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One of the most prevalent demand models in the revenue management literature is based on dividing the

selling horizon into a number of time periods such that there is at most one customer arrival at each time

period. This demand model is equivalent to using a discrete-time approximation to a Poisson process, but

it has an important shortcoming. If the mean number of customer arrivals is large, then the coefficient of

variation of the number of customer arrivals has to be small. In other words, large demand volume and

large demand variability cannot co-exist in this demand model. In this paper, we start with a revenue

management model that incorporates general mean and variance for the number of customer arrivals. This

revenue management model has a random selling horizon length, capturing the distribution of the number

of customer arrivals. The question we seek to answer is the form of the fluid approximation that corresponds

to this revenue management model. It is tempting to construct the fluid approximation by computing the

expected consumption of the resource capacities in the constraints and the total expected revenue in the

objective function through the distribution of the number of customer arrivals. We demonstrate that this

answer is wrong in the sense that it yields a fluid approximation that is not asymptotically tight as the

resource capacities get large. We give an alternative fluid approximation, where, perhaps surprisingly, the

distribution of the number of customer arrivals does not play any role in the constraints. We show that

this fluid approximation is asymptotically tight as the resource capacities get large. A numerical study also

demonstrates that the policies driven by the latter fluid approximation perform substantially better, so there

is practical value in getting the fluid approximation right under high-variance demand.

1. Introduction

In the revenue management literature, one of the most prevalent demand models is based on a

Bernoulli process, where we divide the selling horizon into a number of time periods such that

there is at most one customer arrival at each time period. This demand model is equivalent to

using a discrete-time approximation for a Poisson process and it has allowed us to build revenue

management models that have had dramatic impact in practice over many decades; see Talluri and

van Ryzin (2005). Using such a Bernoulli process as the demand model, however, has an important

shortcoming. If the mean number of arrivals is to be large, then the coefficient of variation for the

number of customer arrivals must be small. In particular, consider a selling horizon with T time

periods. At time period t, we have a customer arrival with probability λt. In this case, the total

expected number of customer arrivals is
∑T

t=1 λt, whereas the variance of the number of customer

arrivals is
∑T

t=1 λt (1− λt). Noting that
∑T

t=1 λt (1− λt) ≤
∑T

t=1 λt, the coefficient of variation of
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the number of customer arrivals cannot exceed 1/
√∑T

t=1 λt, corresponding to the reciprocal of the

square root of the expected number of customer arrivals. Thus, if we would like to model large

demand volume so that the expected number of customer arrivals is to be large, then the coefficient

of variation of the number of customer arrivals must be small. In other words, large demand volume

and large demand variability cannot co-exist in this demand model! Due to this observation, one

may even believe that fluid approximations work well simply because a large mean demand under

a Bernoulli process gives rise to a small coefficient of variation for the demand.

In this paper, we start with a revenue management model that incorporates a general mean and

variance for the number of customer arrivals. Naturally, this revenue management model is based on

a dynamic program that has a random selling horizon length. The distribution of the selling horizon

length captures the distribution of the number of customer arrivals. The dynamic program allows us

to formalize the problem with general mean and variance for the number of customer arrivals, but

such a dynamic program involves a high-dimensional state variable when we have a large number of

resources in consideration, so it is computationally difficult to solve. Fluid approximations, instead,

have been an important workhorse for coming up with implementable policies in practice. The

main question that we seek to answer is the form of a sound fluid approximation for our revenue

management model with random number of customer arrivals.

We expect a sound fluid approximation to satisfy three properties. First, the optimal objective

value of the fluid approximation should be an upper bound on the optimal total expected revenue.

Thus, we can use the fluid approximation to assess the optimality gaps of heuristic policies. Second,

the relative gap between the optimal objective value of the fluid approximation and the optimal

total expected revenue should vanish as the resource capacities get large. In this way, we have

confidence in the fluid approximation for systems with large resource availabilities. Third, the fluid

approximation should provide a way to implement policies that are asymptotically optimal as the

resource capacities get large. We demonstrate that a natural approach to extend the existing fluid

approximations to random number of customer arrivals does not satisfy the last two properties. We

correct this natural approach and give a fluid approximation satisfying all three properties.

