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Abstract

We develop a network revenue management model to jointly make capacity control and overbooking
decisions. Our approach is based on the observation that if the penalty cost of denying boarding to the
reservations at the departure time were given by a separable function, then the dynamic programming
formulation of the network revenue management problem would decompose by the itineraries and it
could be solved by focusing on one itinerary at a time. Motivated by this observation, we use an
iterative and simulation-based method to build separable approximations to the penalty cost that we
incur at the departure time. Computational experiments compare our model with two benchmark
strategies that are based on a deterministic linear programming formulation. The profits obtained
by our model improve over those obtained by the benchmark strategies by about 3% on the average,
which is a significant figure in the network revenue management setting. For the test problems with
tight leg capacities, the profit improvements can be as high as 13%.



Capacity control and overbooking are two fundamental pieces of revenue management. Capacity control
deals with the question of which itinerary requests should be accepted as the state of the reservations
evolves over time. Overbooking deals with the question of by how much the physically available seats
on a flight leg should be oversold given that the accepted itinerary requests may not show up at the
departure time. It is clear that capacity control and overbooking decisions interact. Which itinerary
requests we should accept depends on how much we are willing to overbook. How much we should
overbook, in turn, depends on which itinerary requests we are willing to accept and the probability that
these accepted itinerary requests show up at the departure time.

In this paper, we develop a network revenue management model to jointly make capacity control
and overbooking decisions. We begin by formulating the problem as a dynamic program. This dynamic
program involves a very high-dimensional state variable and cannot be solved by using traditional
dynamic programming tools for problem instances of practical size. Our approach is aimed at finding
approximate solutions to the dynamic program and it is based on the following observation. We let
{1, . . . , n} be the set of possible itineraries, sj be the number of reservations for itinerary j that show up
at the departure time and V (s) be the penalty cost of denying boarding to the reservations that show
up at the departure time as a function of s = (s1, . . . , sn). The crucial observation is that if V (·) were a
separable function, then the dynamic programming formulation of the problem would decompose by the
itineraries and it could be solved by focusing on one itinerary at a time. Motivated by this observation,
our approach uses an iterative and simulation-based method to construct separable approximations
to V (·). We start with an arbitrary separable approximation. We solve the dynamic programming
formulation of the problem by using the separable approximation to V (·) in the boundary condition of
the dynamic program. This dynamic program can be solved efficiently as it decomposes by the itineraries
and it provides approximations to the value functions. We then simulate the evolution of the system
over time by making the itinerary acceptance decisions through the value function approximations. The
challenge is to use the information that we obtain from the simulated trajectories of the system to
update and improve the separable approximation to V (·).

Our work here builds on the previous work by Powell, Ruszczynski and Topaloglu (2004), where the
authors propose an iterative and simulation-based method to construct separable approximations to the
recourse functions that arise in two-stage stochastic programs. We borrow their method to construct
separable approximations to the penalty cost that we incur at the departure time. An important
distinguishing aspect of our work is that Powell et al. (2004) work with two-stage stochastic programs,
whereas the planning horizon for the network revenue management problem includes multiple time
periods. The application of their approximation strategy to capacity control and overbooking decisions
in the network revenue management setting is also quite valuable as it turns out that this application
provides noticeably better solutions than the existing benchmark methods. In particular, we report
average profit improvements on the order of 3%. For the test problems with tight leg capacities, the
profit improvements can be as high as 13%.

There is extensive literature on capacity control decisions under the assumption that overbooking
is not possible and all of the reservations show up at the departure time. Talluri and van Ryzin
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(2004) give a comprehensive coverage of this literature. On the other hand, the literature is quite thin
when we consider capacity control and overbooking decisions simultaneously. Early models consider
a version of the problem that takes place over a single flight leg rather than an airline network. For
example, Beckmann (1958), Thompson (1961) and Coughlan (1999) develop static capacity control
and overbooking models over a single flight leg that ignore the temporal dynamics of the arrivals of
the itinerary requests. These models generally treat the total demand from a fare class as a random
variable and compute booking limits for the different fare classes. Chatwin (1992), Chatwin (1999)
and Subramanian, Stidhan and Lautenbacher (1999) focus on dynamic models that capture the arrival
process for the itinerary requests more realistically. In particular, Subramanian et al. (1999) formulate
the capacity control and overbooking problem as a dynamic program and demonstrate that if the
probability of showing up varies by the fare classes, then the number of dimensions of the state variable
is as large as the number of possible fare classes. In contrast, the dynamic programming formulation for
the capacity control problem over a single flight leg involves a single-dimensional state variable when
overbooking is not possible. Karaesmen and van Ryzin (2004b) describe an overbooking model that is
applicable when different flight legs can serve as substitutes for each other.

When overbooking is not possible, a traditional approach for making capacity control decisions
over an airline network involves solving a deterministic linear program that is formulated under the
assumption that the arrivals of the itinerary requests take on their expected values. Bertsimas and
Popescu (2003) show how to extend this linear program to make overbooking decisions. In particular,
their approach solves a linear program, which can be visualized as a deterministic approximation to
the overbooking problem. They use the optimal values of the dual variables associated with the seat
availability constraints in the linear program to estimate the opportunity costs of the seats on different
flight legs. In this case, an itinerary request is accepted only when the revenue from the itinerary request
exceeds the total expected opportunity cost of the capacities consumed by this itinerary request. Since
the linear program used by Bertsimas and Popescu (2003) is deterministic, it may not accurately
capture the temporal dynamics of the arrivals of the itinerary requests. The goal of our approach is to
capture these dynamics somewhat more accurately by directly working with the dynamic programming
formulation of the capacity control and overbooking problem. Karaesmen and van Ryzin (2004a) develop
an overbooking model that use the deterministic linear program to estimate the total expected revenue
from the accepted itinerary requests. Gallego and van Ryzin (1997) show that the decisions made
through a version of the deterministic linear program are asymptotically optimal as the leg capacities
and the expected numbers of itinerary requests increase linearly with the same rate. Kleywegt (2001)
formulates a pricing and overbooking model over an airline network and uses duality ideas to solve
the model. Lastly, Rothstein (1985) provides an interesting account of the issues revolving around
overbooking and remains relevant to this date.

In this paper, we make the following research contributions. 1) We develop a network revenue
management model to jointly make capacity control and overbooking decisions. Our model takes the
probabilistic nature of the arrivals of the itinerary requests and the show up decisions of the reservations
into consideration. 2) Our model is based on constructing a separable approximation to the penalty
cost of denying boarding to the reservations. We develop an iterative and simulation-based algorithm
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to construct such an approximation. 3) We show that the aforementioned deterministic linear program
provides an upper bound on the optimal total expected profit. This result is widely known when
overbooking is not possible and all of the reservations show up at the departure time, but we are not
aware of a reference to this result in the presence of overbooking. 4) Our computational experiments
indicate that the capacity control and overbooking decisions made by our model are significantly better
than those made by benchmark methods that are based on the deterministic linear program.

