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Abstract

We consider assortment optimization problems under the multinomial logit model, where the
parameters of the choice model are random. The randomness in the choice model parameters is
motivated by the fact that there are multiple customer segments, each with different preferences for
the products, and the segment of each customer is unknown to the firm when the customer makes
a purchase. This choice model is also called the mixture-of-logits model. The goal of the firm is
to choose an assortment of products to offer that maximizes the expected revenue per customer,
across all customer segments. We establish that the problem is NP-complete even when there are
just two customer segments. Motivated by this complexity result, we focus on assortments consisting
of products with the highest revenues, which we refer to as revenue-ordered assortments. We identify
specially structured cases of the problem where revenue-ordered assortments are optimal. When
the randomness in the choice model parameters does not follow a special structure, we derive tight
approximation guarantees for revenue-ordered assortments. We extend our model to the multi-period
capacity allocation problem, and prove that, when restricted to the revenue-ordered assortments,
the mixture-of-logits model possesses the nesting-by-fare-order property. This result implies that
revenue-ordered assortments can be incorporated into existing revenue management systems through
nested protection levels. Numerical experiments show that revenue-ordered assortments perform
remarkably well, generally yielding profits that are within a fraction of a percent of the optimal.

1 Introduction

A common problem faced by many firms involves choosing an assortment of products to offer to their

customers with the goal of maximizing revenues. There are two sources of difficulty when dealing with

such problems. First, the products may serve as substitutes and the customers may make a choice

among the products that satisfy their needs. This creates a situation where the demand for each

product depends on what assortment of products are offered to the customers. Second, there can be

multiple customer segments served by the firm and the customers belonging to different segments may

have different preferences. So, one has to consider the preferences of the different customer segments,

as well as the size of each segment, when deciding which assortment of products to offer.

In this paper, we consider an assortment optimization problem to address the difficulties described

above. Each customer makes a choice among the offered products according to the multinomial logit

choice model. The crucial feature of our assortment optimization problem is that the parameters of the

choice model are assumed to be unknown to the firm and they are modeled as random variables. This

type of a situation happens when there are multiple customer segments with different preferences and
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the segment of a customer is not known to the firm when the customer makes a purchase. The goal

of the firm is to choose an assortment of products that maximizes the expected revenue obtained from

each customer.

Our work in this paper has connections to the growing literature on assortment planning models

in revenue management. In their seminal work, Talluri and van Ryzin (2004) study a version of

our assortment optimization problem under the assumption that the parameters of the multinomial

logit model are deterministic and known. Under this assumption, the authors show that the optimal

assortment includes a certain number of products with the highest revenues. Throughout the paper,

we refer to such assortments as revenue-ordered assortments. In this case, the optimal assortment can

be obtained efficiently by checking the expected revenue from each assortment that includes a certain

number of products with the highest revenues. In contrast, if the model parameters are random, then

revenue-ordered assortments are no longer optimal and the assortment optimization problem appears

to be intractable. Indeed, Bront et al. (2009) study the assortment optimization problem with random

choice model parameters and establish that the problem is NP-complete when the number of possible

realizations of the choice model parameters is at least as large as the number of products.

Our Contributions and Main Results: The above discussion shows a strong contrast between

deterministic versus random model parameters. For the case with deterministic and known model

parameters, knowing the optimality of revenue-ordered assortment has crucial theoretical and practical

implications. On the theoretical side, optimality of revenue-ordered assortments allows us to find an

optimal assortment in linear time. On the practical side, optimality of revenue-ordered assortments

are intuitively appealing as they urge the firms to shift their focus on high-contribution products,

making them easy to justify. Also, optimality of revenue-ordered assortments corresponds to nested

protection levels in revenue management settings, where a certain fare class remains open as long as

cheaper fare classes remain open. Legacy revenue management systems are commonly tied to the

assumption of nested protection levels and using revenue-ordered assortments allow compatibility with

such systems. Our goal in this paper is to close the big chasm between the two cases. Building on the

fact that revenue-ordered assortments are optimal when the choice model parameters are deterministic,

we investigate the question of what we can say about the performance of such assortments when the

choice model parameters are random.

In this paper, we begin by showing that the assortment optimization problem with random choice

model parameters is NP-complete even when there are just two possible realizations for the model

parameters (Theorem 3.2). Following the hardness result, we give two specific cases with random

choice model parameters where revenue-ordered assortments remain optimal. In the first case, the

choice model is such that each product has an intrinsic mean utility known to the firm, but the mean

utility of a product is modified by a term that depends on its price and the price sensitivity of a

customer is sampled from the uniform distribution (Theorem 4.1). In the second case, the customers

attach smaller mean utilities to the products with higher prices, but they are still aware of the value

provided by high-end products so that they are not extremely price sensitive in a sense we make

precise (Theorem 4.3). These two results cover a wide array of potentially useful situations where the
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parameters of the choice model are random according to a special structure and we can still compute

the optimal assortment by focusing only on revenue-ordered assortments. To our knowledge, these two

cases provide first assortment optimization problems under the multinomial logit model with random

parameters, where the optimal assortment remains tractable to compute.

Following these results, we focus on the performance of revenue-ordered assortments when the

randomness in the choice model parameters does not follow a special structure. If there are G possible

realizations for the choice model parameters and n products that we can possibly offer to the customers,

then we show that revenue-ordered assortments provide an approximation guarantee of min{G, dn/2e}
(Theorem 5.1). Furthermore, this performance guarantee is tight in the sense that there are instances

of the assortment optimization problem where the expected revenue from the best revenue-ordered

assortment deviates from the optimal by a factor of min{G, dn/2e} (Proposition 5.3). The tight

instances involve products whose revenues differ from each other by orders of magnitude. So, in our

third guarantee, we show that revenue-ordered assortments provide an approximation guarantee of

e log(e ρ), where ρ is the ratio between the largest and smallest product revenues (Theorem 5.4). The

last result intuitively suggests that unless the revenues of the products differ by orders of magnitude,

revenue-ordered assortments yield a constant factor approximation guarantee. Finally, we give an

approximation guarantee for revenue-ordered assortments by using information about the distribution

of the utilities that a customer associates with the products (Proposition 5.5).

We extend our model to the multi-period capacity allocation setting of Talluri and van Ryzin (2004),

where we have an initial capacity of airline seats that must be allocated to multiple fare classes over

time. In each period, we determine the assortment of fare classes to offer to an arriving customer whose

choice model is described by a mixture-of-logits model, with the goal of maximizing the total expected

revenue over the selling horizon. Surprisingly, we are able to show that if we have more remaining

capacity, then the optimal revenue-ordered assortment to offer becomes a larger assortment when

customers choose according to the mixture-of-logits (Theorem 6.1). Thus, when we restrict our attention

to the revenue-ordered assortments, the mixture-of-logits model possesses the nesting-by-fare-order

property, which is to say that as the remaining capacity on the flight leg gets smaller, fare classes

with lower fares stop being offered first (Talluri and van Ryzin, 2004). This result has an important

managerial implication as it implies that we can use nested protection level policies. Many traditional

revenue management systems are built on these policies, and thus, revenue-ordered assortments can

be seamlessly incorporated into these systems. We note that nesting-by-fare-order property does not

hold under the mixture-of-logits choice model when we do not limit our attention to revenue-ordered

assortments. We conclude with numerical experiments, showing that revenue-ordered assortments

indeed perform well in practice, yielding expected revenues within 1% of the optimal on average.

To sum up, incorporating random choice model parameters into assortment optimization problems

is crucial from a practical perspective, as firms serve customers from different segments with different

preferences. We establish new problem classes with random model parameters, where revenue-

ordered assortments are optimal. These problem classes appear to constitute the first assortment

optimization problems with random parameters that admit tractable solutions. For the general case,
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we give approximation guarantees for revenue-ordered assortments, one of which indicates that revenue-

ordered assortments should perform well, unless product revenues differ by orders of magnitude. We

extend our model to a multi-period setting and show that revenue-ordered assortments allow us to

recover nesting-by-fare-order property. Our numerical experiments demonstrate that revenue-ordered

assortments do perform quite well in practice.

Related Literature: We focus our literature review primarily on papers that use variants of the

multinomial logit model to describe the demand process. We refer the reader to Kok et al. (2008),

Farias et al. (2011) and Farias et al. (2012) for assortment problems under other choice models. Talluri

and van Ryzin (2004) show that if customers choose according to the multinomial logit model and

the choice model parameters are deterministic and known, then revenue-ordered assortments are

optimal. Gallego et al. (2011) show that this problem can directly be formulated and solved as a

linear program. Rusmevichientong et al. (2010) study the same problem with a cardinality constraint

on the offered assortment and show that although revenue-ordered assortments are no longer optimal,

the optimal assortment can be computed efficiently. Jagabathula et al. (2011) also focus on assortment

optimization problems where there is a cardinality constraint on the offered assortment. They study the

performance of an intuitive pairwise exchange algorithm and show that this algorithm finds the optimal

solution when customers choose according to the multinomial logit model with known parameters.

Rusmevichientong and Topaloglu (2012) show that revenue-ordered assortments are robust against the

uncertainty in model parameters, in the sense that they protect against the worst-case expected revenue.

This class of assortments are no longer optimal when the choice model parameters are random. Bront

et al. (2009) show that the assortment problem is NP-complete in the strong sense under random

model parameters, give a mixed integer programming formulation to obtain the optimal assortment

and suggest a greedy heuristic. Mendez-Diaz et al. (2010) strengthen the mixed integer programming

formulation through valid inequalities. There is some work on solving assortment problems under

the nested logit model, which is an extension of the multinomial logit model, allowing correlations

between the evaluations of different products by a particular customer. Davis et al. (2011) give a

linear programming formulation of the assortment problem under the nested logit model. Li and

Rusmevichientong (2012) give a greedy algorithm for the same problem. Gallego and Topaloglu (2012)

show how to impose a variety of constraints on the offered assortment when customers chose according

to the nested logit model. All of the current work on nested logit model is under the assumption that

there is a single customer segment with known choice model parameters.

Our work is also related to revenue management models that incorporate customer choice. Talluri

and van Ryzin (2004) study a revenue management problem over a single flight leg. Customers choose

among the fare classes that are available for purchase and the objective is to adjust the assortment of

available fare classes at each period to maximize the total expected revenue. There are a number of

papers that extend this work to a flight network; see Gallego et al. (2004), Liu and van Ryzin (2008),

Kunnumkal and Topaloglu (2008), Zhang and Adelman (2009), Talluri (2010), Gallego et al. (2011),

Meissner and Strauss (2012), Vossen and Zhang (2012) and Meissner et al. (2012). The fundamental

idea in these papers is to formulate various deterministic linear programming approximations. These

linear programs have one decision variable for each subset of itinerary products, corresponding to the
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duration of time during which a subset of itinerary products is made available to customers. As a result,

the number of decision variables can get large and it is customary to solve these linear programs by using

column generation. The column generation subproblem corresponds to our assortment problem when

customers choose according to the multinomial logit model with random parameters. Of particular

interest in this domain is the work by Talluri (2010) and Meissner et al. (2012), where the authors focus

on the case with multiple customer segments and customers from different segments choose according

to different choice models. The first paper gives tractable relaxations of the problem when there are

multiple segments, whereas the second paper gives valid cuts to tighten the relaxation, but as far as we

are aware, it is difficult to a priori characterize the tightness of these relaxations.