A natural approach for constructing a fluid approximation under random number of customer

arrivals uses the distribution of the number of customer arrivals to compute the expected

consumption of the resource capacities in the constraints and the total expected revenue in the

objective function. While such a fluid approximation provides an upper bound on the optimal total

expected revenue, we give a problem instance to demonstrate that the relative gap between the

optimal objective value of this fluid approximation and the optimal total expected revenue does not

vanish as the resource capacities get large. In particular, we give a problem instance parameterized
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by an integer k, where the mean and standard deviation of the number of customer arrivals are,

respectively, k+
√
k and k

√
k− 1, yielding a coefficient of variation of k

√
k−1

k+
√
k
=

√
k−1

1+
√

1/k
. Thus, the

mean and coefficient of variation for the number of customer arrivals in this problem instance can

both be large when k is large. There is a single resource with a capacity of k
√
k+

√
k. We set up

the customer arrival process so that the optimal total expected revenue turns out to be 2
√
k, but

the optimal objective value of the natural fluid approximation is k+
√
k. Thus, the ratio between

the optimal total expected revenue and the optimal objective value of the fluid approximation is

2√
k+1

, which does not approach one as the resource capacity gets large. Quite the contrary, the ratio

converges to zero as the resource capacity gets large, so the natural fluid approximation becomes

especially poor, as opposed to being especially good, when the resource capacity gets large.

We give an alternative fluid approximation, where, surprisingly, the distribution of the number of

customer arrivals does not play a role in the constraints at all. We show that the optimal objective

value of this fluid approximation provides an upper bound on the optimal total expected revenue

(Theorem 4.1). Letting cmin be the smallest capacity for a resource, we show that the ratio between

the optimal total expected revenue and the optimal objective value of the fluid approximation is

Ω
(
1−
√

log cmin
cmin

)
, which approaches one as the resource capacities get large (Theorem 5.1). When

establishing this result, we also show that we can use our alternative fluid approximation to come

up with a policy that obtains at least Ω
(
1−
√

log cmin
cmin

)
fraction of the optimal total expected

revenue. For the problem instance in the previous paragraph, the optimal objective value of our

fluid approximation is 2
√
k, which is exactly the optimal total expected revenue.

Thus, we make three main contributions. First, we give the “right” fluid approximation under

random number of customer arrivals to satisfy all three properties mentioned earlier. The form

of our fluid approximation is somewhat unexpected, as it does not use the distribution of the

number of customer arrivals in the capacity constraints. Second, our work addresses the possible

misconception that fluid approximations are asymptotically tight simply because the standard

Bernoulli process gives rise to small coefficient of variation for the demand when the mean of

the demand is large. We do not need a Bernoulli process to construct asymptotically tight fluid

approximations. It is possible to build fluid approximations with sound footing under high-variance

demand. Third, it is important to get the fluid approximation right. Policies driven by a naive fluid

approximation can have poor performance under random number of customer arrivals.

Studying fluid approximations under arrival processes other than a Bernoulli process is not an

intellectual curiosity. We give a numerical study to check the practical benefits from getting the

fluid approximation right under high-variance demand. Policies driven by our fluid approximation

perform up to 13% better than those driven by the naive fluid approximation. Furthermore, demand
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Figure 1 Mean and coefficient of variation of the monthly demand for different products.

data can display variance significantly larger than what is implied by a discrete-time approximation

to a Poisson process. We studied a publicly available dataset from an online electronics retailer;

see Kaggle (2021). The dataset includes order transactions over nine months. In Figure 1, each

cross corresponds to a different product, plotting the mean and coefficient variation of the monthly

demand for the product. There are many products with mean monthly demand of about 50 and

coefficient of variation exceeding one. If the demand were driven by a Poisson process, then a mean

of 50 for the demand would imply a coefficient of variation of 1/
√
50, which is only about 0.14. In

the same figure, the solid line plots 1/
√
x as a function of x, which is the coefficient of variation

under Poisson demand arrivals corresponding to a mean monthly demand of x. The crosses lie

substantially above the solid line, indicating that the coefficient of variation of the monthly demand

is larger than what we would observe if the demand were driven by a Poisson process.

We give our results for revenue management problems under the independent demand model

with multiple resources, where we control the availability of the products, the sale of a product

consumes a combination of resources and each customer arrives into the system to purchase a fixed

product in mind, purchasing only this product if it is available for sale. This model is known as

the independent demand model with a network of resources. Our results easily extend when the

demand for each product depends on the prices or the assortment of available products.

