithm as

f(δ) =
1

2

∑

(i,j)∈M(z)

{
ρij(z)

[
S̃DW (`)(`,δ)(v̄

0, v̄i) + S̃DW (`)(`,δ)(v̄
0, v̄j) + S̃DW (`)(`,δ)(v̄

i, v̄j)− 1
]

+ θi(z)
[
S̃DW (`)(`,δ)(v̄

0, v̄i) + S̃DW (`)(`,δ)(v̄
0,−v̄j) + S̃DW (`)(`,δ)(v̄

i,−v̄j)− 1
]

+ θj(z)
[
S̃DW (`)(`,δ)(v̄

0,−v̄i) + S̃DW (`)(`,δ)(v̄
0, v̄j) + S̃DW (`)(`,δ)(−v̄i, v̄j)− 1

]}

+ 2 |N \N(z)|
∑

i∈N(z)

θi(z) S̃DW (`)(`,δ)(v̄
0, v̄i).

We can compute Φ(W (`)(`, δ)) by replacing u with DW (`)(`, δ) and v with v̄ on the right side of

(23). Therefore, we obtain

|f(δ)−Φ(W (`)(`, δ))| ≤ 1

2

∑

(i,j)∈M(z)

3
{
ρij(z) + θi(z) + θj(z)

}
O
( 1

n5

)
+ 2 |N \N(z)|

∑

i∈N(z)

θi(z)O
( 1

n5

)
.

By the same reasoning that we use to obtain the equality in (30), the right side of the inequality

above is O( 1
n5

)C(z). Lastly, in the proof of Lemma J.10, we show that we can compute Φ(W (`)(`, δ))

exactly when `= 2n+ 1. Thus, when `= 2n+ 1, we can use f(δ) = Φ(W (`)(`, δ)).

Appendix K: Structural Properties of the Extreme Points

We focus on the extreme points of the polyhedron given by the set of feasible solutions to the LP

that computes fR at the beginning of Section 5.1. This polyhedron is given by

P =

{
(x,y)∈ [0,1]|N̂ |×R|M̂ |+ : yij ≥ xi +xj − 1 ∀ (i, j)∈ M̂,

∑

i∈N̂

xi ≤ c
}
.

If we have c≥ n so that there is no capacity constraint, then P is the boolean quadric polytope

studied by Padberg (1989). By Theorem 7 in Padberg (1989), all components of any extreme point

of the boolean quadric polytope take values in {0, 1
2
,1}. Also, Hochbaum (1998) studies optimization

problems over the feasible set P∩∈ {0,1}|N̂ |×R|M̂ |+ with c≥ n and constructs half-integral solutions

with objective values exceeding the optimal, in which case, she can obtain 0.5-approximate solutions

when the objective function coefficients are all positive. By Theorem 7 in Padberg (1989), if (x̂, ŷ)

is an extreme point of P with c≥ n, then x̂i ∈ {0, 1
2
,1} for all i ∈ N̂ . In the next counterexample,

we show that this property does not hold when there is a capacity constraint.
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Example K.1 (Dense Extreme Points in Capacitated Problem) Consider the polyhedron

P for the case where we have c = 3 and |N̂ | = 7 with N̂ = {1, . . . ,7}. Let x̂ = ( 2
5
, 2

5
, 2

5
, 2

5
, 2

5
, 2

5
, 3

5
)

and ŷ= 0∈R|M̂ |+ . Note that we have
∑

i∈N̂ x̂i = c and x̂i + x̂j − 1≤ 0 = ŷij for all (i, j)∈ M̂ , which

implies that (x̂, ŷ) ∈ P. We claim that (x̂, ŷ) is an extreme point of P. Assume on the contrary

that there exist (x̂+ ε, ŷ+ δ)∈P and (x̂ − ε, ŷ − δ) ∈ P with (ε,δ) non-zero so that we have

(x̂, ŷ) = 1
2
(x̂+ε, ŷ+δ)+ 1

2
(x̂−ε, ŷ−δ). Since we have ŷ= 0, ŷ+δ ∈R|M̂ |+ and ŷ−δ ∈R|M̂ |+ , it must

be the case that δ= 0. Noting that (x̂+ε, ŷ+δ)∈P and (x̂−ε, ŷ−δ)∈P, for each i∈ {1, . . . ,6},
the constraint yi7 ≥ xi +x7− 1 that defines P yields

0 = ŷi7 + δi7 ≥ x̂i + εi + x̂7 + ε7− 1 and 0 = ŷi7− δi7 ≥ x̂i− εi + x̂7− ε7− 1.

In the case, since x̂i + x̂7 = 1 by the definition of x̂, the inequalities above imply that ε7 =

−εi for all i ∈ {1, . . . ,6}. Also, the constraint
∑

i∈N̂ xi ≤ c yields
∑7

i=1 x̂i +
∑7

i=1 εi ≤ c and
∑7

i=1 x̂i−
∑7

i=1 εi ≤ c, in which case, noting that
∑7

i=1 x̂i = 3 = c by the definition of x̂, we obtain
∑7

i=1 εi = 0. Combining the last equality with the fact that εi =−ε7 for all i∈ {1, . . . ,6}, it follows

that εi = 0 for all i∈ {1, . . . ,7}. So, (ε,δ) is the zero vector, which is a contradiction.

Next, we give the proof of Lemma 5.1. Throughout the proof, we use the fact that if (x̂, ŷ) is

an extreme point of P(H), then we must have ŷij = [x̂i + x̂j − 1]+ for all (i, j) ∈ M̂ . This result

holds because if ŷij > [x̂i + x̂j − 1]+ for some (i, j) ∈ M̂ , we can perturb only this component of ŷ

by +ε and −ε for a small enough ε > 0 while keeping the other components of (x̂, ŷ) constant. In

this case, the two points that we obtain in this fashion are in P(H) and (x̂, ŷ) can be written as

a convex combination of the two points, which contradicts the fact that (x̂, ŷ) is an extreme point

of P(H). Therefore, it indeed holds that ŷij = [x̂i+ x̂j−1]+ for all (i, j)∈ M̂ for any extreme point

(x̂, ŷ) of P(H). Below is the proof of Lemma 5.1.

Proof of Lemma 5.1: To get a contradiction, assume that we have an extreme point

(x̂, ŷ) such that x̂i 6∈ ( 1
2
,1) for all i ∈ N̂ and x̂k 6∈ {0, 1

2
,1} for some k ∈ N̂ . We define F =

{k ∈ N̂ : x̂k 6∈ {0, 1
2
,1}}. Consider some k ∈ F . Since we assume that x̂i 6∈ ( 1

2
,1) for all i ∈ N̂ and

we have x̂k 6∈ {0, 1
2
,1}, it follows that x̂k ∈ (0, 1

2
). Therefore, we have x̂k ∈ (0, 1

2
) for all k ∈ F . Also,

by the definition of F , we have x̂i ∈ {0, 1
2
,1} for all i 6∈ F . Summing up the discussion so far,

we obtain x̂k ∈ (0, 1
2
) for all k ∈ F and x̂i ∈ {0, 1

2
,1} for all i 6∈ F . Thus, we can partition N̂ into

three subsets F = {k ∈ N̂ : x̂k ∈ (0, 1
2
)}, S = {i∈ N̂ : x̂i ∈ {0, 1

2
}} and L = {i ∈ N̂ : x̂i = 1} so that

N̂ = F ∪S ∪L. Since we assume that x̂k 6∈ {0, 1
2
,1} for some k ∈ N̂ , |F |= |N̂ \ (S ∪L)| ≥ 1.