The rest of the paper is organized as follows. In Section 2, we formulate our assortment optimization

problem. In Section 3, we show that this assortment optimization problem is NP-complete. In Section

4, we give two specific problem classes with random choice model parameters where revenue-ordered

assortments remain optimal. In Section 5, we develop approximation guarantees for revenue-ordered

assortments when the randomness in the choice model parameters does not have any special structure. In

Section 6, we extend our model to a multi-period setting. In Section 7, we give numerical experiments

testing the performance of revenue-ordered assortments. In Section 8, we conclude.

2 Model Formulation

We have n products indexed by 1, 2, . . . , n, and for each i, let ri be the revenue associated with product

i. Without loss of generality, we assume that the products are indexed such that r1 ≥ r2 ≥ . . . ≥ rn. The

customers choose among the offered products according to random utility maximization. In particular,

each customer associates the utility

Ui = Vi + εi

with product i, where εi is a standard Gumbel random variable with mean zero and we view Vi as the

mean utility of product i. We normalize the utility of the no purchase option to zero. In this case,

if we offer the assortment S ⊆ {1, . . . , n} of products to the customers, then a customer chooses the

product with the highest utility if the utility of this product is positive, but otherwise, leaves without

purchasing anything. It is a standard result in discrete choice theory (see, for example, Ben-Akiva and

Lerman, 1985 and Train, 2003) that if we offer the assortment S to the customers, then a customer

chooses product i ∈ S with probability

πi(S,V ) =
eVi

1 +
∑

j∈S e
Vj
,

where we use V = (V1, . . . , Vn) to denote the vector of mean utilities of the products, and make the

dependence of πi(S,V ) on S and V explicit. The choice model above is known as the multinomial logit

model. If we offer the assortment S and the vector of mean utilities is V , then the expected revenue

obtained from a customer is

f(S,V ) =
∑
i∈S

ri πi(S,V ).
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When the mean utility vector V is fixed and known, we can find an assortment that maximizes

the expected revenue from a customer by solving the problem maxS⊆{1,...,n} f(S,V ). The implicit

assumption behind using a fixed mean utility vector is that each customer is probabilistically identical,

reacting to an offered assortment in the same manner. On the other hand, if each customer has a different

reaction towards an assortment, then the mean utilities that a customer attaches to the products can

be modeled as random variables themselves. In that case, we can solve

Z∗ = max
S⊆{1,...,n}

E{f(S,V )} (Mixture Logit)

to find an assortment that maximizes the expected revenue over all possible realizations of the

mean utility vector. The above expectation involves the random vector V and the distribution of

V naturally depends on the composition of the market and how customers in the market make a

choice. The random vector V can have a discrete or continuous distribution and we assume that it is

independent of (ε1, . . . , εn). We continue referring to Vi as the mean utility of product i, although Vi is

random. Throughout the paper, we focus on the Mixture Logit problem.

The mean utilities V can be either discrete or continuous random vectors, depending on the specific

application. For example, if we have G customer types, with each type following a multinomial logit

choice model, then V is a discrete random vector that takes G different values V̂ 1, . . . , V̂ G, where V̂ g

corresponds to the mean utilities of customer type g. In another example, we can have V = µ − Br,

where µ = (µ1, . . . , µn) is a deterministic vector, r = (r1, . . . , rn) gives the prices of the products,

and B is a continuous random variable. In this case, V is a continuous random vector, and B is the

customer-specific price sensitivity, whose distribution reflects the price sensitivity pattern among the

customers. More generally, McFadden and Train (2000) have shown that any choice model based on

random utility maximization can be approximated arbitrarily well by the multinomial logit model with

random parameters, although the required mixing distribution of V can be quite complicated and may

be difficult to calibrate. Thus, the mixture-of-logits model, in principal, can be used as an approximation

in assortment optimization problems under a general choice model.

3 Computational Complexity

If the mean utility vector V is fixed and known, then we can find the optimal assortment by solving

the problem maxS⊆{1,...,n} f(S,V ). Talluri and van Ryzin (2004) show that the optimal assortment

for the last optimization problem is of the form {1, . . . , i∗V }, including i∗V products with the highest

revenues. We call such assortments as revenue-ordered assortments. In this case, we can find the

optimal assortment in a tractable fashion simply by checking the expected revenue f({1, . . . , i},V ) for

all i = 1, . . . , n. In contrast, the following example shows that revenue-ordered assortments are no

longer optimal when we have multiple possible values for the mean utility vector, suggesting that it may

be difficult to obtain an optimal solution to the Mixture Logit problem.

Example 3.1 Consider an instance of the Mixture Logit problem with three products. The revenues

of the products are (r1, r2, r3) = (8, 4, 3). There are two possible realizations of V , denoted by V̂ 1 =
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(log 5, log 20, 0) and V̂ 2 = (− log 5, log 10, log 10), each equally likely. The next table shows f(S, V̂ 1),

f(S, V̂ 2) and E{f(S,V )} = 1
2f(S, V̂ 1) + 1

2f(S, V̂ 2) for each possible assortment S.

S f(S, V̂ 1) f(S, V̂ 2) E{f(S,V )}
{1} 6.67 1.33 4.00
{2} 3.81 3.64 3.72
{3} 1.50 2.73 2.11
{1, 2} 4.62 3.71 4.16
{1, 3} 6.14 2.82 4.48
{2, 3} 3.77 3.33 3.55
{1, 2, 3} 4.56 3.38 3.97

If the mean utility vector is known to be V̂ 1, then the assortment {1} maximizes the expected revenue,

whereas if the mean utility vector is known to be V̂ 2, then the assortment {1, 2} is optimal. On the

other hand, if the mean utility vector is equally likely to take the two values, then the assortment

{1, 3} maximizes the expected revenue. Since this assortment skips over the second product, it is not

revenue-ordered. Furthermore, the optimal assortment includes the third product, which does not even

appear in the optimal assortments when we focus on each possible value of V separately.

In the next theorem, we formally establish that the Mixture Logit problem is difficult by showing

that it is NP-complete even when we have two possible realizations of the random vector V . Bront

et al. (2009) show that the Mixture Logit problem is NP-complete in the strong sense and their

result requires that the number of possible realizations for V is at least as large as the number of

products. This result leaves open the question of whether the problem is still difficult when the random

vector V does not have too many realizations, which, for example, is the case when dealing with a small

number of customer segments. Theorem 3.2 affirmatively settles this question. Before proceeding to

the theorem, we introduce the following decision-theoretic formulation of the assortment optimization

problem with two possible realizations of V . We call this problem the 2-Class Logit problem.

2-Class Logit

Inputs:

• Set of products indexed by 1, 2, . . . , n.

• Product revenues r1, r2, . . . , rn, where ri ∈ Z+ for all i = 1, . . . , n.

• Parameters of the multinomial logit model corresponding to the two realizations of the mean

utilities V̂ 1 = (V̂ 1
1 , . . . , V̂

1
n ) and V̂ 2 = (V̂ 2

1 , . . . , V̂
2
n ), where for i = 1, . . . , n, g = 1, 2, eV̂

g
i ∈ Q+,

the set of positive rational numbers.

• Probability of observing the two realizations of the mean utilities, denoted by (α1, α2), where

αg ∈ Q+ for g = 1, 2 and α1 + α2 = 1.

• Target revenue K ∈ Z+.

Question: Is there an assortment S ⊆ {1, . . . , n} whose expected revenue is at least K, that is,

α1

∑
i∈S ri e

V̂ 1
i

1 +
∑

i∈S e
V̂ 1
i

+ α2

∑
i∈S ri e

V̂ 2
i

1 +
∑

i∈S e
V̂ 2
i

≥ K ?
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Theorem 3.2 2-Class Logit is NP-complete.

The proof of Theorem 3.2 involves a reduction from the Partition problem, which is a well-known

NP-complete problem (Garey and Johnson, 1979). The details are given in Appendix A in the Online

Supplement. We note that our complexity result is different from that of Goyal et al. (2013), who

establish the NP-hardness result for the assortment optimization problem under the mixture-of-logits

model, where all products have the same revenue, with ri = 1 for i = 1, . . . , n, but there is a cardinality

constraint on the size of the assortment. Under their model, each customer segment is associated with

a set of exactly two equally-preferred products, and the customers in each segment will only purchase

one of these two products. This corresponds to the case where every realization of the mean utility

V is a vector in {−∞, 0}n, where exactly two coordinates are zero and the rest are −∞. They use

a reduction from the Vertex Cover problem, another well-known NP-complete problem, and the

number of realizations of V is equal to the number of edges in the graph.

In light of Example 3.1 and Theorem 3.2, the Mixture Logit problem does not admit a simple

solution with intuitive properties. On the other hand, if the parameters of the choice model are fixed

and known, then a revenue-ordered assortment becomes optimal. Computing the best revenue-ordered

assortment is simple since there are only n possible revenue-ordered assortments, and one can check the

expected revenue from each one of them. Furthermore, revenue-ordered assortments are intuitively

appealing, urging firms to focus on high-contribution products. Therefore, there is a variety of

theoretical and practical reasons to work with revenue-ordered assortments. These observations

raise two natural questions. First, are there special cases of the Mixture Logit problem for

which revenue-ordered assortments remain optimal? Second, can we make any statements about the

performance of revenue-ordered assortments for the general instances of the Mixture Logit problem?

In the next section, we begin by answering the first question. The section following the next dwells on

the second question.

4 Optimality of Revenue-Ordered Assortments

In this section, we give two special cases of the Mixture Logit problem that admit revenue-ordered

assortments as the optimal solution.

4.1 Product-Independent Price Sensitivity with Random No-Purchase Mean Utilities

When using the multinomial logit model in practice, it is customary to express the mean utility of a

product as a function of its features, such as price, quality and durability. In this section, we follow a

similar approach. In particular, we assume that the mean utility of product i is of the form

Vi = µi + P −B ri, (Product-Independent Sensitivity)

where µi is a deterministic constant, P and B are random variables and B takes positive values. We

observe that this choice of mean utilities corresponds to the case where each customer associates the

intrinsic mean utilities (µ1, . . . , µn) with the products. For each customer, the intrinsic mean utilities of
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all products are perturbed by a quantity sampled from the distribution of the random variable P . On top

of this, the price sensitivity of each customer is sampled from the distribution of the random variable B

and the intrinsic mean utility of each product is further perturbed by a quantity that depends on the

price sensitivity of the customer and the price of each product. A customer associates the same price

sensitivity B for each product. Since the utility of the no-purchase option V0 is always set to zero, the

Product-Independent Sensitivity model is equivalent to

V0 = −P, and Vi = µi −B ri, i = 1, 2, . . . , n,

and thus, in this model, we allow the mean utility of the no-purchase option to vary across customers.