Related Literature. Fluid approximations have been studied under demand models based on

a Bernoulli process. Gallego and van Ryzin (1994) focus on the case with a single resource and

a single product, where the demand for the product depends on its price and the sale for the

product consumes the capacity of the resource. The authors consider an asymptotic regime where

the expected number of customer arrivals and the resource capacity scale linearly with k. They use

a fluid approximation to give a policy with a relative performance guarantee of Ω
(
1− 1√

k

)
. The
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policy is based on solving the fluid approximation once at the beginning of the selling horizon.

Gallego and van Ryzin (1997) generalize these results to the case with multiple resources and

products, where the sale of a product consumes the capacities of a combination of resources. Talluri

and van Ryzin (1998) show the asymptotic optimality of a policy driven by a dual solution to

the fluid approximation in the same asymptotic regime. Liu and van Ryzin (2008) and Gallego

et al. (2004) generalize these results to models with customer choice, where the customers choose

among the products offered to them. Cooper (2002) focuses on demand processes where the total

demand divided by k converges to a fixed number in distribution and characterizes the same type

of relative gaps. Jasin and Kumar (2012) consider the case where the fluid approximation is solved

periodically and show that the ratio between the total expected revenue of the policy derived from

the fluid approximation and the optimal total expected revenue can be much larger than Ω
(
1− 1√

k

)
.

Balseiro et al. (2021) generalize the ideas in the last paper to give a unified analysis for different

demand models while periodically solving the fluid approximation. Rusmevichientong et al. (2020)

show that the ratio between the optimal total expected revenue and the optimal objective value

of a fluid approximation is Ω
(
1− 1

3√cmin

)
, where cmin is the smallest capacity for a resource. The

expected demand in this paper does not necessarily have to be scaled, so their asymptotic regime

is more general. Similarly, Feng et al. (2022) establish a ratio of Ω
(
1− 1√

cmin

)
.

The papers discussed so far use a Bernoulli process. Walczak (2006) incorporates high variance

into demand by using dynamic programs with batch arrivals but does not give efficiently

computable policies with performance guarantees. Besbes and Saure (2014) consider dynamic

pricing problems when the price-demand function changes at a random time period. Using a

price-demand function of zero after the change, the authors can capture random number of

customer arrivals. They study the structural properties of the solution obtained through a fluid

approximation similar to ours and give performance guarantees in an asymptotic regime where

the expected number of customer arrivals and the resource capacity scale linearly. In a concurrent

and independent work, Aouad and Ma (2022) consider matching problems and develop a fluid

approximation similar to ours. The authors give a policy with a performance guarantee of

Ω
(
1 − 1√

cmin

)
, but they do not consider products consuming combinations of resources. When

we submitted our work, their paper was not publicly available, but they apparently had already

derived their fluid approximation, so our paper and theirs are independent discoveries.

Organization. In Section 2, we give our revenue management model with random number of

customer arrivals. In Section 3, we show the pitfalls of a naive fluid approximation. In Section 4,

we formulate our fluid approximation and show that it yields an upper bound on the optimal total

expected revenue. In Section 5, we establish the gap of Ω
(
1−
√

log cmin
cmin

)
for the optimal objective

value of our fluid approximation. In Section 6, we give a numerical study.
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2. Revenue Management with Random Number of Arrivals

We give a revenue management model under a general distribution for the number of customer

arrivals. The set of resources is L. The capacity of resource i is ci. The set of products is J . The

revenue of product j is fj. If we make a sale for product j, then we consume the capacities of the

resources in the set Aj ⊆ L. The number of customer arrivals is a random variable taking values

in T = {1, . . . , T}. Using the random variable D to capture the number of customer arrivals, we

characterize this random variable with its survival rate ρt = P{D≥ t+1 |D≥ t}. For simplicity,

there is a customer arrival at each time period with probability one, so the number of customer

arrivals corresponds to the number of time periods. With probability λjt, the customer arriving at

time period t is interested in purchasing product j. If this product is available for purchase, then the

customer purchases it. Otherwise, she leaves without a purchase. The number of customer arrivals,

as well as the product of interest to each arriving customer, are all independent. We want to find

a policy to offer a set of products at each time period to maximize the total expected revenue. We

use the vector x= (xi : i∈L) to capture the state of the system, where xi is the remaining capacity

for resource i. Using ei ∈ {0,1}|L| to denote the i-th unit vector, we can find the optimal policy by

computing the value functions {Jt : t∈ T } through the dynamic program

Jt(x) =
∑
j∈J

λjt max

{
fj + ρt Jt+1

(
x−

∑
i∈Aj

ei

)
, ρt Jt+1(x)

}
,

with the boundary condition that JT+1 = 0. In the dynamic program above, we follow the convention

that Jt(x) =−∞ whenever xi < 0 for some i∈L.