First, we consider the case |F | = 1. We use k to denote the single element of F . Given the

extreme point (x̂, ŷ), we define the solution (x1,y1) as follows. For a small enough ε > 0, we set
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x1
k = x̂k+ε, x1

i = x̂i for all i∈ S∪L and y1
ij = [x1

i +x1
j−1]+ for all (i, j)∈ M̂ . Since we have x̂k ∈ (0, 1

2
)

and x̂i ∈ {0, 1
2
,1} for all i ∈ N̂ \ {k}, the sum

∑
i∈N̂ x̂i cannot be an integer. So, the constraint

∑
i∈N̂ xi ≤ c is not tight at the extreme point (x̂, ŷ), which implies that

∑
i∈N̂ x

1
i =
∑

i∈N̂ x̂i + ε≤ c
for a small enough ε. Also, since x̂k ∈ (0, 1

2
), we obtain x1

k = x̂k + ε ≤ 1 for a small enough ε. In

this case, (x1,y1)∈P(H). Similarly, we define the solution (x2,y2) as follows. We set x2
k = x̂k− ε,

x2
i = x̂i for all i∈ S ∪L and y2

ij = [x2
i +x2

j − 1]+ for all (i, j)∈ M̂ . By using an argument similar to

the one earlier in this paragraph, we can verify that (x2,y2)∈P(H).

Consider (k, j) ∈ M̂ with j ∈ S. We have y1
kj = [x1

k + x1
j − 1]+ = [x̂k + ε + x̂j − 1]+ = 0 =

[x̂k + x̂j − 1]+ = ŷkj, where the third and fourth equalities follow from the fact that x̂k ∈ (0, 1
2
) and

x̂j ∈ {0, 1
2
} for all j ∈ S, whereas the last equality follows from the fact that ŷij = [x̂i+ x̂j−1]+ in the

extreme point (x̂, ŷ). Similarly, we have y1
jk = ŷjk for all (j, k)∈ M̂ with j ∈ S. Consider (k, j)∈ M̂

with j ∈L. We have y1
kj = [x1

k +x1
j −1]+ = [x̂k + ε+ x̂j−1]+ = [x̂k + x̂j−1]+ + ε= ŷkj + ε, where the

third equality follows from the fact that x̂j = 1 for all j ∈L. Similarly, we have y1
jk = ŷjk + ε for all

(j, k)∈ M̂ with j ∈L. For the other cases not considered by the preceding four conditions, we have

y1
ij = ŷij. By following precisely the same line of reasoning used in this paragraph, we can also show

that y2
kj = ŷkj for all (k, j) ∈ M̂ with j ∈ S, y2

jk = ŷjk for all (j, k) ∈ M̂ with j ∈ S, y2
kj = ŷkj − ε for

all (k, j) ∈ M̂ with j ∈ L and y2
jk = ŷjk − ε for all (j, k) ∈ M̂ with j ∈ L. Also, we have y2

ij = ŷij for

the other cases not considered by the preceding four conditions. In this case, we get y1
ij +y2

ij = 2 ŷij

for all (i, j) ∈ M̂ . The discussion in this and the previous paragraph shows that x̂ = 1
2
x1 + 1

2
x2

and ŷ= 1
2
y1 + 1

2
y2 for (x1,y1)∈P(H) and (x2,y2)∈P(H), so (x̂, ŷ) cannot be an extreme point

of P(H). Thus, we get a contradiction and the desired result follows.

Second, we consider the case |F | ≥ 2. We use k and k′ to denote any two elements of F . Given

the extreme point (x̂, ŷ), we define the solution (x1,y1) as follows. For a small enough ε > 0, we

set x1
k = x̂k + ε, x1

k′ = x̂k′ − ε, x1
i = x̂i for all i ∈ (F \ {k, k′})∪S ∪L and y1

ij = [x1
i + x1

j − 1]+ for all

(i, j) ∈ M̂ . Since
∑

i∈N̂ x
1
i =

∑
i∈N̂ x̂i, it follows that (x1,y1) satisfies the constraint

∑
i∈N̂ x

1
i ≤ c.

Also, since x̂k ∈ (0, 1
2
) and x̂k′ ∈ (0, 1

2
), we have x1

k ≤ 1 and x1
k′ ≥ 0. In this case, it follows that

(x1,y1)∈P(H). Similarly, we define the solution (x2,y2) as follows. We set x2
k = x̂k−ε, x2

k′ = x̂k′+ε,

x2
i = x̂i for all i∈ (F \ {k, k′})∪S ∪L and y2

ij = [x2
i +x2

j − 1]+ for all (i, j)∈ M̂ . Using an argument

similar to the one earlier in this paragraph, we have (x2,y2)∈P(H). Lastly, following an argument

similar to the one in the previous paragraph, we can show that x̂= 1
2
x1 + 1

2
x2 and ŷ= 1

2
y1 + 1

2
y2,

in which case, we, once more, reach a contradiction. 2

Appendix L: Confidence Intervals for the Performance Measures

In this section, we provide confidence intervals for the performance measures in Tables 1 and 2. For

economy of space, we focus on some of the performance measures. In particular, noting that our
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Param. Conf. Confidence Interval
(T,n, γ̄, φ0) 1st 5th 50th

(I, 50,0.1,0.25) [96.0,96.8] [97.2,97.5] [98.6,98.7]
(I, 50,0.1,0.50) [98.9,99.1] [99.2,99.3] [99.6,99.7]
(I, 50,0.1,0.75) [99.7,99.8] [99.8,99.8] [99.9, 100]
(I, 50,0.5,0.25) [96.6,97.2] [97.5,97.8] [98.8,98.9]
(I, 50,0.5,0.50) [99.0,99.2] [99.3,99.3] [99.8,99.9]
(I, 50,0.5,0.75) [99.8,99.8] [99.8,99.8] [99.9, 100]
(I, 50,1.0,0.25) [96.4,97.2] [97.6,97.8] [98.8,98.9]
(I, 50,1.0,0.50) [99.0,99.3] [99.4,99.4] [99.8,99.8]
(I, 50,1.0,0.75) [99.8,99.8] [99.8,99.9] [99.9, 100]
(I,100,0.1,0.25) [96.9,97.4] [97.6,97.8] [98.6,98.6]
(I,100,0.1,0.50) [99.1,99.3] [99.3,99.4] [99.7,99.7]
(I,100,0.1,0.75) [99.8,99.8] [99.8,99.9] [99.9, 100]
(I,100,0.5,0.25) [97.4,97.7] [97.9,98.0] [98.8,98.8]
(I,100,0.5,0.50) [99.2,99.3] [99.4,99.5] [99.6,99.8]
(I,100,0.5,0.75) [99.8,99.9] [99.9,99.9] [99.9, 100]
(I,100,1.0,0.25) [97.4,97.8] [98.0,98.1] [98.8,98.9]
(I,100,1.0,0.50) [99.2,99.4] [99.5,99.5] [99.8,99.9]
(I,100,1.0,0.75) [99.8,99.9] [99.9,99.9] [99.9, 100]