Surprisingly, the main result of this section shows that if the random variable B is uniformly

distributed and it is independent of P , then revenue-ordered assortments are optimal for the Mixture

Logit problem. We observe that this result allows the random variable P to be arbitrary, allowing for

a broad class of distributions. While the uniform distribution assumption on the random variable B is

limiting, it corresponds to the uninformative prior. For example, if we estimate the price sensitivity of

the customers to be B̂ from data with a margin of error ±ε, then we can assume that B is uniformly

distributed over the interval [B̂ − ε, B̂ + ε].

Imposing a condition on the distribution of B is necessary to ensure that revenue-ordered assortments

are optimal for the Mixture Logit problem, even when the mean utilities have the Product-

Independent Sensitivity form. To see this, consider an instance of the Mixture Logit problem

with five products. The revenues of the products are (r1, r2, r3, r4, r5) = (92, 91, 89, 39, 13). The mean

utility of product i is of the Product-Independent Sensitivity form with µi = 0 and P = 0,

but there are two possible realizations of B, denoted by B̂1 = 0.01 and B̂2 = 12, occurring with

probabilities 0.1 and 0.9. For this problem instance, the best revenue-ordered assortment is {1, 2, 3, 4, 5}
providing an expected revenue of about 7.67, but the optimal assortment is {1, 2, 3, 5} with an expected

revenue of about 7.72. Thus, revenue-ordered assortments are not necessarily optimal when B has an

arbitrary distribution.

The main result of this section is given in the following theorem. The proof is given in Appendix B

in the Online Supplement.

Theorem 4.1 If the mean utilities of the products are of the Product-Independent Sensitivity

form, the random variables P and B are independent of each other, and B is uniformly distributed,

then a revenue-ordered assortment is optimal for the Mixture Logit problem.

4.2 Value Conscious Customers

In this section, we give another special case of the Mixture Logit problem where revenue-ordered

assortments remain optimal. In particular, we assume that any realization of the mean utility

vector V = (V1, . . . , Vn) satisfies

V1 ≤ V2 ≤ . . . ≤ Vn and r1 e
V1 ≥ r2 e

V2 ≥ . . . ≥ rn eVn . (Value Conscious)
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Revenue-ordered assortments remain optimal when any realization of the mean utility vector satisfies

the Value Conscious condition. Before we proceed to the proof of this result, we discuss the

implications of the Value Conscious condition. We recall that the products are indexed such that

r1 ≥ r2 ≥ . . . ≥ rn. Consider a customer whose mean utility vector is given by V = (V1, . . . , Vn). The

first requirement that V1 ≤ V2 ≤ . . . ≤ Vn corresponds to a situation where the customer prefers

less expensive products, which is quite reasonable in many settings. On the other hand, the second

requirement that r1 e
V1 ≥ r2 e

V2 ≥ . . . ≥ rn eVn implies that for any i < j, we have

f({i},V ) =
ri e

Vi

1 + eVi
≥ rj e

Vj

1 + eVi
≥ rj e

Vj

1 + eVj
= f({j},V ).

This means that although the customer prefers cheaper products, she is value conscious and our expected

revenue from offering a premium product is still larger. We actually generalize the inequality above in

the proof of Theorem 4.3, showing that f(S ∪ {i},V ) ≥ f(S ∪ {j},V ) whenever i < j and i, j 6∈ S.

In the next example, we give a concrete situation where we can have mean utilities that satisfy the

Value Conscious condition.

Example 4.2 Consider the case where the mean utility of product i is of the form Vi = P r−Bi , where P

and B are (possibly dependent) arbitrary random variables and B takes values in the interval [0, 1]. This

corresponds to a situation where the price sensitivity of each customer is sampled from the distribution

of B and the customers are not too price sensitive in the sense that B takes values in the interval [0, 1]. It

is easy to check that this choice of mean utilities satisfies the Value Conscious condition.

The next theorem gives the main result of this section, showing that revenue-ordered assortments

are optimal under the Value Conscious condition.

Theorem 4.3 If the mean utilities of the products satisfy the Value Conscious condition, then a

revenue-ordered assortment is optimal for the Mixture Logit problem.

Proof. We claim that an optimal solution to the problem

max
S⊆{1,...,n}:|S|=k

f(S,V )

is always given by the assortment {1, . . . , k}. Assume on the contrary that S∗ is the optimal solution

to the problem above, but there are two products i and j with i < j, i 6∈ S∗ and j ∈ S∗. If we let

T = S∗ \ {j}, then it follows that

f(T ∪ {i},V ) =

∑
`∈T r` e

V` + ri e
Vi

1 +
∑

`∈T e
V` + eVi

≥
∑

`∈T r` e
V` + rj e

Vj

1 +
∑

`∈T e
V` + eVj

= f(T ∪ {j},V ) = f(S∗,V ),

where the inequality follows from the Value Conscious condition. Thus, f(S∗ \ {j} ∪ {i},V ) ≥
f(S∗,V ), indicating that the objective value of the optimization problem at the beginning of the proof

under S∗ \ {j} ∪ {i} is at least as large as the one corresponding to the solution S∗. This establishes

10



the claim. Since an optimal solution to the problem at the beginning of the proof is always given by

{1, . . . , k} irrespective of the value of V , we observe that an optimal solution to the problem

max
S⊆{1,...,n}:|S|=k

E{f(S,V )}

is also given by the assortment {1, . . . , k}. The result follows by noting that the optimal solution to the

Mixture Logit problem can be obtained by solving the last problem above for all k = 1, . . . , n. 2

5 Performance of Revenue-Ordered Assortments

In this section, we investigate the performance of revenue-ordered assortments for general instances of the

Mixture Logit problem. Throughout this section, we say that revenue-ordered assortments provide

an approximation guarantee of β if the expected revenue from the best revenue-ordered assortment

deviates from the optimal expected revenue by no more than a factor of β. In other words, noting that

the optimal objective value of the Mixture Logit problem is denoted by Z∗, if we have

1

β
Z∗ ≤ max

i=1,...,n
E{f({1, . . . , i},V )},

for some β ≥ 1, then we say that revenue-ordered assortments provide an approximation guarantee of β.

In the next section, we derive an approximation guarantee that increases linearly with the number of

products and customer segments, and prove that it is tight. This guarantee is applicable when the

number of products or customer segments is small. For larger problem instances, we derive other

guarantees based on the variations in the mean utilities and product revenues in Section 5.2.

5.1 A Tight Guarantee Based on the Number of Products and Customer Segments

In the next theorem, we show that if there are G possible realizations for the vector of mean utilities

and n possible products that we can offer to customers, then revenue-ordered assortments provide an

approximation guarantee of min{G, dn/2e}.

Theorem 5.1 (Guarantees Based on Numbers of Mean Utility Realizations and Products)

If there are G realizations of the vector of mean utilities, then revenue-ordered assortments provide an

approximation guarantee of min{G, dn/2e} for the Mixture Logit problem.

The proof of Theorem 5.1 makes use of the following property of the expected revenue function.

Lemma 5.2 For every realization of the vector of mean utilities V , the following two results hold.

(i) For all assortments S and T , f(S ∪ T,V ) ≤ f(S,V ) + f(T,V ).

(ii) For all products i and j with i < j, f({i, . . . , j},V ) ≤ f({1, . . . , j},V ).

Proof. The first result follows immediately from the fact that

f(S ∪ T,V ) =

∑
i∈S ri e

Vi +
∑

i∈T ri e
Vi

1 +
∑

i∈S e
Vi +

∑
i∈T e

Vi
≤
∑

i∈S ri e
Vi

1 +
∑

i∈S e
Vi

+

∑
i∈T ri e

Vi

1 +
∑

i∈T e
Vi

= f(S,V ) + f(T,V ).

11



To establish the second part of the lemma, note that f({i, . . . , j},V ) =
∑j
`=i r` e

V`

1+
∑j
`=i e

V`
, which implies that

f({i, . . . , j},V ) is a weighted average of 0, ri, . . . , rj , where the weights associated with each one of these

are 1, eVi , . . . , eVj , respectively . By using the same reasoning, f({1, . . . , j},V ) is a weighted average

of 0, r1, . . . , ri, . . . , rj , where the weights associated with each one of these are 1, eV1 , . . . , eVi , . . . , eVj ,

respectively. Since r1 ≥ . . . ≥ ri ≥ . . . ≥ rj ≥ 0, it follows that f({1, . . . , j},V ) ≥ f({i, . . . , j},V ). 2

We are now ready to show Theorem 5.1

Proof of Theorem 5.1

Proof. Let V̂ 1, . . . , V̂ G denote the possible realizations of the mean utility vector V . The first part of

the approximation guarantee follows immediately from the fact that for each g = 1, . . . , G, a revenue-

ordered assortment solves the problem maxS⊆{1,...,n} f(S, V̂ g), giving us the approximation guarantee of

G (see Talluri and van Ryzin, 2004). To establish the approximation guarantee of dn/2e, let S∗ be the

optimal solution to the Mixture Logit problem. We partition the assortment S∗ into k assortments

S∗1 , . . . , S
∗
k such that each assortment S∗` contains consecutive products. That is, each assortment S∗` is

of the form

{i∗` , i∗` + 1, . . . , j∗` }

for some i∗` and j∗` , with i∗` ≤ j∗` and

i∗1 ≤ j∗1 < i∗2 ≤ j∗2 < . . . < i∗k−1 ≤ j∗k−1 < i∗k ≤ j∗k .

Although each S∗` may contain a single product with i∗` = j∗` , we observe that the number of

assortments k in the partition never has to be greater than dn/2e. The desired result follows by

Z∗ = E{f(S∗,V )} = E{f(∪k`=1S
∗
` ,V )} ≤

k∑
`=1

E{f(S∗` ,V )} =
k∑
`=1

E{f({i∗` , . . . , j∗` },V )}

≤
k∑
`=1

E{f({1, . . . , j∗` , },V )} ≤
k∑
`=1

max
i=1,...,n

E{f({1, . . . , i},V )} ≤ dn/2e max
i=1,...,n

E{f({1, . . . , i},V )},

where the first and second inequalities use the first and second parts of Lemma 5.2, respectively. 2

To see a simple application of Theorem 5.1, consider the case where we serve two customer segments,

a price sensitive and a quality sensitive market segment. Price sensitive customers associate the vector

of mean utilities V̂ 1 = (V̂ 1
1 , . . . , V̂

1
n ) with the products, whereas quality sensitive customers associate

the vector of mean utilities V̂ 2 = (V̂ 2
1 , . . . , V̂

2
n ). Theorem 5.1 implies that the expected revenue from

the best revenue-ordered assortment is at least half of the optimal expected revenue.

In the next proposition, we show that the approximation guarantee in Theorem 5.1 is tight, so that

there are instances of the Mixture Logit where the expected revenue from the best revenue-ordered

assortment deviates from the optimal by a factor arbitrarily close to min{G, dn/2e}.