Given that the customer arriving at time period t is interested in purchasing product j, the two

terms in the maximum operator in the dynamic program above correspond to making product j

available and not available. In either case, we have another customer arrival only with probability ρt.

In our model, each customer arrives with the intention of purchasing a fixed product. Our decision

is whether to make this product available. This approach keeps our fluid approximation as simple

as possible, while allowing us to discuss the intricacies under random number of customer arrivals,

but we can give analogous fluid approximations when the demand for each product depends on

the prices or the assortment of available products. Furthermore, the sale of a product consumes at

most one unit of the capacity for a resource, but we can work with the case where the sale of a

product consumes multiple units of the capacity for a resource. These extensions bring notational

overhead without making our results more insightful. Lastly, having a finite upper bound of T on

the number of customer arrivals is reasonable from practical perspective, because we can choose

the upper bound as large as we would like. Nevertheless, later in the paper, we discuss dealing

with the case without a finite upper bound on the number of customer arrivals. We proceed to

discussing fluid approximations corresponding to the dynamic program above.
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3. A Natural Fluid Approximation and its Pitfalls

We give a first fluid approximation that corresponds to the dynamic program in Section 2. This

fluid approximation could be viewed as a natural one, because we use the distribution of the

number of customer arrivals to compute the expected capacity consumption of each resource in the

constraints and the total expected revenue in the objective function. Furthermore, if the number

of customer arrivals is fixed, so that D = T with probability one, then this fluid approximation

reduces to the traditional fluid approximation under a Bernoulli process that already appears in

the literature. However, we will see that if the number of customer arrivals is random, then the

relative gap between the optimal objective value of this fluid approximation and the optimal total

expected revenue does not vanish as the resource capacities get large. We use the decision variables

y = (yjt : j ∈ J , t ∈ T ) ∈ R|J ||T |
+ , where yjt is the expected number of purchases for product j at

time period t given that the length of the selling horizon reaches beyond time period t. Using 1(·)

to denote the indicator function, consider the linear program

max
y∈R|J ||T |

+

{∑
t∈T

∑
j∈J

fj P{D≥ t}yjt :
∑
t∈T

∑
j∈J

1(i∈Aj) P{D≥ t}yjt ≤ ci ∀ i∈L

yjt ≤ λjt ∀ j ∈J , t∈ T

}
, (Traditional Fluid)

where the objective function accounts for the total expected revenue and the first constraint ensures

that the total expected capacity consumption of resource i does not exceed its capacity.

If D = T with probability one, so that the number of customer arrivals is fixed, then we have

P{D≥ t}= 1 for all t= 1, . . . , T and the problem above reduces to the fluid approximation under a

Bernoulli process given in Section 3.3.1 in Talluri and van Ryzin (2005). Thus, we refer to the linear

program above as the Traditional Fluid. If the number of customer arrivals is fixed, then the relative

gap between the optimal objective value of the Traditional Fluid and the optimal total expected

revenue vanishes as the resource capacities get large, so the Traditional Fluid is appropriate under a

Bernoulli process. We give a problem instance to show that if the number of customer arrivals is

random, then the relative gap between the optimal objective value of the Traditional Fluid and the

optimal total expected revenue does not vanish as the resource capacities get large. Thus, one may

believe that we cannot give a fluid approximation satisfying the vanishing relative gap property

under random number of customer arrivals, but this belief is not correct. In the next section, we

will give an alternative fluid approximation satisfying the vanishing relative gap property.