The rest of the paper is organized as follows. In Section 1, we present a dynamic programming
formulation of the network revenue management problem with overbooking. In Section 2, we give an
overview of our separable approximation strategy. In Section 3, we explain how to iteratively update
and improve the separable approximations. In Section 4, we go over the deterministic linear program
and show that this linear program provides an upper bound on the optimal total expected profit. In
Section 5, we provide computational experiments. In Section 6, we conclude.

1 Problem Formulation

We have a set of flight legs that can be used to satisfy the itinerary requests that arrive randomly over
time. At each time period, an itinerary request arrives and we need to decide whether to accept or reject
the itinerary request. An accepted itinerary request generates a revenue and becomes a reservation,
whereas a rejected itinerary request simply leaves the system. At the departure time of the flight legs,
each reservation shows up with a certain probability and we need to decide which reservations should be
allowed boarding. We incur a penalty cost for each reservation that is denied boarding. The objective
is to maximize the total expected profit, which is the difference between the expected revenue from
accepting the itinerary requests and the expected penalty cost of denying the reservations.

The itinerary requests arrive over the time periods {τ, . . . , 1} and the flight legs depart at time
period 0. We follow the standard convention in the network revenue management literature to index
the time periods backwards. The set of flight legs is {1, . . . ,m} and the set of itineraries is {1, . . . , n}.
The capacity on flight leg i is ci. The probability that there is a request for itinerary j at time period t

is pjt. If we accept a request for itinerary j, then we generate a revenue of fj and this reservation shows
up at the departure time with probability qj . If we allow boarding to a reservation for itinerary j, then
we consume aij units of capacity on flight leg i. The penalty cost of denying boarding to a reservation
for itinerary j is γj . We assume that the arrivals of the itinerary requests at different time periods
and the show up decisions of different reservations are independent. For clarity of the presentation,
we assume that the reservations are never canceled over the time periods {τ, . . . , 1}. However, all of
the development in the paper goes through with small modifications in the presence of cancellations,
as long as the cancellation decisions of different reservations and the cancellation decisions at different
time periods are independent. Finally, we assume that we do not give refunds to the reservations that
do not show up at the departure time, but this assumption is also for clarity of the presentation and it
is straightforward to incorporate refunds.

We let xjt be the total number of reservations for itinerary j at the beginning of time period
t and use xt = (x1t, . . . , xnt) to capture the state of the reservations. Given that the number of
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reservations for itinerary j at the beginning of time period 0 is xj0, we use sj0(xj0) to denote the
number of reservations for itinerary j that show up at the departure time. Due to the assumption that
the show up decisions of different reservations are independent of each other, sj0(xj0) has a binomial
distribution with parameters (xj0, qj). If the reservations that show up at the departure time are given
by s0(x0) = (s10(x10), . . . , sn0(xn0)), then we can compute the penalty cost of denying the reservations
by solving the problem

V (s0(x0)) = min
n∑

j=1

γj yj (1)

subject to
n∑

j=1

aij [sj0(xj0)− yj ] ≤ ci i = 1, . . . , m (2)

yj ≤ sj0(xj0) j = 1, . . . , n (3)

yj ∈ Z+ j = 1, . . . , n, (4)

where yj is the number of reservations for itinerary j that we deny boarding. The objective function in
problem (1)-(4) corresponds to the penalty cost of denying the reservations. Constraints (2) ensure that
the reservations that we allow boarding do not violate the leg capacities, whereas constraints (3) ensure
that the reservations that we deny boarding do not exceed the reservations that show up. Using xt as
the state variable at time period t and letting ej be the n-dimensional unit vector with a one in the
element corresponding to itinerary j, we can find the optimal policy by computing the value functions
through the optimality equation

ut(xt) =
n∑

j=1

pjt max{fj + ut−1(xt + ej), ut−1(xt)}+
[
1−

n∑

j=1

pjt

]
ut−1(xt) (5)

with the boundary condition that u0(x0) = −E{V (s0(x0))}. We note that V (·) accounts for a cost figure,
whereas the value functions {uτ (·), . . . , u0(·)} account for a profit figure. Therefore, we negate the cost
figure in the boundary condition of the optimality equation above. If the state of the reservations at
the beginning of time period t is given by xt and we have

fj + ut−1(xt + ej) ≥ ut−1(xt), (6)

then it is optimal to accept a request for itinerary j at time period t.

We note that the state variable in the optimality equation in (5) may involve many dimensions in
practical applications and solving this optimality equation through traditional dynamic programming
tools can be computationally difficult. In the next section, we develop a method to construct tractable
approximations to the value functions.

2 Separable Approximations

The method that we use to construct approximations to the value functions is based on the observation
that if V (·) is a separable function of the form

V (s0(x0)) =
n∑

j=1

Vj(sj0(xj0)), (7)
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then the optimality equation in (5) decomposes by the itineraries and it can be solved efficiently by
focusing on one itinerary at a time. This observation motivates us to build separable approximations
to V (·) that have the form V̂ (s0(x0)) =

∑n
j=1 V̂j(sj0(xj0)). In this case, it is possible to solve the

optimality equation in (5) with the approximate boundary condition that u0(x0) = −E{V̂ (s0(x0))}.

We begin with the next proposition, which formally shows that if V (·) is a separable function of the
form (7), then the optimality equation in (5) decomposes by the itineraries.

Proposition 1 If V (·) is a separable function of the form (7), then the value functions {uτ (·), . . . , u0(·)}
computed through the optimality equation in (5) are separable functions of the form

ut(xt) =
n∑

j=1

ujt(xjt),

where {ujτ (·), . . . , uj0(·)} are computed through the optimality equation

ujt(xjt) = pjt max{fj + uj,t−1(xjt + 1), uj,t−1(xjt)}+ [1− pjt] uj,t−1(xjt) (8)

with the boundary condition that uj0(xj0) = −E{Vj(sj0(xj0))}.