Proposition 5.3 (Tight Guarantee) There are instances of the Mixture Logit problem such that

the expected revenue from the best revenue-ordered assortment deviates from the optimal by a factor that

is arbitrarily close to min{G, dn/2e}.
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Proof. We construct a problem instance with G possible realizations of the vector of mean utilities and

n = 2G−1 products such that the expected revenue from the best revenue-ordered assortment deviates

from the optimal by a factor arbitrarily close to G = dn/2e. To simplify the presentation, we give a

problem instance with G = 3 and n = 5 such that the expected revenue from the best revenue-ordered

assortment deviates from the optimal by a factor arbitrarily close to three. Once we give this problem

instance, it is easy to see how to generalize this problem instance to an arbitrary G.

We chose δ > 0 and consider the following instance of the Mixture Logit problem. There are five

products. There are three possible realizations of V , which we denote by V̂ 1, V̂ 2 and V̂ 3. The next

table gives the revenues of the products and the values of V̂ 1, V̂ 2 and V̂ 3. Each column in this table

corresponds to a product.

Product 1 2 3 4 5

Revenues δ δ2 δ3 δ4 δ5

V̂ 1 − log δ −2 log δ −∞ −∞ −∞
V̂ 2 −∞ −∞ − log δ −2 log δ −∞
V̂ 3 −∞ −∞ −∞ −∞ − log δ

The probabilities of observing the three realizations of the vector of mean utilities are δ4/(δ4 + δ2 + 1),

δ2/(δ4 + δ2 + 1) and 1/(δ4 + δ2 + 1).

The next table gives the expected revenue provided by each possible revenue-ordered assortment

and the assortment {1, 3, 5}.

S E{f(S,V )}

{1} δ4

δ4 + δ2 + 1
× 1

1 + δ−1

{1, 2} δ4

δ4 + δ2 + 1
× 2

1 + δ−1 + δ−2

{1, 2, 3} δ4

δ4 + δ2 + 1
× 2

1 + δ−1 + δ−2
+

δ2

δ4 + δ2 + 1
× δ2

1 + δ−1

{1, 2, 3, 4} δ4

δ4 + δ2 + 1
× 2

1 + δ−1 + δ−2
+

δ2

δ4 + δ2 + 1
× 2 δ2

1 + δ−1 + δ−2

{1, 2, 3, 4, 5} δ4

δ4 + δ2 + 1
× 2

1 + δ−1 + δ−2
+

δ2

δ4 + δ2 + 1
× 2 δ2

1 + δ−1 + δ−2
+

1

δ4 + δ2 + 1
× δ4

1 + δ−1

{1, 3, 5} δ4

δ4 + δ2 + 1
× 1

1 + δ−1
+

δ2

δ4 + δ2 + 1
× δ2

1 + δ−1
+

1

δ4 + δ2 + 1
× δ4

1 + δ−1

The two terms in the expected revenue from assortment {1} can be bounded by δ4/(δ4 + δ2 + 1) ≤ δ4

and 1/(1 + δ−1) ≤ 1/δ−1. Therefore, the expected revenue from assortment {1} is bounded by δ5. We

bound the two terms in the expected revenue from assortment {1, 2} as δ4/(δ4 + δ2 + 1) ≤ δ4 and

2/(1 + δ−1 + δ−2) ≤ 2/δ−2, which implies that the expected revenue from assortment {1, 2} is bounded

by 2 δ6. Continuing in the same fashion, the expected revenues from assortments {1, 2, 3}, {1, 2, 3, 4}
and {1, 2, 3, 4, 5} are bounded by 2 δ6 + δ5, 2 δ6 + 2 δ6 and 2 δ6 + 2 δ6 + δ5, respectively. Therefore,

the expected revenue from a revenue-ordered assortment never exceeds 4 δ6 + δ5. Noting the expected

revenue from assortment {1, 3, 5}, the ratio between the expected revenue from the optimal assortment
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and the expected revenue from the best revenue-ordered assortment is at least

δ4

δ4+δ2+1
× 1

1+δ−1 + δ2

δ4+δ2+1
× δ2

1+δ−1 + 1
δ4+δ2+1

× δ4

1+δ−1

4 δ6 + δ5

=
1

δ4+δ2+1
× δ−1

1+δ−1 + 1
δ4+δ2+1

× δ−1

1+δ−1 + 1
δ4+δ2+1

× δ−1

1+δ−1

4 δ + 1
,

which can be made arbitrarily close to three by choosing δ small enough. 2

5.2 Guarantees based on the Product Revenues and Mean Utilities

The proof of Proposition 5.3 provides instances of the Mixture Logit problem where the performance

of revenue-ordered assortments becomes progressively worse as the number of possible realizations

of the vector of mean utilities or the number of products increases. However, in the instance that

we constructed in the proof of the proposition, the revenues of the products are δ, δ2, . . ., and we

let δ become arbitrarily small. In this case, the revenues of the products differ from each other by

orders of magnitude, which may not be realistic for many practical applications. So, a natural question

is whether revenue-ordered assortments perform well when the revenues of the products are not too

different from each other. In Theorem 5.4, we give an affirmative answer to this question by establishing

an approximation guarantee for revenue-ordered assortments in terms of the ratio between the largest

and smallest product revenues. The proof is given in Appendix C in the Online Supplement.

Theorem 5.4 (Guarantee Based on Product Revenues) Revenue-ordered assortments provide

an approximation guarantee of e log(e r1/rn) for the Mixture Logit problem.

The important observation from the theorem above is that the approximation guarantee provided

by revenue-ordered assortment scales logarithmically with the ratio of the largest and smallest product

revenues. Thus, if the revenues of the products do not differ from each other by orders of magnitude,

then Theorem 5.4 suggests that revenue-ordered assortments should intuitively provide a constant factor

approximation guarantee.

Finally, we can also provide approximation guarantees based on the distribution of the mean utility

vector. In particular, we give an approximation guarantee for revenue-ordered assortment as a function

of how much the mean utility of each product differs from its expectation and how much the mean

utilities of different products differ from each other. This result is stated in the next proposition, and

the proof is given in Appendix D in the Online Supplement.

Proposition 5.5 (Guarantees Based on Mean Utilities) If maxi=1,...,n |Vi − EVi| ≤ δ almost

surely, then revenue-ordered assortments provide an approximation guarantee of e4δ. Similarly, if

maxi,j=1,...,n |Vi − Vj | ≤ δ almost surely, then revenue-ordered assortments provide an approximation

guarantee of e4δ.
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6 Multi-Period Capacity Allocation and Nesting-by-Fare-Order Property

In this section, we extend our formulation to the multi-period capacity allocation setting of Talluri

and van Ryzin (2004). The model of Talluri and van Ryzin (2004) is one of the pioneering works in

revenue management that demonstrates the importance of incorporating choice behavior in operational

decisions. Let us briefly review the setup for this problem. We have an initial capacity of C seats on a

flight leg that must be allocated over T periods. There are n products (fare classes) that can be offered

to customers, indexed by {1, 2, . . . , n}. If we sell one ticket for fare class i, then we generate a revenue

of ri. We index the fare classes such that r1 ≥ r2 ≥ . . . ≥ rn. In each period, based on the remaining

capacity, we must decide on the assortment of fare classes to offer to an arriving customer, who chooses

a fare class from the assortment according to a mixture-of-logits choice model. The goal is to determine

the revenue-maximizing policy for allocating the capacity. In this paper, for simplicity, we assume that

there is exactly one customer arriving in each period; all of our results immediately extend to the case

where there is a positive probability that no customer shows up in each period.

We focus on the special case where, in each period, we only offer a revenue-ordered assortment. Under

this restriction, we will show that the mixture-of-logits model possesses the nesting-by-fare-order

property. In other words, we will establish that as we have more remaining capacity in a period, we offer

a larger revenue-ordered assortment. This result implies that as the remaining capacity on the flight leg

gets smaller, fare classes with lower fares stop being offered first. An important managerial implication

of this result is that revenue-ordered assortments can be implemented by using nested protection

level policies, which is the standard tool in traditional revenue management systems. Therefore, our

policy that offers only revenue-ordered assortments can be easily integrated with the existing revenue

management controls. We emphasize that nesting-by-fare-order property does not necessarily hold under

the mixture-of-logits choice model if we do not focus on revenue-ordered assortments.

To establish this result, for each x ∈ {0, 1, . . . , C}, let Jt(x) denote the maximum expected revenue

when we have x units of inventory and t periods remaining, given that we can offer only revenue-ordered

assortments. Since we offer revenue-ordered assortments in each period, Jt(·) satisfies the following

dynamic programming equation:

Jt(x) = max
`=1,...,n

E

{∑̀
i=1

πi({1, . . . , `},V ) (ri + Jt−1(x− 1)) + π0({1, . . . , `},V )Jt−1(x)

}

= max
`=1,...,n

E

{∑̀
i=1

πi({1, . . . , `},V ) (ri −∆Jt−1(x))

}
+ Jt−1(x) ,

where the expectation is taken with respect to the random vector V , π0(S,V ) is the no purchase

probability when we offer assortment S and the realization of the mean utilities are V , and ∆Jt−1(x) =

Jt−1(x)− Jt−1(x− 1) denotes the marginal value of capacity. The boundary conditions of the dynamic

program are V0(x) = 0 for all x and Vt(0) = 0 for all t. Let `∗t (x) denote the optimal product index in

the problem on the right side above when we have x units of remaining inventory and t periods to go,

corresponding to the revenue-ordered assortment {1, 2, . . . , `∗t (x)}.

The main result of this section is stated in the following theorem.
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Theorem 6.1 (Nested-by-Fare-Order Property) For each t, `∗t (x) is non-decreasing in x.

Moreover, for each x, `∗t (x) is non-increasing in t.

Thus, we offer a larger revenue-ordered assortment in a period when we have more capacity. As

discussed in Talluri and van Ryzin (2004), Theorem 6.1 implies that we can implement the resulting

optimal policy using nested protection level policies, which represent a capacity allocation method

traditionally used in the revenue management industry. In addition, Theorem 6.1 enables us to simplify

the computation and storage of the optimal policy. In general, we need to keep the optimal product

index `∗t (x) for each period t and for each remaining inventory level x, which, in turns, gives the optimal

revenue-ordered assortment to offer for each period and for each inventory level. This requires keeping

a total of O(CT ) numbers. However, since `∗t (x) is non-decreasing in x, we can simply keep track of n

capacity thresholds in each period, representing the smallest amount of capacity at which we still offer

a particular fare class. This requires keeping a total of O(nT ) numbers. In practical applications, the

number of fare classes n is generally much smaller than C.