Consider a problem instance with one resource and one product. The product has a revenue

of one and it consumes the capacity of the single resource. The number of time periods in the
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selling horizon has two possible values with P{D =
√
k}= 1− 1

k
and P{D = k2 +

√
k}= 1

k
. Thus,

E{D} = k +
√
k and Var(D) = k2(k − 1). The capacity of the resource is k

√
k +

√
k. At all time

periods, an arriving customer requests the product with probability one. We compute the optimal

total expected revenue. Because there is a single product, it is optimal to accept all customer

requests as much as the capacity allows. There are only two possible values for D. If D=
√
k, then

the capacity of k
√
k +

√
k allows us to accept all customer requests, so we get a total expected

revenue of
√
k, where we use the fact that the product has a revenue of one. If D= k2 +

√
k, then

we can sell all of the capacity of k
√
k+

√
k, so we get a total expected revenue of k

√
k+

√
k. Thus,

the optimal total expected revenue is given by P{D =
√
k}

√
k + P{D = k2 +

√
k} (k

√
k + k) =(

1− 1
k

)√
k+ 1

k
(k
√
k+

√
k) = 2

√
k. On the other hand, dropping the indices for the single resource

and product, the Traditional Fluid approximation for this problem instance is

max
y∈Rk2

+

{ √
k∑

t=1

yt +
1

k

k2+
√
k∑

t=
√
k+1

yt :

√
k∑

t=1

yt +
1

k

k2+
√
k∑

t=
√
k+1

yt ≤ k
√
k+

√
k, yt ≤ 1 ∀ t= 1, . . . , k2 +

√
k

}
.

Setting all of the decision variables to their upper bounds of one provides a feasible, as well as an

optimal, solution with the objective value
√
k+ 1

k
k2 = k+

√
k, as k+

√
k≤ k

√
k+

√
k.

Thus, the ratio between the optimal total expected revenue and the optimal objective value of the

Traditional Fluid approximation is 2
√
k

k+
√
k
= 2√

k+1
, which does not approach one as k gets large. Quite

the contrary, this ratio converges to zero, which indicates that the Traditional Fluid approximation

gets arbitrarily poor as k gets large. In the next section, we give another fluid approximation

that makes up for the shortcomings of the Traditional Fluid approximation. Our formulation for the

Traditional Fluid approximation uses one decision variable for each product and time period. Closing

this section, we give an equivalent reformulation of the Traditional Fluid that aggregates the decision

variables for each product over the time periods, using one decision variable for each product. In

our equivalent reformulation, we use the decision variables w= (wj : j ∈J )∈R|J |
+ , where wj is the

total expected number of purchases for product j over the whole selling horizon. In this case, we

can write the Traditional Fluid approximation equivalently as

max
w∈R|J |

+

{∑
j∈J

fj wj :
∑
j∈J

1(i∈Aj)wj ≤ ci ∀ i∈L, wj ≤
∑
t∈T

P{D≥ t}λjt ∀ j ∈J

}
. (Compact)

In particular, if w∗ is optimal to the Compact problem, then setting ŷjt = λjt
w∗
j∑

k∈T P{D≥k}λjk
yields

an optimal solution to the Traditional Fluid approximation.

Total expected demand for product j is
∑

t∈T P{D≥ t}λjt, so by the second constraint above,

the total expected purchases for product j does not exceed its total expected demand.
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4. A Fluid Approximation that Checks the Boxes

To give our alternative approximation, using the decision variables y= (yjt : j ∈J , t∈ T )∈R|J ||T |
+

with the same interpretation as in the previous section, we consider the linear program

Z∗
LP = max

y∈R|J ||T |
+

{∑
t∈T

∑
j∈J

fj P{D≥ t}yjt :
∑
t∈T

∑
j∈J

1(i∈Aj) yjt ≤ ci ∀ i∈L

yjt ≤ λjt ∀ j ∈J , t∈ T

}
. (Universal Fluid)

We refer to the linear program above as the Universal Fluid approximation because it will provide

an asymptotically tight upper bound on the optimal total expected revenue, even when we have

a random number of customer arrivals. We comment on the unexpected form of the Universal Fluid

approximation. The objective function accounts for the total expected revenue over the selling

horizon. Given that the length of the selling horizon reaches beyond time period t, the last constraint

ensures that the expected number of purchases for product j at time period t does not exceed the

expected number of requests for the product. However, it is difficult to interpret the left side of

the first constraint as the expected capacity consumption of resource i, because the distribution of

the length of the selling horizon does not appear in this constraint. We may believe that the first

constraint is tighter than it needs to be, because the sales at time period t consume the capacity

of a resource in this constraint irrespective of whether the length of the selling horizon reaches

beyond time period t. Thus, it is not immediately clear that the Universal Fluid approximation yields

an upper bound on the optimal total expected revenue.

Upper Bound on the Optimal Total Expected Revenue :

In the next theorem, we show that the optimal objective value of the Universal Fluid approximation

is indeed an upper bound on the optimal total expected revenue.