Proof We show the result by induction over the time periods. By definition, we have u0(x0) =
−E{V (s0(x0))} = −∑n

j=1 E{Vj(sj0(xj0))} =
∑n

j=1 uj0(xj0) and the result holds for time period 0.
Assuming that the result holds for time period t− 1, we have

ut(xt) =
n∑

j=1

pjt max{fj + ut−1(xt + ej)− ut−1(xt), 0}+ ut−1(xt)

=
n∑

j=1

pjt max{fj + uj,t−1(xjt + 1)− uj,t−1(xjt), 0}+
n∑

j=1

uj,t−1(xjt)

=
n∑

j=1

pjt max{fj + uj,t−1(xjt + 1), uj,t−1(xjt)}+
n∑

j=1

[1− pjt] uj,t−1(xjt)

=
n∑

j=1

ujt(xjt),

where the first equality follows by (5), the second equality follows by the induction assumption that
ut−1(·) is a separable function of the form ut−1(xt−1) =

∑n
j=1 uj,t−1(xj,t−1), the third equality follows

by adding and subtracting
∑n

j=1 pjt uj,t−1(xjt) and the fourth equality follows by (8). 2

Thus, if V (·) is a separable function of the form (7), then the value functions {uτ (·), . . . , u0(·)} can
be computed by solving the optimality equation in (8). Since the optimality equation in (8) uses a
single-dimensional state variable, it can be solved efficiently. We also note that the optimality equation
in (8) corresponds to a network revenue management problem that involves only itinerary j. In this
network revenue management problem, if the number of reservations for itinerary j that show up at the
departure time is sj0(xj0), then we incur a penalty cost of Vj(sj0(xj0)).
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Proposition 1 motivates using separable approximations to V (·). We emphasize that V (·) is, in
general, not necessarily separable and using separable approximations to V (·) should be interpreted
as a heuristic approach. We use an iterative and simulation-based method to construct separable
approximations to V (·). Letting V̂ k(·) be the separable approximation to V (·) at iteration k, we first
obtain the value function approximations {ûk

τ (·), . . . , ûk
0(·)} by solving the optimality equation in (5)

with the boundary condition that ûk
0(x0) = −E{V̂ k(s0(x0))}. By Proposition 1, the value function

approximations {ûk
τ (·), . . . , ûk

0(·)} can be computed by focusing on one itinerary at a time. We then
simulate the evolution of the system over the time periods {τ, . . . , 1}. In particular, we sample an
itinerary request at each time period and decide whether to accept or reject this itinerary request by
using {ûk

τ (·), . . . , ûk
0(·)} as approximations to the value functions. At the departure time, we sample the

reservations that show up and solve problem (1)-(4) to compute the penalty cost. The challenge is to
use the information that is obtained by solving problem (1)-(4) to update and improve the separable
approximation V̂ k(·).

We give a description of our general approach in Figure 1. In Step 1, we begin by computing the
value function approximations {ûk

τ (·), . . . , ûk
0(·)}. In Step 2, we simulate the behavior of the policy

characterized by the value function approximations {ûk
τ (·), . . . , ûk

0(·)}. In Step 3, we update V̂ k(·)
to obtain the approximation V̂ k+1(·) that we use at the next iteration. Our hope is that V̂ k+1(·)
approximates V (·) better than V̂ k(·). For the moment, we do not specify how to update V̂ k(·) and
capture the updating procedure simply by the function U(·, ·). This function takes the approximation
V̂ k(·) and the sample of the reservations that show up at the departure time, and returns a new
approximation V̂ k+1(·). The next section gives a precise description for the function U(·, ·).

3 Updating Separable Approximations

We use two types of separable approximations to the penalty cost V (·) and both of these approximations
are of the form V̂ k(s0(x0)) =

∑n
j=1 V̂ k

j (sj0(xj0)). In the first type of approximation, V̂ k
j (·) is a linear

function for all j = 1, . . . , n. In the second type of approximation, V̂ k
j (·) is a piecewise linear and convex

function for all j = 1, . . . , n.

The appealing aspect of linear and piecewise linear approximations is that such approximations
can be characterized by a certain number of slope parameters. More specifically, we can characterize
a linear approximation by a single slope parameter, whereas we can characterize a piecewise linear
approximation by a sequence of slope parameters. The method that we use to update V̂ k

j (·) is based on
obtaining a new estimate of the slope of the penalty cost V (·) along the direction ej and combining the
new slope estimate with the slope parameters that characterize V̂ k

j (·). In particular, if the reservations
that show up at the departure time at iteration k are given by sk

0 = (sk
10, . . . , s

k
n0), then we use

ϑk
j (s

k
0) = V (sk

0 + ej)− V (sk
0) (9)

to estimate the slope of the penalty cost V (·) along the direction ej . The goal is to combine ϑk
j (s

k
0)

with the slope parameters that characterize V̂ k
j (·) and come up with the approximation V̂ k+1

j (·). We
consider updating linear and piecewise linear approximations separately in the next two sections.
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Step 0 Initialize the separable approximation V̂ 1(·) arbitrarily. Set the iteration counter k to 1.

Step 1 Compute the value function approximations {ûk
τ (·), . . . , ûk

0(·)} by solving the optimality equation
in (5) with the boundary condition that ûk

0(x0) = −E{V̂ k(s0(x0))}. We note that since V̂ k(·) is
separable, we can actually compute {ûk

τ (·), . . . , ûk
0(·)} through the optimality equation in (8).

Step 2 Initialize xk
τ = (xk

1τ , . . . , x
k
nτ ) by setting xk

jτ = 0 for all j = 1, . . . , n. Set the time counter t to τ .

Step 2.a Sample the itinerary request jk
t at time period t by using the probabilities (p1t, . . . , pnt). We

note that there may not be any itinerary requests at a particular time period.

Step 2.b Letting 1(·) be the indicator function, if there is an itinerary request at time period t, then
compute the state of the reservations xk

t−1 = (xk
1,t−1, . . . , x

k
n,t−1) at the next time period by

xk
t−1 = xk

t + 1(fjk
t

+ ûk
t−1(x

k
t + ejk

t
) ≥ ûk

t−1(x
k
t )) ejk

t
.

Otherwise, let xk
t−1 = xk

t .

Step 2.c Decrease t by 1. If we have t ≥ 1, then go to Step 2.a.

Step 2.d Sample sk
j0 from the binomial distribution with parameters (xk

j0, qj) for all j = 1, . . . , n so
that the reservations that show up at the departure time are given by sk

0 = (sk
10, . . . , s

k
n0).

Compute V (sk
0) by solving problem (1)-(4).

Step 3 Use the information that is obtained by solving problem (1)-(4) to update the separable approxi-
mation V̂ k(·). For the moment, we capture the updating procedure by V̂ k+1(·) = U(V̂ k(·), sk

0).

Step 4 Increase k by 1. Letting K be a fixed iteration counter limit, if we have k ≤ K, then go to Step
1. Otherwise, return V̂ K+1(·) and stop.

Figure 1: An iterative and simulation-based method to construct separable approximations to V (·).

3.1 Updating Linear Approximations

In this section, we assume that V̂ k
j (·) is a linear function of the form V̂ k

j (sj0(xj0)) = v̂k
j sj0(xj0), where

v̂k
j is the slope parameter. Since V̂ k

j (·) is eventually embedded in an optimization problem, its intercept
does not affect the decisions and we set the intercept of V̂ k

j (·) to zero without loss of generality. We use
linear approximations primarily due to their simplicity, but we expect their performance to be not as
good as the performance of piecewise linear approximations.