The proof of Theorem 6.1 makes use of the following lemma, which shows that when we increment the

revenue of every product by a positive constant, the corresponding optimal revenue-ordered assortment

becomes larger. To facilitate our discussion, let us introduce the following notation. For each δ ≥ 0 and

each assortment S, let f δ(S,V ) denote the revenue under assortment S and mean utility V , when the

revenue of every product is increased by δ; that is,

f δ(S,V ) ≡
∑
i∈S

(ri + δ)πi(S,V ) =
∑
i∈S

riπi(S,V ) + δ
∑
i∈S

πi(S,V ) = f0(S,V ) + δ
∑
i∈S

πi(S,V ) .

Let {1, 2, . . . , `δ} denote the revenue-ordered assortment that maximizes the expected revenue under f δ;

that is,

`δ = arg max
`=1,...,n

E
{
f δ ({1, . . . , `},V )

}
.

Lemma 6.2 (Larger Revenues Lead to Larger Assortments) For all δ ≥ 0, `0 ≤ `δ.

Proof. We will prove this by contradiction. Suppose on the contrary that `0 > `δ for some δ ≥ 0. By

definition of `δ and using the fact that f δ(S,V ) = f0(S,V ) + δ
∑

i∈S πi(S,V ), we have that

0 ≥ E
{
f δ({1, . . . , `0},V )

}
− E

{
f δ({1, . . . , `δ},V )

}
= E

{
f0({1, . . . , `0},V ) + δ

`0∑
k=1

πk({1, . . . , `0},V )− f0({1, . . . , `δ},V )− δ
`δ∑
k=1

πk({1, . . . , `δ},V )
}

= E
{
f0({1, . . . , `0},V )

}
− E

{
f0({1, . . . , `δ},V )

}
+ δE

{
π0({1, . . . , `δ},V )− π0({1, . . . , `0},V )

}
> E

{
f0({1, . . . , `0},V )

}
− E

{
f0({1, . . . , `δ},V )

}
≥ 0 ,
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where the second equality follows by noting that
∑`0

k=1 πk({1, . . . , `0},V ) = 1− π0({1, . . . , `0},V ) and∑`δ

k=1 πk({1, . . . , `δ},V ) = 1− π0({1, . . . , `δ},V ), and the second inequality follows from

E
{
π0({1, . . . , `δ},V )− π0({1, . . . , `0},V )

}
= E

{
1

1 +
∑`δ

i=1 e
Vi
− 1

1 +
∑`0

i=1 e
Vi

}
> 0

because `δ < `0. The final inequality in the first displayed chain of inequalities above follows from the

definition of `0. This is a contradiction, and thus, it must be the case that `0 ≤ `δ for all δ ≥ 0. 2

We also need the following lemma, which characterizes the structure of the value functions. In

particular, this lemma shows that the value functions are concave in the remaining inventory and the

first differences of the value functions decrease as we approach the end of the selling horizon. The proof

of this result is by now standard within the revenue management literature (see, for example, Talluri

and van Ryzin, 2004), and we omit the details.

Lemma 6.3 (Properties of the Value Functions) For t = 1, 2, . . . , T and x = 1, 2, . . . , C,

∆Jt(x) ≤ ∆Jt(x− 1) and ∆Jt(x) ≥ ∆Jt−1(x) .

We are now ready to show Theorem 6.1.

Proof of Theorem 6.1

Proof. By definition,

`∗t (x) = arg max
`=1,...,n

E

{∑̀
i=1

πi({1, . . . , `},V ) (ri −∆Jt−1(x))

}

`∗t (x− 1) = arg max
`=1,...,n

E

{∑̀
i=1

πi({1, . . . , `},V ) (ri −∆Jt−1(x− 1))

}
.

Since ∆Jt−1(x − 1) ≥ ∆Jt−1(x) by Lemma 6.3, applying Lemma 6.2 with `0 = `∗t (x − 1) and δ =

∆Jt−1(x− 1)−∆Jt−1(x), it follows that `∗t (x− 1) ≤ `∗t (x), which proves the first part of the theorem.

To establish the second part, note that

`∗t (x) = arg max
`=1,...,n

E

{∑̀
i=1

πi({1, . . . , `},V ) (ri −∆Jt−1(x))

}

`∗t−1(x) = arg max
`=1,...,n

E

{∑̀
i=1

πi({1, . . . , `},V ) (ri −∆Jt−2(x))

}
.

Since ∆Jt−1(x) ≥ ∆Jt−2(x) by Lemma 6.3, applying Lemma 6.2 with `0 = `∗t (x) and δ =

∆Jt−1(x) − ∆Jt−2(x), it follows that `∗t (x) ≤ `∗t−1(x), which is the desired result. 2
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7 Numerical Experiments

In this section, our goal is to investigate the empirical performance of revenue-ordered assortments on

practical instances of the Mixture Logit problem. We consider two sets of test problems in our

numerical experiments. In the first set, we serve a market with a relatively small number of customer

segments. Customers in different segments associate different mean utilities with the products. The

objective is to maximize the expected revenue over all customer segments. In the second set, the mean

utilities that a customer associates with the products have a continuous distribution. The objective is

to maximize the expected revenue over all customers.

7.1 Small Number of Market Segments

Experimental Setup: We assume that we serve a market with G customer segments. A customer

in segment G associates the mean utilities V̂ g = (V̂ g
1 , . . . , V̂

g
n ) with the products. The relative size of

customer segment g is αg. We view αg as the probability of getting a customer in segment g, where we

normalize α1, . . . , αG so that
∑G

g=1 α
g = 1. This setup corresponds to the situation where the vector of

mean utilities has G possible realizations V̂ 1, . . . , V̂ G and the vector of mean utilities takes value V̂ g

with probability αg.

Noting that the approximation guarantees of revenue-ordered assortments in Sections 5.1 and 5.2

depend on G, n and r1/rn, we vary (G,n, r1/rn) over {2, 5, 10} × {10, 25, 50} × {10, 102, 103} to obtain

27 problem classes. In each problem class, we randomly generate 10,000 problem instances. For

each problem instance, we find the best revenue-ordered assortment by checking the expected revenue

provided by every assortment of the form {1, 2, . . . , i}. Let Approx(k) denote the expected revenue

provided by the best revenue-ordered assortment for problem instance k. Bront et al. (2009) show that

the Mixture Logit problem can be formulated as a mixed integer program, enabling us to compute

the optimal assortment for each problem instance by using a mixed integer programming solver. Let

Opt(k) be the expected revenue provided by the optimal assortment for problem instance k. Our goal

is to compare Opt(k) with Approx(k).

We use the following strategy to generate the problem instances. To come up with the possible

realizations of the vector of mean utilities, we sample σi from the uniform distribution over [0, 1] for

each product i. The parameter σi characterizes the variability in the mean utility of product i among

the different customer segments. If σi is close to zero, then product i is a staple product and its mean

utility does not show too much variability among the different customer segments. This corresponds a

situation where the different customer segments evaluate product i in a similar fashion. If σi is close

to one, then product i is a specialty product and its mean utility shows large variability among the

different customer segments. This corresponds to a situation where the different customer segments

evaluate product i in a drastically different fashion. In this case, for each customer segment g and

product i, we sample ϑgi from the uniform distribution over [0, 10] and set V̂ g
i = log((1− σi)ϑgi /n) with

probability 1/2 and V̂ g
i = log((1 + σi)ϑ

g
i /n) with probability 1/2. To see the motivation behind our

choice of the mean utilities, we note that if σi takes a value close to zero, then eV̂
g
i takes a value close

to ϑgi /n. On the other hand, if σi takes a value close to one, then eV̂
g
i either takes a value close to zero
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or takes a value close to 2ϑgi /n. Therefore the parameter σi indeed captures how much the mean utility

of a product differs among the different customer segments. Furthermore, the expectation of eV̂
g
i is

5/n. If eV̂
g
i takes a value close to its expectation and we offer all products, then the probability that a

customer does not purchase anything is 1/ (1 + (n× 5/n)) = 1/6, indicating that a customer does not

purchase anything with a significant probability even if we offer all products.

To come up with the revenues of the products, we always set rn = 1. Depending on the problem

class, we set r1 = 10, 102 or 103. We sample the remaining revenues from the uniform distribution over

[rn, r1]. Finally, to come up with the relative sizes of the customer segments, we sample βg from the

uniform distribution over [0, 1] for each customer segment g and set αg = βg/
∑G

h=1 β
h.

Numerical Results: Table 1 gives an overview of our numerical results. Each row in this table

corresponds to a problem class described by the triplet (G,n, r1/rn). The first column lists all problem

classes. Recall that we generate 10,000 problem instances in each problem class. The second column

shows the percentage of problem instances out of 10,000 for which Approx(k) is not equal to Opt(k),

corresponding to the frequency with which revenue-ordered assortments are not optimal. To facilitate

our discussion, we denote these problem instances by defining the set NonOpt = {k ∈ {1, . . . , 10, 000} :

Approx(k) < Opt(k)}. For each problem class, we are interested in the distribution of the percent

optimality gaps across all 10,000 problem instances and across the problem instances in NonOpt. In

particular, these percent optimality gaps are captured by the sets of numbers

GapAll =

{
100× Opt(k)− Approx(k)

Opt(k)
: k = 1, . . . , 10, 000

}
GapNonOpt =

{
100× Opt(k)− Approx(k)

Opt(k)
: k ∈ NonOpt

}
.

The third and fourth columns in Table 1 provide aggregate statistics for the set GapAll. In particular,

the third column reports the average of the optimality gaps across all problem instances, whereas the

fourth column shows the 95th percentile. The fifth and sixth columns give similar aggregate statistics,

but they focus on the optimality gaps in the set GapNonOpt.

The results in Table 1 indicate that revenue-ordered assortments perform very well across all problem

instances. The average and 95th percentile of the optimality gaps are only a fraction of a percent. When

we focus only on the problem instances in NonOpt, the average optimality gap is still less than 1% and

the 95th percentile does not exceed 3.26%. As the number of products increases, the average and the

95th percentile slightly increase, which is in agreement with the approximation guarantees we derive in

Section 5. As the number of customer segments or the ratio between the largest and smallest revenues

increases, the average and 95th percentile of the optimality gaps remain stable and they even show a

slightly decreasing trend.

Figure 1 shows the histograms of the optimality gaps in the set GapNonOpt for problem classes

(2, 10, 10) and (10, 50, 103). The two histograms indicate that the optimality gaps decline sharply and

the tails of the histogram tend to be quite thin. Generally, less than 2% of the problem instances have

optimality gaps exceeding 1%. Although we give histograms for only two problem classes, we observed

similar patterns for all of the problem classes we studied.
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Perc. of Statistics for Statistics for
Prob. Class Suboptimal GapAll GapNonOpt
G n r1/rn Instances Avg. 95th Pr. Avg. 95th Pr.