Theorem 4.1 (Upper Bound) Letting c = (ci : i ∈ L), noting that J1(c) is the optimal total

expected revenue, we have Z∗
LP ≥ J1(c).

The proof of the theorem is in Appendix A. We give an overview of the proof. Considering the

dynamic program in Section 2, we can accept a request for product j only if the remaining capacities

of the resources satisfy x−
∑

i∈Aj
ei ≥ 0. Expressing these capacity constraints at time period t

as xi −1(i∈Aj) ≥ 0 for all i ∈ L and j ∈ J , we relax them by associating the Lagrange multipliers

θ= (θijt : i∈L, j ∈J , t∈ T )∈R|L||J ||T |
+ with them, yielding a relaxed dynamic program. Let

{Ĵθ
t : t∈ T } be the value functions of the relaxed dynamic program, where we make it explicit that

the value functions of the relaxed dynamic program depend on the Lagrange multipliers. We can

establish two results. First, the value functions of the relaxed dynamic program provide upper
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bounds on the value functions of the dynamic program in Section 2. Thus, for any θ ∈ R|L||J ||T |
+ ,

we have Ĵθ
1 (c) ≥ J1(c). Second, we give a closed form expression for the value functions of the

relaxed dynamic program under a specific choice of the Lagrange multipliers. In particular, letting

Rt = ρt ρt+1 . . . ρT−1 with RT = 1 for notational brevity, for any η ∈R|L|
+ , if we choose the Lagrange

multipliers as θijT = ηi for all i∈L and j ∈J , whereas θijt = 0 for all i∈L, j ∈J and t∈ T \ {T},

then we have Ĵθ
1 (c) =

∑
t∈T
∑

j∈J λjt

[
R1
Rt
fj −R1

∑
i∈Aj

ηi
]+

+R1

∑
i∈L ηi ci. Thus, we can minimize

the last expression over all η ∈R|L|
+ to obtain an upper bound on J1(c). We formulate the problem

of minimizing the last expression over all η ∈R|L|
+ as a linear program and the dual of this linear

program is the Universal Fluid approximation. Note that the constraints in the Universal Fluid are at

least as tight as those in the Traditional Fluid, so by Theorem 4.1, the optimal objective value of

the Traditional Fluid is also an upper bound on the optimal total expected revenue. However, as

discussed in the previous section, the Traditional Fluid approximation is not asymptotically tight

as the resource capacities get large. Our proof of Theorem 4.1 through Lagrangian relaxation in

Appendix A provides a constructive approach for establishing that the Universal Fluid provides an

upper bound on the optimal total expected revenue. Next, we give a discussion on how the pieces

of the Universal Fluid fit together to provide an upper bound on the optimal total expected revenue,

but this discussion does not derive the form of the Universal Fluid approximation.

Let νjt :Z|L|
+ →{0,1} be the decision function of the optimal policy, where νjt(x) = 1 if and only

if the optimal policy accepts a request for product j at time period t when the capacities of the

resources are x. In particular, noting the dynamic program in Section 2, the decision function of the

optimal policy is given by νjt(x) = 1(fj≥ρt (Jt+1(x)−Jt+1(x−
∑

i∈Aj
ei)). We use the random variable Pt to

capture the product requested at time period t, so Pt = j with probability λjt. For all t= 1, . . . , T ,

we use the random variableXt to capture the resource capacities at time period t under the optimal

policy. Because the product requests are random, the resource capacities at each time period under

the optimal policy are also random. The random variables {Xt : t ∈ T } are recursively defined as

Xt+1 =Xt −
∑

i∈L
∑

j∈J 1(i∈Aj) 1(Pt=j) νjt(Xt)ei with the boundary condition that X1 = c. The

random variables {Xt : t∈ T } and {Pt : t∈ T } are independent of D. In this case, the total revenue

of the optimal policy is given by the random variable
∑

t∈T 1(D≥t)