Param. Conf. Confidence Interval
(T,n, γ̄, φ0) 1st 5th 50th

(C, 50,0.1,0.25) [96.4,96.8] [97.1,97.5] [98.6,98.7]
(C, 50,0.1,0.50) [98.7,99.0] [99.2,99.3] [99.7,99.7]
(C, 50,0.1,0.75) [99.7,99.8] [99.8,99.8] [99.9, 100]
(C, 50,0.5,0.25) [97.0,97.3] [97.6,97.7] [98.8,98.9]
(C, 50,0.5,0.50) [98.9,99.1] [99.3,99.4] [99.8,99.8]
(C, 50,0.5,0.75) [99.7,99.8] [99.8,99.8] [99.9, 100]
(C, 50,1.0,0.25) [96.7,97.3] [97.6,97.7] [98.9,99.0]
(C, 50,1.0,0.50) [99.1,99.2] [99.3,99.4] [99.8,99.8]
(C, 50,1.0,0.75) [99.8,99.8] [99.9,99.9] [99.9, 100]
(C,100,0.1,0.25) [97.1,97.4] [97.6,97.8] [98.6,98.7]
(C,100,0.1,0.50) [99.0,99.2] [99.3,99.4] [99.7,99.7]
(C,100,0.1,0.75) [99.8,99.8] [99.9,99.9] [99.9 ,100]
(C,100,0.5,0.25) [97.3,97.6] [97.8,98.0] [98.8,98.8]
(C,100,0.5,0.50) [99.2,99.4] [99.4,99.5] [99.7,99.8]
(C,100,0.5,0.75) [99.8,99.9] [99.9,99.9] [99.9, 100]
(C,100,1.0,0.25) [97.3,97.8] [98.0,98.1] [98.8,98.9]
(C,100,1.0,0.50) [99.2,99.4] [99.5,99.5] [99.8,99.8]
(C,100,1.0,0.75) [99.9,99.9] [99.9,99.9] [99.9, 100]

Table 9 Confidence intervals for the uncapacitated test problems.

test problems are random, we provide 95% confidence intervals for the 1st, 5th and 50th percentiles

of the ratio between the expected revenue of the solution from our approximation algorithm and

the upper bound on the optimal expected revenue. See, for example, Chapter 5 in Meeker et al.

(2017) for computing confidence intervals for percentiles. In Tables 9 and 10, we give the confidence

intervals for the performance measures in, respectively, Tables 1 and 2.

Appendix M: Generalized Nested Logit Model with at Most Two Products per Nest

In this section, we give extensions of our results to the generalized nested logit model with at most

two products in each nest.

M.1. Assortment Problem

We index the set of products by N = {1, . . . , n}. We use x = (x1, . . . , xn) ∈ {0,1}n to capture

the subset of products that we offer to the customers, where xi = 1 if and only if we offer

product i. We denote the collection of nests by M . For each nest q ∈M , we let γq ∈ [0,1] be

the dissimilarity parameter of the nest. For each product i and nest q, we let αiq ∈ [0,1] be

the membership parameter of product i for nest q. We have
∑

q∈M αiq = 1 for all i ∈ N , so the

membership parameters for a particular product adds up to one. Letting Bq = {i∈N : αiq > 0}, Bq
corresponds to the set of products with strictly positive membership parameters for nest q. We use

vi to denote the preference weight of product i and v0 to denote the preference weight of the no

purchase option. Letting Vq(x) =
∑

i∈Bq(αiq vi)
1/γq xi, under the generalized nested logit model,

if we offer the subset of products x, then a customer decides to make a purchase in nest q with

probability Vq(x)γq/(v0 +
∑

`∈M V`(x)γq). If the customer decides to make a purchase in nest q, then

she chooses product i∈Bq with probability (αiq vi)
1/γq xi/Vq(x). In this case, if we offer the subset
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Param. Conf. Confidence Interval
(T,n, γ̄, φ0, δ) 1st 5th 50th

(I, 50,0.1,0.25,0.8) [90.9,92.3] [92.9,93.5] [95.9,96.1]
(I, 50,0.1,0.25,0.5) [94.7,95.5] [95.9,96.2] [98.1,98.2]
(I, 50,0.1,0.25,0.2) [96.9,98.0] [98.3,98.5] [99.6,99.7]
(I, 50,0.1,0.75,0.8) [99.3,99.5] [99.6,99.6] [99.9,99.9]
(I, 50,0.1,0.75,0.5) [99.6,99.7] [99.8,99.8] [99.9, 100]
(I, 50,0.1,0.75,0.2) [99.7,99.8] [99.9,99.9] [99.9, 100]
(I, 50,0.5,0.25,0.8) [90.8,92.7] [93.4,94.0] [96.3,96.5]
(I, 50,0.5,0.25,0.5) [94.2,95.6] [96.1,96.4] [98.1,98.2]
(I, 50,0.5,0.25,0.2) [96.8,97.7] [98.1,98.4] [99.5,99.7]
(I, 50,0.5,0.75,0.8) [99.3,99.5] [99.6,99.6] [99.9,99.9]
(I, 50,0.5,0.75,0.5) [99.5,99.7] [99.7,99.8] [99.9, 100]
(I, 50,0.5,0.75,0.2) [99.7,99.8] [99.8,99.9] [99.9, 100]
(I, 50,1.0,0.25,0.8) [93.1,93.7] [94.2,94.5] [96.6,96.7]
(I, 50,1.0,0.25,0.5) [93.6,95.3] [96.0,96.4] [98.1,98.3]
(I, 50,1.0,0.25,0.2) [97.0,97.8] [98.2,98.4] [99.5,99.6]
(I, 50,1.0,0.75,0.8) [99.5,99.6] [99.6,99.7] [99.9,99.9]
(I, 50,1.0,0.75,0.5) [99.4,99.6] [99.7,99.7] [99.9, 100]
(I, 50,1.0,0.75,0.2) [99.0,99.7] [99.8,99.9] [99.9, 100]
(I,100,0.1,0.25,0.8) [92.2,93.5] [94.0,94.2] [95.8,95.9]
(I,100,0.1,0.25,0.5) [95.9,96.5] [96.7,97.0] [98.1,98.2]
(I,100,0.1,0.25,0.2) [98.0,98.5] [98.8,98.9] [99.5,99.6]
(I,100,0.1,0.75,0.8) [99.6,99.6] [99.7,99.7] [99.9,99.9]
(I,100,0.1,0.75,0.5) [99.7,99.8] [99.8,99.8] [99.9, 100]
(I,100,0.1,0.75,0.2) [99.9,99.9] [99.9,99.9] [99.9, 100]
(I,100,0.5,0.25,0.8) [92.9,94.0] [94.4,94.7] [96.3,96.4]
(I,100,0.5,0.25,0.5) [95.5,96.3] [96.6,96.9] [98.0,98.1]
(I,100,0.5,0.25,0.2) [97.9,98.4] [98.6,98.8] [99.5,99.5]
(I,100,0.5,0.75,0.8) [99.6,99.6] [99.7,99.7] [99.9,99.9]
(I,100,0.5,0.75,0.5) [99.7,99.8] [99.8,99.8] [99.9,99.9]
(I,100,0.5,0.75,0.2) [99.8,99.9] [99.9,99.9] [99.9, 100]
(I,100,1.0,0.25,0.8) [93.4,94.3] [94.7,95.0] [96.5,96.7]
(I,100,1.0,0.25,0.5) [95.6,96.3] [96.6,96.8] [98.0,98.2]
(I,100,1.0,0.25,0.2) [97.9,98.2] [98.5,98.6] [99.4,99.5]
(I,100,1.0,0.75,0.8) [99.6,99.7] [99.7,99.7] [99.9,99.9]
(I,100,1.0,0.75,0.5) [99.7,99.8] [99.8,99.8] [99.9, 100]
(I,100,1.0,0.75,0.2) [99.8,99.9] [99.9,99.9] [99.9, 100]