2 10 10 10.27% 0.09% 0.58% 0.92% 3.22%
2 10 102 7.78% 0.07% 0.32% 0.91% 3.26%
2 10 103 7.61% 0.07% 0.31% 0.91% 3.20%
2 25 10 30.41% 0.15% 0.90% 0.49% 1.73%
2 25 102 24.25% 0.12% 0.74% 0.48% 1.69%
2 25 103 23.96% 0.11% 0.72% 0.48% 1.75%
2 50 10 50.97% 0.18% 0.94% 0.36% 1.31%
2 50 102 44.05% 0.14% 0.82% 0.33% 1.24%
2 50 103 43.72% 0.14% 0.80% 0.33% 1.24%

5 10 10 8.84% 0.07% 0.41% 0.77% 2.33%
5 10 102 5.91% 0.04% 0.12% 0.75% 2.14%
5 10 103 5.82% 0.04% 0.12% 0.74% 2.22%
5 25 10 31.69% 0.10% 0.60% 0.33% 1.03%
5 25 102 23.31% 0.07% 0.45% 0.30% 1.03%
5 25 103 23.10% 0.07% 0.45% 0.30% 1.00%
5 50 10 58.52% 0.14% 0.62% 0.24% 0.77%
5 50 102 49.22% 0.10% 0.49% 0.21% 0.69%
5 50 103 48.82% 0.10% 0.49% 0.21% 0.69%

10 10 10 6.67% 0.04% 0.21% 0.66% 1.85%
10 10 102 4.42% 0.02% 0.00% 0.56% 1.75%
10 10 103 4.45% 0.02% 0.00% 0.54% 1.76%
10 25 10 25.10% 0.06% 0.38% 0.25% 0.76%
10 25 102 16.13% 0.04% 0.25% 0.23% 0.70%
10 25 103 15.94% 0.04% 0.24% 0.23% 0.70%
10 50 10 50.88% 0.08% 0.37% 0.16% 0.47%
10 50 102 39.73% 0.05% 0.26% 0.13% 0.40%
10 50 103 39.18% 0.05% 0.26% 0.13% 0.40%

Table 1: Performance of revenue-ordered assortments when we have a small number of market segments.
Each problem class includes 10,000 problem instances.

7.2 Mean Utilities Drawn from a Continuous Distribution

Experimental Setup: In the experimental setup of this section, the mean utilities of the products

have a continuous distribution. In particular, we assume that a customer considers purchasing each one

of the products with probability 1/2. If the customer considers purchasing product i, then the mean

utility Vi associated with this product has a normal distribution. To generate problems of this nature,

we proceed as follows. In each problem instance, we generate a parameter pi for each product i. This

parameter captures the inherent attractiveness of product i to a customer, with a larger value of pi

making product i more attractive to a customer. To come up with (p1, . . . , pn), we sample Ψi from the

standard normal distribution and set pi = eΨi/
∑n

j=1 e
Ψj . Note that we have

∑n
i=1 pi = 1. Using the

parameters (p1, . . . , pn), the mean utility of product i in our numerical experiments has the form

Vi = log(piXi) + µ+ σNi,

where pi is generated as described above, Xi is a Bernoulli random variable with parameter 1/2 and Ni

is a standard normal random variable. Each one of the random variables (X1, . . . , Xn) and (N1, . . . , Nn)

are independent of others. We choose the values of the constants µ and σ such that µ+ σ2/2 = log 10

and
√
eσ2/2 − 1 = ∆, where ∆ is a parameter that we vary in our experimental setup. To see the
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Figure 1: Histograms of the optimality gaps among problem instances in NonOpt for two problem
classes.

reasoning behind the specific form of the mean utility Vi, we observe that if Xi = 0, then eVi = 0,

which indicates that the customer does not consider purchasing product i at all. Therefore, a customer

considers purchasing each product with probability 1/2. Also, if pi is large, then the mean utility of

product i tends to be large, indicating that pi indeed captures the inherent attractiveness of product i to

a customer. Furthermore, once the parameters (p1, . . . , pn) are fixed, we have E{eVi} = 1
2 pi e

µ+σ2/2 =

5 pi. In this case, if eVi takes a value close to its expectation and we offer all products, then the

probability that a customer does not purchase anything is 1/(1 +
∑n

i=1 5 pi) = 1/6, where we use the

fact that
∑n

i=1 pi = 1. So, the probability that a customer does not purchase anything is still significant

even if we offer all products. Finally, given that Xi = 1, the expectation and standard deviation of eVi

are respectively given by pi e
µ+σ2/2 and pi e

µ+σ2/2
√
eσ2/2 − 1. Therefore, the parameter ∆ corresponds

to the standard deviation to mean ratio of eVi given that a customer considers purchasing product i. So,

larger values of ∆ yield larger variations in how much a customer is attracted to a product.

Similar to our experimental setup in Section 7.1, to come up with the revenues of the products,

we always set rn = 1. We sample the remaining revenues from the uniform distribution over [rn, r1],

where r1 is a parameter that we vary in our experimental setup. In our numerical experiments, we vary

n× r1×∆ over {10, 20}× {10, 102, 103}× {2, 4, 6} to obtain 18 problem classes. In each problem class,

we generate 1,000 problem instances

When V = (V1, . . . , Vn) has a continuous distribution, an important consideration is that simply

computing the expected revenue E{f(S,V )} from an assortment S can be difficult, requiring the

evaluation of a multi-dimensional integral. We resolve this difficulty by estimating this expectation

through Monte Carlo simulation. We obtain 500 samples of V given by {V̂ t : t = 1, . . . , 500} and

estimate E{f(S,V )} as 1
500

∑500
t=1 f(S, V̂ t). When estimating the expectation E{f(S,V )} for different

assortments, we use the same set of 500 samples of V . We can interpret the sample V̂ t as the

mean utilities that customers in market segment t associates with the products. Therefore, similar
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Perc. of Statistics for Statistics for
Prob. Class Suboptimal GapAll GapNonOpt
n r1/rn ∆ Instances Avg. 95th Pr. Avg. 95th Pr.

10 10 2 2.7% 0.01% 0.00% 0.22% 0.75%
10 102 4 6.6% 0.02% 0.05% 0.30% 0.89%
10 103 6 13.7% 0.04% 0.32% 0.30% 0.91%
10 10 2 2.3% 0.01% 0.00% 0.22% 0.85%
10 102 4 1.6% 0.00% 0.00% 0.19% 0.66%
10 103 6 1.8% 0.00% 0.00% 0.08% 0.26%
10 10 2 2.1% 0.00% 0.00% 0.16% 0.29%
10 102 4 1.7% 0.00% 0.00% 0.17% 0.43%
10 103 6 2.4% 0.00% 0.00% 0.17% 0.46%

20 10 2 4.9% 0.00% 0.00% 0.09% 0.25%
20 102 4 7.3% 0.01% 0.03% 0.14% 0.53%
20 103 6 11.2% 0.02% 0.08% 0.14% 0.49%
20 10 2 4.8% 0.00% 0.00% 0.07% 0.20%
20 102 4 8.2% 0.01% 0.06% 0.12% 0.35%
20 103 6 7.2% 0.01% 0.03% 0.08% 0.28%
20 10 2 5.2% 0.01% 0.00% 0.11% 0.42%
20 102 4 5.4% 0.01% 0.02% 0.11% 0.33%
20 103 6 7.5% 0.01% 0.04% 0.11% 0.36%

Table 2: Performance of revenue-ordered assortments when the mean utilities have a continuous
distribution. Each problem class includes 1,000 problem instances.

to Section 7.1, the experimental setup in this section can be interpreted as one where we have multiple

customer segments, but the number of segments in the experimental setup of this section is quite large.

Numerical Results: We present our numerical results in Table 2. The format of this table is identical

to that of Table 1. The results indicate that revenue-ordered assortments continue to perform remarkably

well. In the most problematic problem class, revenue-ordered assortments are not optimal in no more

than 14% of the problem instances. Even if we consider problem instances where revenue-ordered

assortments are not optimal, the 95th percentile of the optimality gaps is less than a percent. As

∆ increases and the mean utilities associated with the products become more variable, we generally

observe a slight increase in the optimality gaps, but even the largest optimality gaps are no more than a

percent. Overall, our results in Sections 7.1 and 7.2 indicate that revenue-ordered assortments perform

quite well over a wide range of problem parameters.

8 Conclusions

We studied the performance of revenue-ordered assortments for assortment optimization problems under

the multinomial logit model with random parameters. We identified two practically useful cases with

a special structure on the random nature of the choice model parameters, where revenue-ordered

assortments remain optimal. When the randomness in the choice model parameters does not follow

a special structure, we derived tight approximation guarantees for revenue-ordered assortments. In a

multi-period model, we showed that focusing on revenue-ordered assortments allows us to use nested

protection levels. Our numerical results indicated that revenue-ordered assortments perform very well

in practice.
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This work opens up a number of directions for future research. To begin with, it would be

interesting to extend the reach of revenue-ordered assortments further by identifying other cases

where such assortments remain optimal. Also, it would be useful to find a class of assortments that

provide a constant factor approximation guarantee for the assortment optimization problem. One

may also try to extend the analysis in this paper to more complex choice models such as the

mixture-of-nested-logits. Finally, the multinomial logit model with random parameters provides a rich

family of models for representing the underlying customer choice process. Finding an effective parameter

estimation technique for this class of choice models is an exciting future research area.
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A Proof of Theorem 3.2

Proof. It is clear that 2-Class Logit is in NP. We show that we can transform an arbitrary instance of

Partition, which is a well-known NP-complete problem (see, for example, Garey and Johnson, 1979),

to an equivalent 2-Class Logit problem. The Partition problem is defined as follows.

Partition

Inputs: Set of items indexed by 1, 2, . . . , n and the size ci ∈ Z+ associated with each item i.

Question: Is there a subset S ⊆ {1, . . . , n} such
∑

i∈S ci =
∑

i∈{1,...,n}\S ci?

Let T = 1
2

∑n
i=1 ci. Note that

∑
i∈S ci =

∑
i∈{1,...,n}\S ci if and only if

∑
i∈S ci = T . Therefore, we

may assume without loss of generality that T ∈ Z+. We construct an instance of the 2-Class Logit

problem as follows. We have n + 1 products indexed by 1, . . . , n, n + 1. We set the revenues of the

products and the two realizations of the mean utilities as

ri =

{
(1 + 8T )(3 + 4T ) if i = 1, . . . , n

4(1 + 8T )(3 + 4T ) if i = n+ 1,

eV̂
1
i =

{
2 ci if i = 1, . . . , n

1/2 if i = n+ 1,
eV̂

2
i =

{
4(1 + 4T )ci/7T if i = 1, . . . , n

1/7 if i = n+ 1.