The method that we use to update linear approximations is quite straightforward. Assuming that
V̂ k

j (·) is a linear function of the form V̂ k
j (sj0(xj0)) = v̂k

j sj0(xj0) and letting ϑk
j (s

k
0) be as in (9), we

compute vk+1
j through

v̂k+1
j = v̂k

j + αk [ϑk
j (s

k
0)− v̂k

j ], (10)

where αk ≥ 0 is the step size parameter at iteration k. We use the approximation V̂ k+1
j (sj0(xj0)) =
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v̂k+1
j sj0(xj0) at the next iteration. The updating procedure in (10) is based on the observation that if

the new estimate of the slope of the penalty cost V (·) along the direction ej is greater than v̂k
j , then we

increase v̂k
j . Otherwise, we decrease v̂k

j .

3.2 Updating Piecewise Linear Approximations

In this section, we assume that V̂ k
j (·) is a piecewise linear and convex function and it is nondifferentiable

only at the positive integers. Assuming that the number of reservations for itinerary j that show up
at the departure time is bounded by Rj , the relevant domain of V̂ k

j (·) is {0, . . . , Rj}. We characterize
V̂ k

j (·) by the slope parameters v̂k
j = (v̂k

j (0), . . . , v̂k
j (Rj − 1)), where v̂k

j (r) is the slope of V̂ k
j (·) over the

interval (r, r + 1). Noting that the number of itinerary requests is bounded by τ , we can let Rj = τ ,
but it is usually possible to use the arrival process for the itinerary requests to get a tighter bound on
the number of reservations that show up at the departure time. Since V̂ k

j (·) is convex, we need to have
v̂k
j (0) ≤ v̂k

j (1) ≤ . . . ≤ v̂k
j (Rj − 1). Our use of convex approximations is motivated by the intuitive

expectation that the marginal penalty cost from an additional reservation showing up at the departure
time increases as the number of reservations that show up increases.

The method that we use to update piecewise linear and convex approximations is similar to the
one that we use for linear approximations, but we need to be careful to preserve convexity. Assuming
that V̂ k

j (·) is the piecewise linear and convex function characterized by the slope parameters v̂k
j =

(v̂k
j (0), . . . , v̂k

j (Rj − 1)) and letting e′(sk
j0) be the Rj-dimensional unit vector with a one in the element

corresponding to sk
j0, we compute wk

j = (wk
j (0), . . . , wk

j (Rj − 1)) through

wk
j = v̂k

j + αk [ϑk
j (s

k
0)− v̂k

j (sk
j0)] e

′(sk
j0), (11)

where αk ≥ 0 is the step size parameter at iteration k and ϑk
j (s

k
0) is as in (9). If we consider the element

of wk
j corresponding to sk

j0, then we have wk
j (sk

j0) = v̂k
j (sk

j0) + αk [ϑk
j (s

k
0) − v̂k

j (sk
j0)] and the updating

procedure in (11) for the element corresponding to sk
j0 is similar to the updating procedure in (10). For

all of the other elements of wk
j , we have wk

j (r) = v̂k
j (r).

We do not necessarily have wk
j (0) ≤ wk

j (1) ≤ . . . ≤ wk
j (Rj − 1) and the piecewise linear function

characterized by the slope parameters wk
j = (wk

j (0), . . . , wk
j (Rj − 1)) may not be convex. To preserve

convexity, we define the set

V = {(z(0), . . . , z(Rj − 1)) ∈ RRj : z(0) ≤ z(1) ≤ . . . ≤ z(Rj − 1)}
and let

v̂k+1
j = argmin

z∈V
‖z − wk

j ‖2, (12)

where ‖ · ‖2 is the Euclidean norm on RRj . We have v̂k+1
j (0) ≤ v̂k+1

j (1) ≤ . . . ≤ v̂k+1
j (Rj − 1) and the

piecewise linear function V̂ k+1
j (·) characterized by the slope parameters v̂k+1

j = (v̂k+1
j (0), . . . , v̂k+1

j (Rj−
1)) is convex. Problem (12) finds the piecewise linear and convex function that is “closest” to the
piecewise linear function characterized by the slope parameters wk

j = (wk
j (0), . . . , wk

j (Rj − 1)). We
borrow the updating procedure in (11)-(12) from Powell et al. (2004), where the authors show that
there is actually a closed-form solution to problem (12).
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4 Deterministic Linear Program

An alternative solution method for the network revenue management problem described in Section
1 involves solving a deterministic linear program that is formulated under the assumption that the
itinerary requests and the reservations that show up at the departure time take on their expected
values. In particular, letting zj be the number of requests for itinerary j that we plan to accept over
the time periods {τ, . . . , 1} and yj be the number of reservations for itinerary j that we plan to deny
boarding, this linear program has the form

max
n∑

j=1

fj zj −
n∑

j=1

γj yj (13)

subject to
n∑

j=1

aij [qj zj − yj ] ≤ ci i = 1, . . . ,m (14)

zj ≤
τ∑

t=1

pjt j = 1, . . . , n (15)

yj − qj zj ≤ 0 j = 1, . . . , n (16)

zj , yj ≥ 0 j = 1, . . . , n. (17)

The objective function in problem (13)-(17) corresponds to the difference between the revenue from
accepting the itinerary requests and the penalty cost of denying the reservations. Problem (13)-(17)
assumes that if we accept zj requests for itinerary j, then qj zj reservations for itinerary j show up at
the departure time. Constraints (14) ensure that the reservations that we allow boarding do not violate
the leg capacities. Constraints (15) ensure that the itinerary requests that we plan to accept do not
exceed the expected numbers of the itinerary requests. Constraints (16) ensure that the reservations
that we deny boarding do not exceed the reservations that show up.

The deterministic linear programming formulation for the network revenue management problem is
widely known in the literature when overbooking is not possible and all of the reservations show up
at the departure time; see Williamson (1992) and Talluri and van Ryzin (1998). Problem (13)-(17)
extends this formulation to handle overbooking. Although this extension is quite intuitive, there does
not appear to be too many references to problem (13)-(17) in the literature. As a matter of fact, the
only reference we are aware of is Bertsimas and Popescu (2003).