Param. Conf. Confidence Interval
(T,n, γ̄, φ0, δ) 1st 5th 50th

(C, 50,0.1,0.25,0.8) [90.7,92.7] [93.1,93.6] [95.8,96.1]
(C, 50,0.1,0.25,0.5) [95.1,95.8] [96.1,96.4] [98.1,98.3]
(C, 50,0.1,0.25,0.2) [97.7,98.2] [98.4,98.6] [99.5,99.7]
(C, 50,0.1,0.75,0.8) [99.3,99.5] [99.6,99.6] [99.9,99.9]
(C, 50,0.1,0.75,0.5) [99.5,99.7] [99.7,99.8] [99.9, 100]
(C, 50,0.1,0.75,0.2) [99.7,99.8] [99.9,99.9] [99.9, 100]
(C, 50,0.5,0.25,0.8) [92.7,93.1] [93.8,94.2] [96.3,96.5]
(C, 50,0.5,0.25,0.5) [94.6,95.3] [95.8,96.1] [98.0,98.2]
(C, 50,0.5,0.25,0.2) [97.2,97.8] [98.1,98.3] [99.4,99.6]
(C, 50,0.5,0.75,0.8) [99.4,99.5] [99.6,99.7] [99.9,99.9]
(C, 50,0.5,0.75,0.5) [99.4,99.7] [99.7,99.7] [99.9, 100]
(C, 50,0.5,0.75,0.2) [99.6,99.8] [99.8,99.9] [99.9, 100]
(C, 50,1.0,0.25,0.8) [92.5,93.5] [94.1,94.4] [96.5,96.8]
(C, 50,1.0,0.25,0.5) [94.8,95.5] [96.1,96.4] [98.0,98.3]
(C, 50,1.0,0.25,0.2) [97.5,97.9] [98.1,98.3] [99.5,99.6]
(C, 50,1.0,0.75,0.8) [99.4,99.6] [99.6,99.7] [99.9,99.9]
(C, 50,1.0,0.75,0.5) [99.2,99.6] [99.7,99.7] [99.9, 100]
(C, 50,1.0,0.75,0.2) [99.4,99.8] [99.8,99.9] [99.9, 100]
(C,100,0.1,0.25,0.8) [92.7,93.5] [93.9,94.2] [95.8,96.0]
(C,100,0.1,0.25,0.5) [95.8,96.4] [96.7,97.0] [98.2,98.2]
(C,100,0.1,0.25,0.2) [98.3,98.5] [98.7,98.9] [99.5,99.6]
(C,100,0.1,0.75,0.8) [99.5,99.6] [99.7,99.7] [99.9,99.9]
(C,100,0.1,0.75,0.5) [99.7,99.8] [99.8,99.8] [ 100, 100]
(C,100,0.1,0.75,0.2) [99.9,99.9] [99.9,99.9] [99.9, 100]
(C,100,0.5,0.25,0.8) [93.3,94.0] [94.4,94.7] [96.2,96.4]
(C,100,0.5,0.25,0.5) [95.9,96.5] [96.7,96.9] [98.0,98.1]
(C,100,0.5,0.25,0.2) [98.0,98.4] [98.6,98.8] [99.5,99.5]
(C,100,0.5,0.75,0.8) [99.5,99.6] [99.7,99.7] [99.9,99.9]
(C,100,0.5,0.75,0.5) [99.7,99.8] [99.8,99.8] [99.9, 100]
(C,100,0.5,0.75,0.2) [99.9,99.9] [99.9,99.9] [99.9, 100]
(C,100,1.0,0.25,0.8) [93.9,94.3] [94.9,95.1] [96.5,96.6]
(C,100,1.0,0.25,0.5) [96.0,96.4] [96.7,97.0] [98.1,98.1]
(C,100,1.0,0.25,0.2) [97.9,98.4] [98.6,98.8] [99.4,99.5]
(C,100,1.0,0.75,0.8) [99.6,99.7] [99.7,99.7] [99.9, 100]
(C,100,1.0,0.75,0.5) [99.5,99.8] [99.8,99.8] [99.9, 100]
(C,100,1.0,0.75,0.2) [99.8,99.9] [99.9,99.9] [99.9, 100]

Table 10 Confidence intervals for the capacitated test problems.

of products x and a customer has already decided to make a purchase in nest q, then the expected

revenue that we obtain from the customer is Rq(x) =
∑

i∈Bq pi (αiq vi)
1/γq xi/Vq(x), where pi is the

revenue of product i. Letting π(x) be the expected revenue that we obtain from a customer when

we offer the subset of products x, we have

π(x) =
∑

q∈M

Vq(x)γq

v0 +
∑

`∈M V`(x)γ`
Rq(x) =

∑
q∈M Vq(x)γq Rq(x)

v0 +
∑

q∈M Vq(x)γq
.