We set the probabilities of observing the two realizations of the mean utilities as α1 = (1+4T )/(1+8T )

and α2 = 4T/(1+8T ). Finally, we set the target revenue as K = 4(1+4T )(1+2T )+4T . Now, we show

that the Partition problem has a solution if and only if there exists an assortment S ⊆ {1, . . . , , n, n+1}
whose expected revenue is at least K. Noting that the rn+1 > maxi∈{1,...,n} ri, adding product n+ 1 to

any assortment increases the expected revenue from the assortment. So, we have

max
S⊆{1,...,n,n+1}

{
α1

∑
i∈S ri e

V̂ 1
i

1 +
∑

i∈S e
V̂ 1
i

+ α2

∑
i∈S ri e

V̂ 2
i

1 +
∑

i∈S e
V̂ 2
i

}

= max
S⊆{1,...,n}

{
α1 rn+1 e

V̂ 1
n+1 +

∑
i∈S ri e

V̂ 1
i

1 + v1
n+1 +

∑
i∈S e

V̂ 1
i

+ α2 rn+1 e
V̂ 2
n+1 +

∑
i∈S ri e

V̂ 2
i

1 + v2
n+1 +

∑
i∈S e

V̂ 2
i

}
.
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To facilitate our exposition, let Π : 2{1,...,n} → R+ denote the objective function of the last optimization

problem above. Using the definitions of ri, e
V̂ 1
i , eV̂

2
i , α1 and α2, we have

Π(S) =
1 + 4T

1 + 8T

(
2(1 + 8T )(3 + 4T ) + 2(1 + 8T )(3 + 4T )

∑
i∈S ci

1 + 1/2 + 2
∑

i∈S ci

)

+
4T

1 + 8T

(
4(1 + 8T )(3 + 4T )/7 + 4(1 + 8T )(3 + 4T )(1 + 4T )

∑
i∈S ci/(7T )

1 + 1/7 + 4(1 + 4T )
∑

i∈S ci/(7T )

)

= 4(1 + 4T )(3 + 4T )

(
1 +

∑
i∈S ci

3 + 4
∑

i∈S ci

)
+ 4(1 + 4T )(3 + 4T )

(
4T 2

1+4T + 4T
∑

i∈S ci

8T + 4(1 + 4T )
∑

i∈S ci

)
for any assortment S. Therefore, Π(S) can be written as Π(S) = 4(1 + 4T )(3 + 4T )F

(∑
i∈S ci

)
, where

the function F : R+ → R+ is defined for all z ∈ R+ by

F (z) =
1 + z

3 + 4z
+

4T 2

1+4T + 4Tz

8T + 4(1 + 4T )z
=

1 + z

3 + 4z
+

T
1+4T + z

2 +
(

1+4T
T

)
z
.

It is straightforward to verify that the derivative of F is strictly positive over the interval [0, T ) and

strictly negative over the interval (T,∞). Therefore, F has a unique maximum at T , and thus, for all

z ∈ R+, F (z) ≤ F (T ) =
(

1 + 2T + T
1+4T

)
/ (3 + 4T ). Hence, we obtain

max
S⊆{1,...,n,n+1}

{
α1

∑
i∈S ri e

V̂ 1
i

1 +
∑

i∈S e
V̂ 1
i

+ α2

∑
i∈S ri e

V̂ 2
i

1 +
∑

i∈S e
V̂ 2
i

}
= max

S⊆{1,...,n}
Π(S)

= 4(1 + 4T )(3 + 4T ) max
S⊆{1,...,n}

F
(∑

i∈S ci
)
≤ 4(1 + 4T )(3 + 4T )F (T )

= 4(1 + 4T )

(
1 + 2T +

T

1 + 4T

)
= 4(1 + 4T )(1 + 2T ) + 4T = K.

So, there exists an assortment S ⊆ {1, . . . , n, n + 1} whose expected profit is at least K if and only

if the chain of inequalities above hold as equalities. For this to happen, however, we need to have∑
i∈S′ ci = T for some assortment S′ ⊆ {1, . . . , n}. Therefore, we reach the conclusion that there exists

an assortment S ⊆ {1, . . . , n, n + 1} whose expected profit is at least K if and only if there exists an

assortment S′ ⊆ {1, . . . , n} that satisfies
∑

i∈S′ ci = T . 2

B Proof of Theorem 4.1

Proof. We assume that P has the density function h and B has uniform distribution over [b1, b2] with

0 ≤ b1 < b2. The same line of reasoning applies when P has a discrete distribution or when the

distribution of B is degenerate with b1 = b2. By definition of πi(S,V ),

E{πi(S,V )} =
1

b2 − b1

∫
R
h(p)

∫ b2

b1

eµi+p−b ri

1 +
∑

j∈S e
µj+p−b rj

db dp.

Using the expression above, we write the objective function of the Mixture Logit problem as

E{f(S,V )} =
∑
i∈S

ri E{πi(S,V )} =
1

b2 − b1

∑
i∈S

ri

∫
R
h(p)

∫ b2

b1

eµi+p−b ri

1 +
∑

j∈S e
µj+p−b rj

db dp

=
1

b2 − b1

∫
R
h(p)

∫ b2

b1

∑
i∈S ri e

µi+p−b ri

1 +
∑

j∈S e
µj+p−b rj

db dp.
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The second integral in the last expression above can be computed as

∫ b2

b1

∑
i∈S ri e

µi+p−b ri

1 +
∑

j∈S e
µj+p−b rj

db = − log

(
1 +

∑
i∈S

eµi+p−b ri

)∣∣∣∣∣
b2

b1

= log

(
e−p +

∑
i∈S e

µi−b1 ri

e−p +
∑

j∈S e
µi−b2 ri

)
,

in which case, we obtain

E{f(S,V )} =
1

b2 − b1

∫
R
h(p) log

(
e−p +

∑
i∈S e

µi−b2 rie(b2−b1) ri

e−p +
∑

i∈S e
µi−b2 ri

)
dp

=
1

b2 − b1

∫ ∞
0

g(v0) log

(
v0 +

∑
i∈S e

µi−b2 rie(b2−b1) ri

v0 +
∑

i∈S e
µi−b2 ri

)
dv0 ,

where the last equality follows from the change of variable v0 = e−p and g(v0) = h(− log v0)
v0

. For

i = 1, . . . , n, let wi = e(b2−b1)ri and vi = eµi−b2ri . Note that w1 ≥ w2 ≥ · · · ≥ wn > 1 by our assumption

on ri, and g(v0) ≥ 0 for all v0. Dropping the scaling constant 1
b2−b1 , the Mixture Logit problem then

corresponds to the following optimization problem:

Z∗ = max
S⊆{1,...,n}

∫
R+

g(v0) log

(
v0 +

∑
i∈S wivi

v0 +
∑

i∈S vi

)
dv0 ≤ max

y∈[0,1]n

∫
R+

g(v0) log

(
v0 +

∑n
i=1wiviyi

v0 +
∑n

i=1 viyi

)
dv0 ,

where the inequality follows from the fact that the optimization problem on the right side is the

continuous relaxation of the one on the left side. To complete the proof, we will show that revenue-

ordered assortments are optimal for the continuous relaxation. To see this, note that

max
y∈[0,1]n

∫
R+

g(v0) log

(
v0 +

∑n
i=1wiviyi

v0 +
∑n

i=1 viyi

)
dv0

= max
ε∈[0,

∑n
i=1 vi]

max
y∈[0,1]n:

∑n
i=1 viyi=ε

∫
R+

g(v0) log

(
v0 +

∑n
i=1wiviyi

v0 +
∑n

i=1 viyi

)
dv0

= max
ε∈[0,

∑n
i=1 vi]

∫
R+

g(v0) log

(
v0 + ξ(ε)

v0 + ε

)
dv0 ,

where ξ(ε) = max{
∑n

i=1wiviyi : y ∈ [0, 1]n,
∑n

i=1 viyi = ε}. Note that ξ(ε) is the optimal objective

value of a continuous knapsack problem, and the optimal solution can be found by filling the items

according to their profit-to-space ratio wivi/vi. Since w1 ≥ w2 ≥ · · · ≥ wn > 1, it follows that ξ(ε) is a

piecewise linear function with the following breakpoints:
{∑`

i=1 vi : ` = 1, 2, . . . , n
}

. Note that, for each

`, the breakpoint
∑`

i=1 vi corresponds to the total preference weight associated with the revenue-ordered

assortment {1, . . . , `}. The desired result then follows immediately from the following claim:

Claim: The maximum of the continuous relaxation occurs at one of the breakpoints{∑`
i=1 vi : ` = 1, 2, . . . , n

}
; that is,

max
ε∈[0,

∑n
i=1 vi]

∫
R+

g(v0) log

(
v0 + ξ(ε)

v0 + ε

)
dv0 = max

`=1,...,n

∫
R+

g(v0) log

(
v0 + ξ

(∑`
i=1 vi

)
v0 +

∑`
i=1 vi

)
dv0.
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For each ε ≥ 0, let T (ε) =
∫
R+
g(v0) log

(
v0+ξ(ε)
v0+ε

)
dv0 , and let ε∗ be a maximizer of T over the

interval [0,
∑n

i=1 vi]. To prove the claim, suppose on the contrary that ε∗ occurs strictly between the

breakpoints; that is,
∑K−1

i=1 vi < ε∗ <
∑K

i=1 vi for some K ≥ 1. The knapsack problem defining ξ(ε)

can be solved by ordering the items with respect to their profit-to-space ratios. Since the profit-to-space

ratio of item i in this knapsack problem is wi vi/vi = wi and w1 ≥ w2 ≥ · · · ≥ wn, it follows that, for∑K−1
i=1 vi < ε∗ <

∑K
i=1 vi, we have

ξ(ε∗) =

K−1∑
i=1

wivi + wK

(
ε∗ −

K−1∑
i=1

vi

)
and ξ′(ε∗) = wK .

Let M =
∑K−1
i=1 (wi−wK)vi

wK−1 . Since ε∗ occurs between breakpoints, we have 0 = T ′(ε∗). Note that

T ′(ε∗) =

∫
R+

g(v0)
v0 + ε∗

v0 + ξ(ε∗)

(
(v0 + ε∗)ξ′(ε∗)− (v0 + ξ(ε∗))

(v0 + ε∗)2

)
dv0

=

∫
R+

g(v0)

(
wK

v0 + ξ(ε∗)
− 1

v0 + ε∗

)
dv0 = (wK − 1)

∫
R+

g(v0)
v0 −M

(v0 + ε∗)(v0 + ξ(ε∗))
dv0 ,

where the last equality follows from the fact that

(v0 + ε∗)wK − (v0 + ξ(ε∗)) = v0(wK − 1)−
K−1∑
i=1

(wi − wK)vi = (wK − 1)(v0 −M) .

Since wK > 1 and T ′(ε∗) = 0, it must be the case that M > 0. Otherwise, the last integral is strictly

positive. Moreover, it is easy to verify that

T ′′(ε∗) =

∫
R+

g(v0)

(
−w2

K

(v0 + ξ(ε∗))2
+

1

(v0 + ε∗)2

)
dv0 =

∫
R+

g(v0)
(v0 + ξ(ε∗))2 − w2

K(v0 + ε∗)2

(v0 + ξ(ε∗))2(v0 + ε∗)2
dv0.