There are two main uses of problem (13)-(17). First, this problem can be used to decide whether to
accept or reject the itinerary requests. In particular, letting µ∗ = (µ∗1, . . . , µ

∗
m) be the optimal values of

the dual variables associated with constraints (14) in problem (13)-(17), we can use µ∗i to capture the
opportunity cost of a unit of capacity on flight leg i. In this case, if the revenue from an itinerary request
exceeds the total expected opportunity cost of the capacities consumed by the itinerary request or if
the revenue from an itinerary request exceeds the expected penalty cost, then we accept the itinerary
request. Specifically, if we have

fj ≥ min

{
qj

m∑

i=1

aij µ∗i , qj γj

}
, (18)
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then we accept a request for itinerary j. The decision rule above captures two effects. If the total
expected opportunity cost of the seats consumed by an itinerary request is relatively small, then we
tend to accept this itinerary request. However, even if the total expected opportunity cost of the
seats consumed by an itinerary request is quite large, we may still be willing to accept the itinerary
request, as long as the expected penalty cost is relatively small. If we have fj ≥ qj γj , then we can, in
expectation, generate revenue simply by accepting a request for itinerary j and denying the reservation
at the departure time. The decision rule in (18) is also used by Bertsimas and Popescu (2003).

The second use of problem (13)-(17) is that its optimal objective value provides an upper bound on
the optimal total expected profit. In other words, letting Z∗LP be the optimal objective value of problem
(13)-(17) and 0̄ be the n-dimensional vector of zeros, we have uτ (0̄) ≤ Z∗LP . This result is widely known
when overbooking is not possible and all of the reservations show up at the departure time; see Talluri
and van Ryzin (1998). We have not seen a reference to this result in the presence of overbooking and
the next proposition provides a formal proof.

Proposition 2 We have uτ (0̄) ≤ Z∗LP .

Proof We let Z∗j be the total number of requests for itinerary j that we accept over the time periods
{τ, . . . , 1} under the optimal policy and Y ∗

j be the number of reservations for itinerary j that we deny
boarding at the departure time under the optimal policy. We also let s∗j (k) take value 1 if the kth
reservation for itinerary j shows up at the departure time, and take value 0 otherwise. In this case, the
number of reservations for itinerary j that show up under the optimal policy can be written as

S∗j =
Z∗j∑

k=1

s∗j (k).

Conditioning on Z∗j , we note that E{S∗j } = E{∑Z∗j
k=1 s∗j (k)} = E{E{∑Z∗j

k=1 s∗j (k) |Z∗j }} = E{qj Z∗j } =
qj E{Z∗j }. Letting Dj be the total number of requests for itinerary j over the time periods {τ, . . . , 1},
we also have

n∑

j=1

aij [S∗j − Y ∗
j ] ≤ ci i = 1, . . . , m (19)

Z∗j ≤ Dj j = 1, . . . , n (20)

Y ∗
j ≤ S∗j j = 1, . . . , n, (21)

where (19) follows from the fact that the reservations that we allow boarding under the optimal policy
do not violate the leg capacities, (20) follows from the fact that the itinerary requests that we accept
under the optimal policy do not exceed the itinerary requests and (21) follows from the fact that the
reservations that we deny under the optimal policy do not exceed the reservations that show up.

The total profit under the optimal policy is
∑n

j=1 fj Z∗j −
∑n

j=1 γj Y ∗
j so that the optimal total

expected profit is uτ (0̄) =
∑n

j=1 fj E{Z∗j }−
∑n

j=1 γj E{Y ∗
j }. Taking expectations in (19)-(21) and noting

that E{S∗j } = qj E{Z∗j } and E{Dj} =
∑τ

t=1 pjt, it is easy to see that the solution (E{Z∗1}, . . . ,E{Z∗n}),
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(E{Y ∗
1 }, . . . ,E{Y ∗

n }) is feasible to problem (13)-(17) and provides the objective value
∑n

j=1 fj E{Z∗j } −∑n
j=1 γj E{Y ∗

j }. Therefore, we have Z∗LP ≥
∑n

j=1 fj E{Z∗j } −
∑n

j=1 γj E{Y ∗
j } = uτ (0̄). 2

The upper bound in Proposition 2 may be useful when assessing the optimality gap of a suboptimal
decision rule such as the one in (18).

5 Computational Experiments

In this section, we compare our separable approximation strategy with benchmark strategies that are
based on the deterministic linear program. We begin by describing the benchmark strategies and the
experimental setup. We then present our computational results.

5.1 Benchmark Strategies

We compare the performances of the following four benchmark strategies.

Linear approximations (LSA) This solution method is the separable approximation strategy with
linear approximations. In our implementation, LSA divides the planning horizon into S equal segments
and retunes the separable approximation to V (·) at the beginning of each segment. Given that the state
of the reservations at the beginning of the lth segment is xτ(S−l+1)/S , we carry out the algorithm in
Figure 1 by simulating the evolution of the system over the time periods {τ(S − l + 1)/S, . . . , 1} and
starting with the initial state of the reservations xτ(S−l+1)/S . This provides a separable approximation
to V (·), say V̂ (·). Using the boundary condition that û0(x0) = −E{V̂ (s0(x0))}, we solve the optimality
equation in (5) to obtain the value function approximations {ûτ(S−l+1)/S(·), . . . , û0(·)}. We make the
decisions by using these value function approximations in the decision rule in (6) until we reach the
beginning of the next segment and retune the separable approximation to V (·). After some preliminary
experimentation, we decided to use K = 2, 500 in the algorithm in Figure 1.

Piecewise linear approximations (PSA) This solution method is the separable approximation
strategy with piecewise linear approximations. Similar to LSA, PSA divides the planning horizon into
S equal segments and retunes the separable approximation to V (·) at the beginning of each segment.

Deterministic linear program (DLP) This solution method uses the deterministic linear program
in (13)-(17). DLP divides the planning horizon into S equal segments and resolves problem (13)-(17) at
the beginning of each segment to retune the decision rule in (18). Given that the state of the reservations
at the beginning of the lth segment is xτ(S−l+1)/S , we replace the right side of constraints (14) with
{ci −

∑n
j=1 aij qj xj,τ(S−l+1)/S : i = 1, . . . , m}, the right side of constraints (15) with {∑τ(S−l+1)/S

t=1 pjt :
j = 1, . . . , n} and the right side of constraints (16) with {qj xj,τ(S−l+1)/S : j = 1, . . . , n}, and solve
problem (13)-(17). Letting µ∗ = (µ∗1, . . . , µ

∗
m) be the optimal values of the dual variables associated

with constraints (14), we use these values in the decision rule in (18) until we resolve problem (13)-(17)
at the beginning of the next segment.

Finite differences in the deterministic linear program (FDD) This solution method is due to
Bertsimas and Popescu (2003) and it is also based on problem (13)-(17). Given that the state of the
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reservations at the beginning of time period t is xt, FDD approximates the optimal total expected profit
over the remaining time periods by using the optimal objective value of the problem

max
n∑

j=1

fj zj −
n∑

j=1

γj yj

subject to
n∑

j=1

aij [qj zj − yj ] ≤ ci −
n∑

j=1

aij qj xjt i = 1, . . . , m

zj ≤
t∑

t′=1

pjt′ j = 1, . . . , n

yj − qj zj ≤ qj xjt j = 1, . . . , n

zj , yj ≥ 0 j = 1, . . . , n.