Defining the set of feasible subsets of products F that we can offer in the same way that we define

in the main body of the paper, we formulate our assortment problem as

z∗ = max
x∈F

π(x) = max
x∈F

{∑
q∈M Vq(x)γq Rq(x)

v0 +
∑

q∈M Vq(x)γq

}
. (31)

The PCL model is a special case of the generalized nested logit model. Since the assortment problem

under the PCL model is strongly NP-hard, the problem above is strongly NP-hard as well.
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M.2. A Framework for Approximation Algorithms

To relate problem (31) to the problem of computing the fixed point of a function, we define the

function f :R→R as

f(z) = max
x∈F

{∑

q∈M
Vq(x)γq (Rq(x)− z)

}
. (32)

We can show that f(·) is decreasing and continuous with f(0)≥ 0. Therefore, there exists a unique

ẑ ≥ 0 that satisfies f(ẑ) = v0 ẑ. In our approximation framework, we will construct an upper bound

fR(·) on f(·) so that fR(z)≥ f(z) for all z ∈R. This upper bound will be decreasing and continuous

with fR(0) ≥ 0, so that there also exists a unique ẑ ≥ 0 that satisfies fR(ẑ) = v0 ẑ. Theorem 3.1

continues to hold, as long as we replace
∑

(i,j)∈M Vij(x̂)γij (Rij(x̂)− ẑ)≥ αfR(ẑ) in the Sufficient

Condition with
∑

q∈M Vq(x̂)γq (Rq(x̂)− ẑ)≥ αfR(ẑ). The approximation framework given in Section

3.1 continues to hold as well, as long as we replace
∑

(i,j)∈M Vij(x̂)γij (Rij(x̂) − ẑ) ≥ αfR(ẑ) in

Step 3 with
∑

q∈M Vq(x̂)γq (Rq(x̂)− ẑ)≥ αfR(ẑ). The preceding discussion holds with an arbitrary

number of products in each nest. In the rest of the discussion, we focus on the case where there

are at most two products in each nest so that |Bq| ≤ 2 for all q ∈M .

We proceed to constructing an upper bound fR(·) on f(·). To construct this upper bound, we

use an LP relaxation of problem (32). In particular, we define ρq(z) and θiq(z) as

ρq(z) =

(∑

i∈Bq
(αiq vi)

1/γq

)γq ∑
i∈Bq(pi− z) (αiq vi)

1/γq

∑
i∈Bq(αiq vi)

1/γq
and θiq(z) = αiq vi (pi− z).

As in the beginning of Section 3.2, if xi = 1 for all i∈Bq, then Vq(x)γq (Rq(x)−z) = ρq(z), whereas

if xi = 1 for exactly one i ∈ Bq, then Vq(x)γq (Rq(x)− z) = θiq(z). Note that since |Bq|= 2, if we

offer some product in nest q, then we must have either xi = 1 for all i ∈Bq or xi = 1 for exactly

one i∈Bq. In this case, letting µq(z) = ρq(z)−
∑

i∈Bq θiq(z) for notational brevity, we have

Vq(x)γq (Rq(x)− z) = ρq(z)
∏

j∈Bq
xj +

∑

i∈Bq
θiq(z)

(
1−

∏

j∈Bq\{i}
xj

)
xi = µq(z)

∏

i∈Bq
xi +

∑

i∈Bq
θiq(z)xi.

(33)

Thus, we can use the expression
∑

q∈M(µq(z)
∏
i∈Bq xi +

∑
i∈Bq θiq(z)xi) to equivalently write the

objective function of problem (32), in which case, this problem becomes

f(z) = max




∑

q∈M

(
µq(z)

∏

i∈Bq
xi +

∑

i∈Bq
θiq(z)xi

)
:
∑

i∈N
xi ≤ c, xi ∈ {0,1} ∀ i∈N



 .

To linearize the term
∏
i∈Bq xi in the objective function above, we define the decision variable

yq ∈ {0,1} with the interpretation that yq =
∏
i∈Bq xi. To ensure that yq takes the value

∏
i∈Bq xi,
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we impose the constraints yq ≥
∑

i∈Bq xi − |Bq|+ 1 and yq ≤ xi for all i ∈Bq. In this case, noting

that |Bq| ≤ 2, if xi = 1 for all i ∈Bq, then the constraints yq ≥
∑

i∈Bq xi− |Bq|+ 1 and yq ≤ xi for

all i ∈ Bq ensures that yq = 1. If xi = 0 for some i ∈ Bq, then the constraint yq ≤ xi ensures that

yq = 0. Using the decision variables {yq : q ∈M}, we can formulate the problem above as an integer

program. We use the LP relaxation of this integer program to construct the upper bound fR(·) on

f(·). In particular, we define the upper bound fR(·) as

fR(z) = max
∑

q∈M

(
µq(z)yq +

∑

i∈Bq
θiq(z)xi

)
(34)

s.t. yq ≥
∑

i∈Bq
xi− |Bq|+ 1 ∀ q ∈M

yq ≤ xi ∀ i∈Bq, q ∈M
∑

i∈N
xi ≤ c

0≤ xi ≤ 1 ∀ i∈N, yq ≥ 0 ∀ q ∈M.

In the formulation of the LP above, we use the fact that if we offer some product in a nest, then

we offer either all or one of the products in this nest, which holds when the number of products in

this nest is at most two. Lemma 3.2 continues to hold so that fR(z) is decreasing in z. In this case,

by the same argument right before Lemma 3.2, fR(·) is decreasing and continuous with fR(0)≥ 0.

So, there exists a unique ẑ ≥ 0 satisfying fR(ẑ) = v0 ẑ. Using the same approach in the proof of

Theorem 3.3, we can show that we can solve an LP to compute the fixed point of fR(·)/v0.

We define N(z) = {i∈N : pi ≥ z} and M(z) = {q ∈M : pi ≥ z ∀ i∈Bq}. As in the proof of Lemma

G.1, we can show that there exists an optimal solution x∗ = {x∗i : i∈N} and y∗ = {y∗q : q ∈M} to

problem (34) with x∗i = 0 for all i 6∈N(z) and y∗q = 0 for all q 6∈M(z). So, we can assume that x∗i = 0

for all i 6∈N(z) and y∗q = 0 for all q 6∈M(z). Also, as in the proof of Lemma G.2, we can show that

µq(z)≤ 0 for all q ∈M(z), in which case, the decision variables {yq : q ∈M(z)} take their smallest

possible value in an optimal solution to problem (34). Thus, the constraint yq ≤ xi is redundant.

In this case, problem (34) is equivalent to the problem

fR(z) = max
∑

q∈M

(
µq(z)yq +

∑

i∈Bq
θiq(z)xi

)
(35)

s.t. yq ≥
∑

i∈Bq
xi− |Bq|+ 1 ∀ q ∈M

∑

i∈N
xi ≤ c

0≤ xi ≤ 1 ∀ i∈N, yq ≥ 0 ∀ q ∈M.