Note that for any x ∈ R+ and z ∈ R+, x2 − z2 = (x− z)(x+ z) ≥ 2(x− z)z, which implies that

(v0+ξ(ε∗))2−w2
K(v0+ε∗)2 ≥ 2wK (v0 + ξ(ε∗)− wK(v0 + ε∗)) (v0+ε∗) = −2wK(wK−1)(v0−M)(v0+ε∗) ,

where the last equality follows from (v0 + ε∗)wK − (v0 + ξ(ε∗)) = (wK − 1)(v0 −M), which we have

shown above. Putting everything together, we get

T ′′(ε∗)

wK(wK − 1)
≥ −2

∫
R+

g(v0)
(v0 −M)(v0 + ε∗)

(v0 + ξ(ε∗))2(v0 + ε∗)2
dv0 = −2

∫
R+

g(v0)
(v0 −M)

(v0 + ξ(ε∗))2(v0 + ε∗)
dv0

= −2

∫ M

0
g(v0)

(v0 −M)

(v0 + ξ(ε∗))2(v0 + ε∗)
dv0 − 2

∫ ∞
M

g(v0)
(v0 −M)

(v0 + ξ(ε∗))2(v0 + ε∗)
dv0

> −2

∫ M

0
g(v0)

(v0 −M)

(M + ξ(ε∗))(v0 + ξ(ε∗))(v0 + ε∗)
dv0 − 2

∫ ∞
M

g(v0)
(v0 −M)

(M + ξ(ε∗))(v0 + ξ(ε∗))(v0 + ε∗)
dv0

= − 2

M + ξ(ε∗)

∫
R+

g(v0)
(v0 −M)

(v0 + ξ(ε∗))(v0 + ε∗)
dv0 = − 2T ′(ε∗)

(M + ξ(ε∗))(wK − 1)
= 0 ,

where the last strict inequality follows from the fact that M > 0. This means that T is strictly convex

in a small neighborhood of ε∗, while the derivative of T vanishes at ε∗. This contradicts the fact that ε∗

is a maximizer of T ! Therefore, the maximum must occur at one of the breakpoints. 2
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C Proof of Theorem 5.4

The proof of Theorem 5.4 makes use of the following lemma.

Lemma C.1 If product i is included in an optimal assortment for the problem maxS⊆{1,...,n} f(S,V ),

then there also exists an optimal assortment for this problem that includes any other product that has

the same revenue as product i.

Proof. Assume that S∗ is an optimal solution to the problem maxS⊆{1,...,n} f(S,V ) with i ∈ S∗, j 6∈ S∗

and ri = rj . Note that f(S∗, V ) is a convex combination of f(S∗ \ {i},V ) and ri since

f(S∗,V ) =

(
1 +

∑
`∈S∗\{i} e

V`

1 +
∑

`∈S∗ e
V` + eVi

)
f(S∗ \ {i},V ) +

(
eVi

1 +
∑

`∈S∗ e
V` + eVi

)
ri.

Noting that f(S∗,V ) ≥ f(S∗ \ {i},V ) by the definition of S∗ and f(S∗,V ) is a convex combination of

f(S∗ \ {i},V ) and ri, we obtain f(S∗,V ) ≤ ri = rj . An identity similar to the one above shows that

f(S∗∪{j},V ) is also a convex combination of f(S∗,V ) and rj , in which case, noting that f(S∗,V ) ≤ rj ,
we obtain f(S∗ ∪ {j},V ) ≥ f(S∗,V ). Therefore we can add product j to the assortment S∗ without

degrading the objective value for the problem maxS⊆{1,...,n} f(S,V ). 2

Here is the proof of Theorem 5.4.

Proof. We can scale the revenues of the products without changing the optimal solution to the Mixture

Logit problem. Thus, we assume without loss of generality that rn = 1. In this case, we need to show

an approximation guarantee of e log(e r1). For any δ > 0, we let Domδ = {(1 + δ)k : k = 0, 1, 2, . . .}
and define Floorδ : R+ → Domδ as Floorδ(x) = max{y ∈ Domδ : y ≤ x} for each x ∈ R+. Therefore,

Floorδ rounds its argument down to the closest element in Domδ. We let fδ(S,V ) be an approximation

to f(S,V ) defined by

fδ(S,V ) =
∑
i∈S

Floorδ(ri)πi(S,V ).

It is easy to verify that fδ(S,V ) ≤ f(S,V ) ≤ (1 + δ)fδ(S,V ) for all S ⊆ {1, . . . , n}.

Let Kδ = b(log r1)/ log(1 + δ)c so that (1 + δ)Kδ ≤ r1 < (1 + δ)Kδ+1. For k = 0, 1, . . . ,Kδ, we define

the set of products Nk
δ as Nk

δ = {i = 1, . . . , n : Floorδ(ri) = (1 + δ)k}. Therefore, the sets of products

N1
δ , . . . , N

Kδ
δ partition the set of products {1, . . . , n}. Furthermore, each Nk

δ includes a consecutive set

of products. Finally, if i, j ∈ Nk
δ for some k = 0, 1, . . . ,Kδ, then these products have the same revenue

in the assortment optimization problem maxS⊆{1,...,n} fδ(S,V ). In this case, it holds that

max
S⊆{1,...,n}

fδ(S,V ) = max
i=1,...,n

fδ({1, . . . , i},V ) = max
k=0,...,Kδ

fδ(∪k`=0N
`
δ ,V ).

The first equality above follows from the fact that if the vector of mean utilities are known, then revenue-

ordered assortments are optimal. To see that the second equality holds, assume on the contrary that

the optimal solution to the second problem above is {1, . . . , i∗} and it cannot be written as ∪k`=0N
`
δ
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for some k = 0, . . . ,Kδ. We let k∗ be such that ∪k∗`=0N
`
δ ⊆ {1, . . . , i∗} ⊆ ∪

k∗+1
`=0 N `

δ . Therefore, all of

the products in the set ∪k∗+1
`=0 N `

δ \ {1, . . . , i∗} have the same revenue in the assortment optimization

problem maxS⊆{1,...,n} fδ(S,V ), in which case, Lemma C.1 implies that these products can be added

to the assortment {1, . . . , i∗} and the assortment ∪k∗+1
`=0 N `

δ is also an optimal solution to the second

problem above. This establishes the second equality. To complete the proof, recall that fδ(S,V ) ≤
f(S,V ) ≤ (1 + δ)fδ(S,V ). Therefore, we have

Z∗ = max
S⊆{1,...,n}

E{f(S,V )} ≤ (1 + δ) max
S⊆{1,...,n}

E{fδ(S,V )}

≤ (1 + δ)E

{
max

S⊆{1,...,n}
fδ(S,V )

}
= (1 + δ)E

{
max

k=0,...,Kδ
fδ(∪k`=0N

`
δ ,V )

}

≤ (1 + δ)E

{
Kδ∑
k=0

fδ(N
k
δ ,V )

}
= (1 + δ)

Kδ∑
k=0

E{fδ(Nk
δ ,V )},

where the third inequality follows by noting that fδ(∪k`=0N
`
δ ,V ) ≤

∑k
`=0 fδ(N

`
δ ,V ) by the first part

of Lemma 5.2. To continue the chain of inequalities, we note that the set N `
δ includes consecutive

products so that it is of the form {i`δ, . . . , j`δ}. In this case, the second part of Lemma 5.2 implies that

fδ(N
`
δ ,V ) = fδ({i`δ, . . . , j`δ},V ) ≤ fδ({1, . . . , j`δ},V ). We continue to chain of inequalities above as

(1 + δ)

Kδ∑
k=0

E{fδ(Nk
δ ,V )} ≤ (1 + δ)

Kδ∑
k=0

E{fδ({1, . . . , jkδ },V )}

≤ (1 + δ)

Kδ∑
k=0

max
i=1,...,n

E{fδ({1, . . . , i},V )} = (1 + δ) (1 +Kδ) max
i=1,...,n

E{fδ({1, . . . , i},V )}

≤ (1 + δ) (1 +Kδ) max
i=1,...,n

E{f({1, . . . , i},V )}

≤ (1 + δ)

(
1 +

log r1

log(1 + δ)

)
max
i=1,...,n

E{f({1, . . . , i},V )},

where the last inequality follows from the fact that Kδ ≤ (log r1)/ log(1 + δ). The result follows by

choosing δ = e− 1 in the last expression. 2

D Proof of Proposition 5.5

Proof. To establish the first part of the proposition, it follows from our hypothesis that

Z∗ = max
S⊆{1,...,n}

E

{ ∑
i∈S rie

Vi

1 +
∑

i∈S e
Vi

}
≤ max

S⊆{1,...,n}

∑
i∈S rie

EVi+δ

1 +
∑

i∈S e
EVi−δ

= e2δ max
S⊆{1,...,n}

∑
i∈S rie

EVi

eδ +
∑

i∈S e
EVi

= e2δ max
`=1,...,n

∑`
i=1 rie

EVi

eδ +
∑`

i=1 e
EVi
≤ e2δ max

`=1,...,n

∑`
i=1 rie

EVi

1 +
∑`

i=1 e
EVi

≤ e2δ max
`=1,...,n

E

{ ∑`
i=1 rie

Vi+δ

1 +
∑`

i=1 e
Vi−δ

}

= e4δ max
`=1,...,n

E

{ ∑`
i=1 rie

Vi

eδ +
∑`

i=1 e
Vi

}
≤ e4δ max

`=1,...,n
E

{ ∑`
i=1 rie

Vi

1 +
∑`

i=1 e
Vi

}
,

where the third equality above follows from the standard result that when the mean utility

is deterministic and known, revenue-ordered assortments are optimal. This gives the desired
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result. For the second part of the proposition, consider an arbitrary product φ ∈ {1, . . . , n}. Since

maxi=1,...,n |Vi − Vφ| ≤ δ almost surely,

Z∗ = max
S⊆{1,...,n}

E

{ ∑
i∈S rie

Vi

1 +
∑

i∈S e
Vi

}
≤ max

S⊆{1,...,n}
E

{ ∑
i∈S rie

Vφ+δ

1 +
∑

i∈S e
Vφ−δ

}
= e2δ max

S⊆{1,...,n}
E

{ ∑
i∈S rie

Vφ

eδ +
∑

i∈S e
Vφ

}

= e2δ max
`=1,...,n

E

{ ∑`
i=1 rie

Vφ

eδ +
∑`

i=1 e
Vφ

}
≤ e2δ max

`=1,...,n
E

{ ∑
i∈S rie

Vi+δ

1 +
∑

i∈S e
Vi−δ

}
≤ e2δ max

`=1,...,n
E

{ ∑
i∈S rie

Vi+δ

1 +
∑

i∈S e
Vi−δ

}

= e4δ max
`=1,...,n

E

{ ∑`
i=1 rie

Vi

eδ +
∑`

i=1 e
Vi

}
≤ e4δ max

`=1,...,n
E

{ ∑`
i=1 rie

Vi

1 +
∑`

i=1 e
Vi

}
,

where the third equality follows from the fact that the third maximization problem above satisfies the

Value Conscious condition because, in this problem, the mean utility of every product is equal to

Vφ, so we have that r1e
Vφ ≥ · · · ≥ rne

Vφ , in which case, the equality follows from Theorem 4.3. This

gives the desired result. 2
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