Therefore, if we use Lt(xt) to denote the optimal objective value of the problem above, then FDD
uses Lt(xt) as an approximation to ut(xt). In this case, we can make the decisions by replacing
{uτ (·), . . . , u0(·)} in the decision rule in (6) with {Lτ (·), . . . , L0(·)}.

Similar to DLP, FDD divides the planning horizon into S equal segments and retunes the decision
rule at the beginning of each segment. Given that the state of the reservations at the beginning of the
lth segment is xτ(S−l+1)/S , we compute Lτ(S−l+1)/S(xτ(S−l+1)/S)−Lτ(S−l+1)/S(xτ(S−l+1)/S + ej) for all
j = 1, . . . , n. Following the decision rule in (6), if we have

fj + Lτ(S−l+1)/S(xτ(S−l+1)/S + ej) ≥ Lτ(S−l+1)/S(xτ(S−l+1)/S),

then we always accept a request for itinerary j until we reach the beginning of the next segment and
retune the decision rule.

5.2 Experimental Setup

We consider an airline network that serves N spokes through a single hub. This is a key network
structure that frequently arises in practice. There are two flight legs associated with each spoke. One
of these flight legs is from the spoke to the hub and the other one is from the hub to the spoke. There is
a high-fare and a low-fare itinerary that connects each origin-destination pair. Therefore, the number
of flight legs is 2N and the number of itineraries is 2N(N + 1). Figure 2 shows the structure of the
airline network when we have eight spokes. The fare associated with a high-fare itinerary is κ times
the fare associated with the corresponding low-fare itinerary. The penalty cost of denying boarding to
a reservation for itinerary j is given by γj = θ fj + σ max{fj′ : j′ = 1, . . . , n}, where θ and σ are two
parameters that we vary. The goal of the parameter σ is to capture a situation where a denied reservation
is given σ open tickets, in which case, the opportunity cost of denying boarding to a reservation can
be as high as the revenue from σ tickets for the most expensive itinerary. The probability that a
reservation shows up at the departure time is q and it does not depend on the itinerary. Noting that
the total expected demand for the capacity on flight leg i is given by

∑τ
t=1

∑n
j=1 aij qj pjt, we measure

the tightness of the leg capacities by

ρ =

∑m
i=1

∑τ
t=1

∑n
j=1 aij qj pjt∑m

i=1 ci
.
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We label our test problems by (N, κ, θ, σ, q, ρ) and use N ∈ {4, 8}, κ ∈ {4, 8}, (θ, σ) ∈ {(4, 0), (8, 0), (1, 1)},
q ∈ {0.90, 0.95} and ρ ∈ {1.2, 1.6}. This provides 48 test problems for our experimental setup. In all of
our test problems, we have τ = 240. Therefore, we have about 240 itinerary requests over the planning
horizon. Considering the structure of the airline network and the tightness of the leg capacities, 240
itinerary requests allow us to have leg capacities ranging from 16 to 50.

After some preliminary runs, we decided to use the step size parameter αk = 200/(400+ k) for LSA
and αk = 20/(40 + k) for PSA. We terminate the algorithm in Figure 1 after 2,500 iterations. We use
S = 5 for LSA and PSA, and S = 20 for DLP and FDD. Some preliminary runs showed that increasing
S further beyond 20 does not improve the performances of DLP and FDD significantly.

5.3 Computational Results

Our main computational results are summarized in Tables 1 and 2. Tables 1 and 2 respectively show
the results for the test problems with four and eight spokes. The first column in these tables gives the
characteristics of the test problem. The second column gives the upper bound on the optimal total
expected profit provided by the optimal objective value of problem (13)-(17). The next four columns
give the total expected profits obtained by using the decision rules provided by LSA, PSA, DLP and
FDD. These total expected profits are estimated by simulating the performances of the different solution
methods under multiple demand trajectories. We use common random numbers when simulating the
performances of the different solution methods. The seventh column gives the percent gap between
the total expected profits obtained by LSA and DLP. This column also includes a “X” whenever LSA
performs better than DLP, a “×” whenever DLP performs better than LSA and a “¯” whenever there
is no statistically significant performance gap between LSA and DLP at 95% level. The interpretations
of the last three columns are similar to that of the seventh column, but the last three columns compare
LSA with FDD, PSA with DLP and PSA with FDD.

The results indicate that PSA performs significantly better than the other solution methods. The
performance gap between PSA and DLP can be as high as 13% and the performance gap between
PSA and FDD can be as high as 7%. In all of our test problems, the performance of PSA is either
statistically indistinguishable from or better than those of DLP and FDD. Although not quite as well
as PSA, LSA performs reasonably well when compared with DLP and FDD. The performance of LSA
is comparable to or better than that of FDD in 41 out of 48 test problems. FDD performs consistently
better than DLP and this observation is in agreement with the computational experiments in Bertsimas
and Popescu (2003). The success of PSA in comparison with DLP and FDD is especially remarkable
considering that PSA retunes its decision rule five times over the planning horizon, whereas DLP and
FDD retune their decision rules 20 times.

To give a feel for the problem characteristics that affect the performance gap between the different
solution methods, Figure 3 plots the performance gap between PSA and FDD for the 24 test problems
with eight spokes. The test problems in the horizontal axis of this figure are arranged in such a fashion
that every block of two consecutive test problems differ only in the tightness of the leg capacities
and every block of four consecutive test problems share the same penalty costs. Comparing blocks of
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two consecutive test problems in Figure 3 indicates that the performance gap between PSA and FDD
tends to increase as the leg capacities get tighter. For test problems with tight leg capacities, if we
“mistakenly” accept a request for a low-fare itinerary, then we either deny boarding to this reservation
at the departure time or forgo the opportunity of accepting a high-fare itinerary later on. For these test
problems, PSA appears to make significantly better decisions. Comparing blocks of four consecutive
test problems in Figure 3 indicates that the performance gap between PSA and FDD tends to increase
as the penalty cost increases. For test problems with large penalty costs, if we overbook more than
“necessary,” then the only way to make up for this mistake is to deny boarding to the reservations and
the cost of this mistake is high. For these test problems, PSA provides noticeably better performance
than FDD. Similar observations hold for the test problems with four spokes.

An interesting aspect of LSA and PSA is their sensitivity to the frequency with which we retune
their decision rules. For the 24 test problems with four spokes, the solid and dashed data series in
Figure 4 respectively plot the improvements in the performances of LSA and PSA when we increase
S from one to five. Figure 4 indicates that PSA is not very sensitive to the frequency with which we
retune the decision rule and it can obtain good solutions even when we tune the decision rule only once
at the beginning of the planning horizon. On the other hand, LSA appears to be quite sensitive. It
is especially encouraging that PSA does not require frequent retuning. Although we do not present
the detailed numbers here, it is worthwhile to mention that the performance of PSA with S = 1 is
comparable to that of FDD with S = 20.