Working with problem (35), rather than problem (34), will be more convenient. In the next two

sections, we focus on the uncapacitated and capacitated problems separately.
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M.3. Uncapacitated Problem

We consider the case where c≥ n so that there is no capacity constraint. We let ẑ be such that

fR(ẑ) = v0 ẑ. Throughout this section, since the value of ẑ is fixed, as is done in the main body of

the paper, we exclude the reference to ẑ. In particular, we let µq = µq(ẑ), θiq = θiq(ẑ), ρiq = ρiq(z),

N̂ = N(z), M̂ = M(z) and fR = fR(ẑ). We let (x∗,y∗) be an optimal solution to problem (35)

with z = ẑ. As discussed at the end of the previous section, without loss of generality, we assume

that x∗i = 0 for all i 6∈ N̂ and y∗q = 0 for all i 6∈ M̂ . We define the random subset of products X̂ =

{X̂i : i ∈N} as follows. For each i ∈N , we have X̂i = 1 with probability x∗i , whereas X̂i = 0 with

probability 1−x∗i . Different components of the vector X̂ are independent of each other. Through

minor modifications in the proof of Theorem 4.1, we can show that

E
{∑

q∈M
Vq(X̂)γq (Rq(X̂)− ẑ)

}
≥ 0.5fR. (36)

In particular, using the same argument in the proof of Lemma G.2, we can show that µq ≤ 0 for

all q ∈ M̂ . In this case, for q ∈ M̂ , the decision variable yq takes its smallest possible value in an

optimal solution to problem (35). Thus, without loss of generality, we can assume that the optimal

solution (x∗,y∗) to problem (35) satisfies y∗q =
[∑

i∈Bq x
∗
i − |Bq|+ 1

]+
for all q ∈ M̂ . Furthermore,

by the definition of X̂, we have E{X̂i}= x∗i for all i ∈N and the different components of X̂ are

independent of each other. In this case, noting (33), we get

∑

q∈M
E{Vq(X̂)γq (Rq(X̂)− ẑ)} =

∑

q∈M

(
µq
∏

i∈Bq
E{X̂i}+

∑

i∈Bq
θiq E{X̂i}

)

=
∑

q∈M

(
µq
∏

i∈Bq
x∗i +

∑

i∈Bq
θiq x

∗
i

)

=
∑

q∈M
1(q ∈ M̂)

(
µq
∏

i∈Bq
x∗i +

∑

i∈Bq
θiq x

∗
i

)
+
∑

q∈M
1(q 6∈ M̂)

(∑

i∈Bq
θiq x

∗
i

)

=
∑

q∈M
1(q ∈ M̂)

(
µq

[∑

i∈Bq
x∗i − |Bq|+ 1

]+

+
∑

i∈Bq
θiq x

∗
i

)
+
∑

q∈M
1(q 6∈ M̂)

(∑

i∈Bq
θiq x

∗
i

)

+
∑

q∈M
1(q ∈ M̂)µq

( ∏

i∈Bq
x∗i −

[∑

i∈Bq
x∗i − |Bq|+ 1

]+
)

= fR +
∑

q∈M̂

µq

( ∏

i∈Bq
x∗i −

[∑

i∈Bq
x∗i − |Bq|+ 1

]+
)

≥ fR +
1

4

∑

q∈M̂

µq. (37)

In the chain of inequalities above, the third equality uses the fact that if q 6∈ M̂ , then there exists

some j ∈Bq such that pj < ẑ, in which case, we get j 6∈ N̂ . Having j 6∈ N̂ implies that x∗j = 0. Thus,
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there exists some j ∈Bq such that x∗j = 0, which yields
∏
i∈Bq x

∗
i = 0. The fifth equality is by the

fact that y∗q =
[∑

i∈Bq x
∗
i − |Bq| + 1

]+
for all q ∈ M̂ and y∗q = 0 for all q 6∈ M̂ . To see that the

inequality holds, if |Bq|= 2 for nest q, then we use the fact that 0≤ ab− [a+ b− 1]+ ≤ 1/4 for all

a, b ∈ [0,1], whereas if |Bq|= 1 for nest q, then we use the fact that a− [a]+ = 0 for all a ∈ [0,1],

along with the fact that µq ≤ 0 for all q ∈ M̂ .

Next, we give a feasible solution to problem (35), which, in turn, allows us to construct a lower

bound on fR. We define the solution (x̂, ŷ) to problem (35) as

x̂i =

{
1
2

if i∈ N̂
0 if i 6∈ N̂ ,

ŷq =

{
0 if |Bq|= 2

1 if |Bq|= 1.

It is straightforward to check that the solution (x̂, ŷ) is feasible to problem (35) when we do

not have a capacity constraint. Therefore, the objective value of problem (35) evaluated at (x̂, ŷ)

provides a lower bound on fR, so we have

fR ≥
∑

q∈M

(
µq ŷq +

∑

i∈Bq
θiq x̂i

)
=
∑

q∈M
1(q ∈ M̂)

∑

i∈Bq
θiq x̂i +

∑

q∈M
1(q 6∈ M̂)

∑

i∈Bq
θiq x̂i

=
1

2

∑

q∈M
1(q ∈ M̂)

∑

i∈Bq
θiq +

1

2

∑

q∈M
1(q 6∈ M̂)

∑

i∈Bq
1(i∈ N̂)θiq ≥

1

2

∑

q∈M
1(q ∈ M̂)

∑

i∈Bq
θiq

≥ 1

2

∑

q∈M
1(q ∈ M̂)

(∑

i∈Bq
θiq − ρq

)
= − 1

2

∑

q∈M̂

µq,

In the chain of inequalities above, the first equality holds because the definition of µq immediately

implies that µq = 0 when |Bq|= 1. Also, we have ŷq = 0 when |Bq|= 2. Therefore, we have µq ŷq = 0

for all q ∈M . The second equality holds since having q ∈ M̂ implies having i∈ N̂ for all i∈Bq, in

which case, we have x̂i = 1
2

for all i ∈ Bq. The second inequality holds because if we have i ∈ N̂ ,

then θiq ≥ 0 by the definition of N̂ and θiq. The last inequality follows from the fact that if we

have q ∈ M̂ , then the definition of ρq implies that ρq ≥ 0. The chain of inequalities above yields

the inequality fR + 1
2

∑
q∈M̂ µq ≥ 0, in which case, by the chain of inequalities in (37), we get

∑
q∈M E{Vq(X̂)γq (Rq(X̂)− ẑ)} ≥ 1

2
fR + 1

2
(fR + 1

2

∑
q∈M̂ µq)≥ 1

2
fR, establishing (36).

The subset of products X̂ is a random variable but we can use the method of conditional

expectations to de-randomize the subset of products X̂ so that we obtain a deterministic subset of

products x̂ that satisfies
∑

(i,j)∈M Vij(x̂)γij (Rij(x̂)− ẑ)≥ 0.5fR. In this case, x̂ is a 0.5-approximate

solution to the uncapacitated problem under the generalized nested logit model with at most two

products in each nest. Unfortunately, our approach in Appendix H to obtain a 0.6-approximate

solution does not extend to the generalized nested logit model. In Appendix H, letting N̂ =

{1, . . . ,m}, we index the products such that θ1 ≥ θ2 ≥ . . .≥ θm. Under the generalized nested logit

model, it is not possible to ensure that we have θ1q ≥ θ2q ≥ . . .≥ θmq for all q ∈M .