Table 3 shows the CPU seconds required to construct a separable approximation to V (·) by carrying
out the algorithm in Figure 1 for 2,500 iterations. The second column in this table gives the total
CPU seconds for LSA. We give a breakdown for these CPU seconds in the next two columns. The
third column gives the CPU seconds spent by LSA on solving problem (1)-(4) to compute the penalty
cost at the departure time, whereas the fourth column gives the CPU seconds spent by LSA on all
other operations. The interpretations of the last three columns are similar, but the last three columns
focus on the CPU seconds for PSA. The main factors that affect the CPU seconds are the number of
spokes and whether we use linear or piecewise linear approximations. Therefore, we give the average
CPU seconds over different test problems. All of our computational experiments are carried out on a
Pentium IV PC running Windows XP with 2.4 GHz CPU and 1GB RAM. Table 3 indicates that the
CPU seconds for LSA are substantially shorter than those for PSA. This is expected as PSA solves
problem (12) to preserve convexity. For both LSA and PSA, the CPU seconds spent on solving problem
(1)-(4) increase by about a factor of eight when we double the number of spokes. We note that the
number of itineraries, and hence the number of decision variables in problem (1)-(4), increase by about
a factor of four when we double the number of spokes. The CPU seconds spent on all other operations
remain relatively stable when we increase the number of spokes. It turns out that the CPU seconds for
solving problem (13)-(17) are much less than one second and we do not give the CPU seconds for DLP
and FDD.

Figure 5 plots how the total expected profit obtained by PSA for test problem (4, 8, 1, 1, 0.95, 1.6)
changes as a function of the iteration counter limit K in the algorithm in Figure 1. The figure indicates
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that the performance of PSA improves as we increase K, but the total expected profit is quite satisfactory
even with K = 250. Our choice of K = 2, 500 appears to be on the conservative side. We prefer to
err on the conservative side, since it is not possible to predict the improvement in the performance of
PSA without actually increasing the iteration counter limit and testing the new iteration counter limit
through simulation. Nevertheless, practitioners, who are interested in a reasonable balance between
solution quality and computational burden, may use less conservative stopping rules and be content
with a smaller iteration counter limit.

6 Conclusions

In this paper, we developed a network revenue management model to jointly make capacity control and
overbooking decisions. Our approach is based on the observation that if the penalty cost of denying
boarding to the reservations at the departure time were given by a separable function, then the dynamic
programming formulation of the problem would decompose by the itineraries. Using this observation, we
constructed separable approximations to the penalty cost. Computational experiments demonstrated
that our model can provide significantly better decisions than benchmark strategies that are based on
the deterministic linear program.

The algorithm in Figure 1 represents only one approach for constructing separable approximations
to the penalty cost. A natural research direction to pursue is to try to develop other approaches for
constructing separable approximations. Better separable approximations to the penalty cost are likely
to generate better capacity control and overbooking decisions.
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Figure 2: Structure of the airline network when we have eight spokes.

Problem Profit Tot. exp. profit obtained by LSA vs. PSA vs.
(N, κ, θ, σ, q, ρ) bnd. LSA PSA DLP FDD DLP FDD DLP FDD

(4, 4, 4, 0, 0.90, 1.2) 15,223 14,383 14,442 14,283 14,386 0.70 (¯) -0.02 (¯) 1.10 (X) 0.39 (¯)
(4, 4, 4, 0, 0.90, 1.6) 20,997 19,281 19,506 19,085 19,395 1.02 (¯) -0.59 (¯) 2.16 (X) 0.57 (X)
(4, 4, 4, 0, 0.95, 1.2) 23,450 21,778 22,062 21,962 21,998 -0.85 (×) -1.01 (×) 0.45 (X) 0.29 (¯)
(4, 4, 4, 0, 0.95, 1.6) 21,753 20,316 20,532 20,208 20,373 0.53 (¯) -0.28 (¯) 1.58 (X) 0.77 (X)

(4, 4, 8, 0, 0.90, 1.2) 23,136 21,220 21,487 21,014 21,144 0.97 (¯) 0.36 (¯) 2.20 (X) 1.60 (X)
(4, 4, 8, 0, 0.90, 1.6) 12,177 10,733 11,047 10,326 10,620 3.79 (X) 1.05 (¯) 6.53 (X) 3.86 (X)
(4, 4, 8, 0, 0.95, 1.2) 19,206 17,278 17,838 17,285 17,491 -0.04 (¯) -1.23 (×) 3.10 (X) 1.95 (X)
(4, 4, 8, 0, 0.95, 1.6) 15,995 14,279 14,526 14,059 14,316 1.54 (X) -0.25 (¯) 3.22 (X) 1.45 (X)

(4, 4, 1, 1, 0.90, 1.2) 18,418 16,519 16,894 16,362 16,529 0.95 (¯) -0.06 (¯) 3.15 (X) 2.17 (X)
(4, 4, 1, 1, 0.90, 1.6) 10,626 9,631 9,727 9,159 9,372 4.90 (X) 2.69 (X) 5.84 (X) 3.65 (X)
(4, 4, 1, 1, 0.95, 1.2) 19,782 18,133 18,332 17,797 17,968 1.85 (X) 0.91 (¯) 2.91 (X) 1.98 (X)
(4, 4, 1, 1, 0.95, 1.6) 17,345 15,769 16,019 15,264 15,522 3.21 (X) 1.57 (X) 4.71 (X) 3.10 (X)

(4, 8, 4, 0, 0.90, 1.2) 30,754 29,200 29,445 29,286 29,329 -0.29 (¯) -0.44 (×) 0.54 (X) 0.39 (X)
(4, 8, 4, 0, 0.90, 1.6) 31,744 30,439 30,679 30,324 30,483 0.38 (¯) -0.15 (¯) 1.16 (X) 0.64 (X)
(4, 8, 4, 0, 0.95, 1.2) 28,983 27,446 27,533 27,386 27,445 0.22 (¯) 0.00 (¯) 0.53 (X) 0.32 (¯)
(4, 8, 4, 0, 0.95, 1.6) 23,995 22,820 22,901 22,720 22,825 0.44 (X) -0.02 (¯) 0.79 (X) 0.33 (X)

(4, 8, 8, 0, 0.90, 1.2) 26,932 25,559 25,825 25,115 25,182 1.74 (X) 1.47 (X) 2.75 (X) 2.49 (X)
(4, 8, 8, 0, 0.90, 1.6) 30,670 28,231 28,527 27,314 27,731 3.25 (X) 1.77 (X) 4.25 (X) 2.79 (X)
(4, 8, 8, 0, 0.95, 1.2) 33,136 31,418 31,816 31,134 31,267 0.90 (X) 0.48 (¯) 2.14 (X) 1.73 (X)
(4, 8, 8, 0, 0.95, 1.6) 27,926 26,188 26,533 25,456 25,781 2.80 (X) 1.55 (X) 4.06 (X) 2.83 (X)

(4, 8, 1, 1, 0.90, 1.2) 26,673 24,777 25,114 23,050 23,446 6.97 (X) 5.37 (X) 8.22 (X) 6.64 (X)
(4, 8, 1, 1, 0.90, 1.6) 31,470 29,209 29,498 27,215 28,178 6.82 (X) 3.53 (X) 7.74 (X) 4.47 (X)
(4, 8, 1, 1, 0.95, 1.2) 21,959 20,441 20,668 19,411 19,832 5.04 (X) 2.98 (X) 6.09 (X) 4.05 (X)
(4, 8, 1, 1, 0.95, 1.6) 26,138 23,656 24,040 22,010 22,825 6.96 (X) 3.51 (X) 8.44 (X) 5.05 (X)

Table 1: Computational results for the test problems with four spokes.
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Problem Profit Tot. exp. profit obtained by LSA vs. PSA vs.
(N, κ, θ, σ, q, ρ) bnd. LSA PSA DLP FDD DLP FDD DLP FDD

(8, 4, 4, 0, 0.90, 1.2) 22,706 20,286 20,426 20,338 20,463 -0.26 (¯) -0.87 (×) 0.43 (¯) -0.18 (¯)
(8, 4, 4, 0, 0.90, 1.6) 17,715 15,674 15,823 15,555 15,783 0.76 (¯) -0.70 (¯) 1.70 (X) 0.25 (¯)
(8, 4, 4, 0, 0.95, 1.2) 21,809 19,579 19,829 19,640 19,795 -0.31 (¯) -1.10 (×) 0.95 (X) 0.17 (¯)
(8, 4, 4, 0, 0.95, 1.6) 15,625 13,804 13,982 13,771 14,025 0.23 (¯) -1.61 (×) 1.50 (X) -0.31 (¯)

(8, 4, 8, 0, 0.90, 1.2) 19,963 17,346 17,603 16,783 17,223 3.24 (X) 0.71 (¯) 4.65 (X) 2.16 (X)
(8, 4, 8, 0, 0.90, 1.6) 13,868 11,618 11,961 11,408 11,740 1.80 (X) -1.05 (¯) 4.62 (X) 1.85 (X)
(8, 4, 8, 0, 0.95, 1.2) 21,134 18,470 18,740 18,203 18,589 1.45 (X) -0.64 (¯) 2.86 (X) 0.81 (X)
(8, 4, 8, 0, 0.95, 1.6) 17,056 14,127 14,484 13,768 14,251 2.54 (X) -0.88 (¯) 4.95 (X) 1.61 (X)

(8, 4, 1, 1, 0.90, 1.2) 20,019 17,623 17,867 16,785 17,274 4.76 (X) 1.98 (X) 6.05 (X) 3.32 (X)
(8, 4, 1, 1, 0.90, 1.6) 15,712 13,114 13,498 12,488 13,057 4.78 (X) 0.44 (¯) 7.48 (X) 3.26 (X)
(8, 4, 1, 1, 0.95, 1.2) 16,179 13,818 14,096 13,427 13,816 2.83 (X) 0.01 (¯) 4.74 (X) 1.98 (X)
(8, 4, 1, 1, 0.95, 1.6) 19,803 16,860 17,171 16,119 16,792 4.40 (X) 0.40 (¯) 6.13 (X) 2.21 (X)

(8, 8, 4, 0, 0.90, 1.2) 35,075 32,882 32,879 32,742 32,905 0.43 (X) -0.07 (¯) 0.42 (X) -0.08 (¯)
(8, 8, 4, 0, 0.90, 1.6) 24,105 22,273 22,336 22,120 22,285 0.69 (X) -0.05 (¯) 0.97 (X) 0.23 (¯)
(8, 8, 4, 0, 0.95, 1.2) 33,872 31,773 31,808 31,832 31,954 -0.19 (¯) -0.57 (×) -0.08 (¯) -0.46 (¯)
(8, 8, 4, 0, 0.95, 1.6) 25,920 24,051 24,069 23,844 24,056 0.86 (X) -0.02 (¯) 0.93 (X) 0.06 (¯)

(8, 8, 8, 0, 0.90, 1.2) 31,831 28,996 29,046 28,228 28,680 2.65 (X) 1.09 (X) 2.82 (X) 1.26 (X)
(8, 8, 8, 0, 0.90, 1.6) 37,769 33,740 33,955 32,225 33,149 4.49 (X) 1.75 (X) 5.09 (X) 2.37 (X)
(8, 8, 8, 0, 0.95, 1.2) 28,695 26,146 26,245 25,549 25,984 2.29 (X) 0.62 (¯) 2.65 (X) 0.99 (X)
(8, 8, 8, 0, 0.95, 1.6) 32,840 29,691 29,804 28,585 29,292 3.72 (X) 1.34 (X) 4.09 (X) 1.72 (X)

(8, 8, 1, 1, 0.90, 1.2) 29,394 26,367 26,660 23,601 24,840 10.49 (X) 5.79 (X) 11.47 (X) 6.83 (X)
(8, 8, 1, 1, 0.90, 1.6) 28,433 25,515 25,534 22,104 23,688 13.37 (X) 7.16 (X) 13.43 (X) 7.23 (X)
(8, 8, 1, 1, 0.95, 1.2) 26,884 24,131 24,396 22,162 23,190 8.16 (X) 3.90 (X) 9.16 (X) 4.94 (X)
(8, 8, 1, 1, 0.95, 1.6) 28,228 25,454 25,701 22,559 24,123 11.37 (X) 5.23 (X) 12.22 (X) 6.14 (X)

Table 2: Computational results for the test problems with eight spokes.
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Figure 3: Performance gaps between PSA and FDD for the test problems with eight spokes.
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Figure 4: Improvement in the performances of LSA and PSA for the test problems with four spokes
when we retune the decision rule more frequently.

CPU secs. for LSA CPU secs. for PSA
No. of Prob. Prob.
spokes Total (1)-(4) Other Total (1)-(4) Other

4 13.94 12.41 1.53 118.13 15.08 103.05
8 97.34 95.48 1.86 220.86 106.11 114.75

Table 3: CPU seconds for LSA and PSA required to construct a separable approximation to V (·).
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Figure 5: Performance of PSA for test problem (4, 8, 1, 1, 0.95, 1.6) as a function of the iteration counter
limit K in the algorithm in Figure 1.
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