Zhang, Rusmevichientong, and Topaloglu: Assortment Optimization under the PCL Model
66

M.4. Capacitated Problem

Considering the assortment problem with the capacity constraint, we let ẑ be such that fR(ẑ) = v0 ẑ,

where fR(z) is the optimal objective value of problem (35). Our goal is to find a subset of products

x̂ such that
∑

q∈M Vq(x̂)γq (Rq(x̂)− ẑ)≥ 0.25fR(ẑ) and
∑

i∈N x̂i ≤ c.

M.4.1. Half-Integral Solutions Through Iterative Rounding Similar to our approach for

the capacitated problem, since ẑ is fixed, we exclude the reference to ẑ. In particular, we let

µq = µq(ẑ), θiq = θiq(ẑ), ρiq = ρiq(ẑ), N̂ =N(ẑ), M̂ =M(ẑ) and fR = fR(ẑ). For any H ⊆ N̂ , we use

the polyhedron P(H) to denote the set of feasible solutions to problem (35) after we fix the values

of the decision variables {xi : i ∈H} at 1
2

and the values of the decision variables {xi : i 6∈ N̂} and

{yq : q 6∈ M̂} at zero. Therefore, the polyhedron P(H) is given by

P(H) =

{
(x,y)∈ [0,1]|N |×R|M |+ : yq ≥

∑

i∈Bq
xi− |Bq|+ 1 ∀ q ∈M,

∑

i∈N
xi ≤ c,

xi =
1

2
∀ i∈H, xi = 0 ∀ i 6∈ N̂ , yq = 0 ∀ q 6∈ M̂

}
. (38)

An analogue of Lemma 5.1 holds for the polyhedron P(H) given above. In particular, for any

H ⊆ N̂ , letting (x̂, ŷ) be an extreme point of P(H), we can use the same approach in the proof of

Lemma 5.1 to show that if there is no product i∈ N̂ such that 1
2
< x̂i < 1, then we have x̂i ∈ {0, 1

2
,1}

for all i ∈ N̂ . We use the same iterative rounding algorithm given in Section 5.1, as long as we

modify the objective function of the Variable Fixing problem to reflect the objective function of

problem (35). Thus, we replace the Variable Fixing problem in Step 2 with

fk = max

{∑

q∈M

(
µq(z)yq +

∑

i∈Bq
θiq(z)xi

)
: (x,y)∈P(Hk)

}
. (39)

At the first iteration of the iterative rounding algorithm, we have H1 =∅. Also, as discussed earlier,

there exists an optimal solution (x∗,y∗) to problem (35), where we have x∗i = 0 for all i 6∈ N̂ and

y∗q = 0 for all q 6∈ M̂ . Therefore, we have f1 = fR.

As the iterations of the iterative rounding algorithm progress, we fix additional variables at

the value 1
2
. Therefore, the optimal objective value of problem (39) degrades from iteration k to

k+ 1. We can use the same approach in the proof of Lemma 5.3 to upper bound the degradation

in the optimal objective value. In particular, we can show that fk−fk+1 ≤ 1
2

∑
q∈M 1(ik ∈Bq)θik,q,

where ik is the product that we choose in Step 3 of the iterative rounding algorithm at iteration k. To

see this result, we define the solution (x̃, ỹ) to problem (39) at iteration k+ 1 as follows. Letting

(xk,yk) be an optimal solution to problem (39) at iteration k and ik be the product that we choose
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in Step 3 of the iterative rounding algorithm at iteration k, we set x̃i = xki for all i ∈ N̂ \ {ik},
x̃ik = 1

2
and x̃i = 0 for all i 6∈ N̂ . Also, we set ỹq =

[∑
i∈Bq x̃i− |Bq|+ 1

]+
for all q ∈ M̂ and ỹq = 0

for all q 6∈ M̂ . Using the same approach in the proof of Lemma 5.3, we can show that the solution

(x̃, ỹ) is feasible to problem (39) at iteration k+ 1. Furthermore, we can show that ykq ≥ ỹq for all

q ∈M . In this case, since (x̃, ỹ) is a feasible but not necessarily an optimal solution problem (39)

at iteration k+ 1, we obtain

fk− fk+1 ≤ fk−
∑

q∈M

(
µq ỹq +

∑

i∈Bq
θiq x̃i

)
= fk−

∑

q∈M
µq ỹq −

∑

i∈N

∑

q∈M
1(i∈Bq)θiq x̃i

=
∑

q∈M
µq (ykq − ỹq) +

∑

q∈M
1(ik ∈Bq)θik,q

(
xkik −

1

2

)
+
∑

i∈N\{ik}

∑

q∈M
1(i∈Bq)θiq (xki − x̃i)

≤ 1

2

∑

q∈M
1(ik ∈Bq)θik,q.

In the chain of inequalities above, the first equality holds since (xk,yk) is an optimal solution to

problem (39) at iteration k. To see the last inequality, note that µq ≤ 0 and ykq − ỹq ≥ 0 for all ∈ M̂ ,

whereas we have ykq = 0 for all q 6∈ M̂ by the definition of P(H) and ỹq = 0 for all q 6∈ M̂ . Similarly,

we have x̃i = xki for all i∈ N̂ \{ik} and xki = 0 = x̃i for all i 6∈ N̂ . Lastly, we have xkik ≤ 1 and ik ∈ N̂
in the iterative rounding algorithm, so θik,q ≥ 0 for all q ∈M such that ik ∈Bq.

Building on the fact that fk − fk+1 ≤ 1
2

∑
q∈M 1(ik ∈Bq)θi,kq , we can use the same approach in

the proof of Lemma 5.4 to show that if (x∗,y∗) is an optimal solution to problem (39) at the last

iteration of the iterative rounding algorithm, then
∑

q∈M(µq y
∗
q +
∑

i∈Bq θiq x
∗
i )≥ 1

2
fR.

M.4.2. Feasible Subsets Through Coupled Randomized Rounding We let (x∗,y∗) be

an optimal solution to problem (39) at the last iteration of the iterative rounding algorithm. At

the last iteration, there is no product i ∈ N̂ such that 1
2
< x∗i < 1, in which case, by the analogue

of Lemma 5.1 for the polyhedron P(H) in (38), we have x∗i ∈ {0, 1
2
,1}. We apply the coupled

randomized rounding approach in Section 5.2 without any modifications to obtain a random subset

of products X̂ = {X̂i : i∈ N̂}. In this case, through minor modifications in the proof of Theorem 5.2,

we can show that
∑

q∈M E{Vq(X̂)γq (Rq(X̂) − ẑ)} ≥ 1
2

∑
q∈M(µq y

∗
q +

∑
i∈Bq θiq x

∗
i ). Therefore,

noting the discussion at the end of the previous section, we get
∑

q∈M E{Vq(X̂)γq (Rq(X̂)− ẑ)} ≥
1
2

∑
q∈M(µq y

∗
q +
∑

i∈Bq θiq x
∗
i )≥ 1

4
fR. We describe the modifications in the proof of Theorem 5.2. For

each nest q, we will show that E{Vq(X̂)γq (Rq(X̂)− ẑ)} ≥ 1
2
(µq y

∗
q +
∑

i∈Bq θiq x
∗
i ).

By the construction of the coupled randomized rounding approach, E{X̂i}= x∗i . Noting (33), we

have Vq(X̂)γq (Rq(X̂)− ẑ) = µq
∏
i∈Bq X̂i+

∑
i∈Bq θiq X̂i. If |Bq|= 1, then the definition of µq implies

that µq = 0, in which case, we obtain E{Vq(X̂)γq (Rq(X̂)− ẑ)} =
∑

i∈Bq θiq x
∗
i ≥ 1

2

∑
i∈Bq θiq x

∗
i =
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1
2

(µq y
∗
q +

∑
i∈Bq θiq x

∗
i ). To see the inequality, note that if i ∈ N̂ , then θiq ≥ 0, but if i 6∈ N̂ , then

x∗i = 0. Thus, we have E{Vq(X̂)γq (Rq(X̂)− ẑ)} ≥ 1
2

(µq y
∗
q +
∑

i∈Bq θiq x
∗
i ) whenever |Bq|= 1. In the

rest of the discussion, we assume that |Bq|= 2 and consider three cases.

Case 1: Suppose that the two products in Bq are paired in the coupled randomized rounding

approach. Therefore, we have
∏
i∈Bq X̂i = 0. Since the products in Bq are paired, we have x∗i = 1

2
for

all i ∈Bq, in which case, noting problem (39), we must have i ∈ N̂ for all i ∈Bq. Thus, we obtain

q ∈ M̂ . In this case, we have E{Vq(X̂)γq (Rq(X̂) − ẑ)} =
∑

i∈Bq θiq x
∗
i ≥ 1

2
(µq y

∗
q +

∑
i∈Bq θiq x

∗
i ),

where the inequality holds because µq ≤ 0 and θiq ≥ 0 for all i∈Bq for any nest q ∈ M̂ .

Case 2: Suppose that the two products in Bq are not paired in the coupled randomized rounding

approach and q ∈ M̂ . In this case, {X̂i : i∈Bq} are independent so that E{Vq(X̂)γq (Rq(X̂)− ẑ)}=

µq
∏
i∈Bq x

∗
i +

∑
i∈Bq θiq x

∗
i . Furthermore, since q ∈ M̂ , we have µq ≤ 0, in which case, y∗q =

[∑
i∈Bq x

∗
i − |Bq|+ 1

]+
=
[∑

i∈Bq x
∗
i − 1

]+
. Noting that

∑
i∈Bq x

∗
i ≤ 2, if x∗j = 0 for some j ∈ Bq,

then we have y∗q =
[∑

i∈Bq x
∗
i − 1

]+
= 0 =

∏
i∈Bq x

∗
i . Thus, it follows that

E{Vq(X̂)γq (Rq(X̂)− ẑ)} = µq
∏

i∈Bq
x∗i +

∑

i∈Bq
θiq x

∗
i

≥ 1

2
(µq

∏

i∈Bq
x∗i +

∑

i∈Bq
θiq x

∗
i ) =

1

2
(µq y

∗
q +

∑

i∈Bq
θiq x

∗
i ), (40)

where the inequality holds because if q ∈ M̂ , then we have ρq ≥ 0 and θiq ≥ 0 for all i ∈Bq, so get

µq
∏
i∈Bq x

∗
i +

∑
i∈Bq θiq x

∗
i = ρq

∏
i∈Bq x

∗
i +

∑
i∈Bq θiq

(
1−∏j∈Bq\{i} x

∗
j

)
x∗i ≥ 0. Similarly, if x∗j = 1

for some j ∈ Bq, then we can show that y∗q =
[∑

i∈Bq x
∗
i − 1

]+
=
∏
i∈Bq x

∗
i and we can follow the

same line of reasoning in (40) to get E{Vq(X̂)γq (Rq(X̂)− ẑ)} ≥ 1
2

(µq y
∗
q +

∑
i∈Bq θiq x

∗
i ). Lastly, if

x∗i = 1
2

for all i∈Bq, then we have y∗q =
[∑

i∈Bq x
∗
i − |Bq|+ 1

]+
=
[∑

i∈Bq x
∗
i − 1

]+
= 0, so

E{Vq(X̂)γq (Rq(X̂)− ẑ)} = µq
∏

i∈Bq
x∗i +

∑

i∈Bq
θiq x

∗
i = ρq

∏

i∈Bq
x∗i +

∑

i∈Bq
θiq

(
1−

∏

j∈Bq\{i}
x∗j

)
x∗i

≥
∑

i∈Bq
θiq

(
1−

∏

j∈Bq\{i}
x∗j

)
x∗i =

1

2
(µq y

∗
q +

∑

i∈Bq
θiq x

∗
i ),

where the last equality in the chain of inequalities above holds because we have y∗q = 0 and x∗j = 1
2

for all j ∈Bq, along with the fact that |Bq|= 2.

Case 3: Suppose that the two products in Bq are not paired in the coupled randomized rounding

approach and q 6∈ M̂ . Since q 6∈ M̂ , noting problem (39), we get y∗q = 0. Furthermore, since q 6∈ M̂ ,

we have pj < ẑ for some j ∈ Bq, in which case, j 6∈ N̂ . Therefore, we have x∗j = 0, which implies

that
∏
i∈Bq x

∗
i = 0. In this case, we get E{Vq(X̂)γq (Rq(X̂) − ẑ)} = µq

∏
i∈Bq x

∗
i +

∑
i∈Bq θiq x

∗
i =



Zhang, Rusmevichientong, and Topaloglu: Assortment Optimization under the PCL Model
69

∑
i∈Bq θiq x

∗
i ≥ 1

2

∑
i∈Bq θiq x

∗
i = 1

2
(µq y

∗
q +
∑

i∈Bq θiq x
∗
i ), where the inequality holds because if i∈ N̂ ,

then θiq ≥ 0, but if i 6∈ N̂ , then x∗i = 0. In all of the three cases considered above, we have

E{Vq(X̂)γq (Rq(X̂) − ẑ)} ≥ 1
2

(µq y
∗
q +

∑
i∈Bq θiq x

∗
i ), as desired. Therefore, the random subset of

products X̂ satisfies
∑

q∈M E{Vq(X̂)γq (Rq(X̂)− ẑ)} ≥ 0.25fR. Also, we have
∑

i∈N X̂i ≤ c by the

construction of the coupled randomized rounding approach. As in Section 5.2, we can de-randomize

the subset of products X̂ by using the method of conditional expectations to obtain a deterministic

subset of products x̂ that satisfies
∑

q∈M Vq(x̂)γq(Rq(x̂)− ẑ)≥ 0.25fR and
∑

i∈N x̂i ≤ c.
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