∑
j∈J fj 1(Pt=j) νjt(Xt), where we

use the fact that the number of purchases for product j at time period t under the optimal policy

is given by 1(Pt=j) νjt(Xt) and the optimal policy makes a sale at time period t only if D≥ t. Thus,

letting ȳjt =E{1(Pt=j) νjt(Xt)} for notational brevity, taking the expectation of the last expression,

the optimal total expected revenue is J1(c) =
∑

t∈T
∑

j∈J fj P{D ≥ t} ȳjt. The decisions of the

optimal policy have to satisfy the capacity constraints even when the number of customers take on

their largest possible value of T , so
∑

t∈T
∑

j∈J 1(i∈Aj) 1(Pt=j) νjt(Xt)≤ ci for all i∈L. Taking the
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expectation of both sides of the last inequality, we get
∑

t∈T
∑

j∈J 1(i∈Aj) ȳjt ≤ ci. Because 1(Pt=j)

is a Bernoulli random variable with parameter λjt, we have ȳjt =E{1(Pt=j) νjt(Xt)} ≤ λjt. By the

last two inequalities, the solution (ȳjt : j ∈J , t∈ T ) is feasible to the Universal Fluid approximation.

Furthermore, noting that J1(c) =
∑

t∈T
∑

j∈J fj P{D ≥ t} ȳjt, this solution provides an objective

value of J1(c) for the Universal Fluid approximation. Thus, the optimal objective value of the

Universal Fluid approximation must be at least as large as J1(c). The preceding discussion can be

viewed as an alternative proof for Theorem 4.1, but our proof in Appendix A is constructive,

deriving the form of the Universal Fluid approximation, whereas the discussion in this paragraph

verifies that the optimal objective value of the Universal Fluid approximation is an upper bound on

the optimal total expected revenue, only after guessing the form of this approximation.

Relationship Between the Fluid Approximations:

There is an interesting relationship between the two fluid approximations that we discussed so

far. In particular, we can obtain the Traditional Fluid approximation by aggregating the constraints

in the Universal Fluid approximation. Therefore, we can view the Traditional Fluid approximation as

a crude version of the Universal Fluid approximation obtained by aggregating the constraints in the

latter. To see this relationship, we write the first constraint in the Universal Fluid approximation

as
∑κ

t=1

∑
j∈J 1(i∈Aj) yjt ≤ ci for all κ= 1, . . . , T and i∈L. In the last set of constraints, the ones

with κ = T are the tightest, which are the constraints that we impose in the Universal Fluid. The

constraints with κ= 1, . . . , T−1 are redundant, but adding them to the Universal Fluid approximation

does not change the optimal objective value. For fixed i ∈ L, multiplying the constraints in this

paragraph with P{D= κ} and adding them over all κ= 1, . . . , τ , we obtain the constraint

ci =
T∑

κ=1

P{D= κ} ci ≥
T∑

κ=1

P{D= κ}
κ∑

t=1

∑
j∈J

1(i∈Aj) yjt

=
T∑

t=1

T∑
κ=t

P{D= κ}
∑
j∈J

1(i∈Aj) yjt =
T∑

t=1

P{D≥ t}
∑
j∈J

1(i∈Aj) yjt.

In the chain of inequalities above, the second equality follows by interchanging the order of the

sums and the last equality holds because
∑T

κ=t P{D = κ} = P{D ≥ t}. The chain of inequalities

above corresponds to the first constraint in the Traditional Fluid approximation. Therefore, we

can obtain the first constraint in the Traditional Fluid approximation by aggregating the first

constraint in the Universal Fluid approximation. This discussion provides some support for the

Traditional Fluid approximation, but it also demonstrates that aggregating the first constraint in

the Universal Fluid approximation can yield a fluid approximation with an optimal objective value

that is not asymptotically tight as the resource capacities get large. Also, we can reformulate the

Traditional Fluid as the Compact problem, so this approximation only uses the total expected demand

for each product, but we are not aware of a similar reformulation for the Universal Fluid.
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5. Asymptotic Tightness

The problem instance that we give in Section 3 demonstrates that the relative gap between the

optimal objective value of the Traditional Fluid approximation and the optimal total expected revenue

does not vanish as the resource capacities get large. In this section, we show that the same relative

gap for the optimal objective value of the Universal Fluid approximation vanishes as the resource

capacities get large. To show this result, letting y∗ = (y∗
jt : j ∈J t∈ T ) be an optimal solution

to the Universal Fluid approximation, we consider an approximate policy that makes its decisions

as follows. For some tuning parameter θ ∈ (0,1), if there is enough resource capacity to serve a

request for product j at time period t, then the approximate policy makes product j available

for purchase with probability θ y∗
jt/λjt. If we do not have enough resource capacity to serve a

request for product j at time period t, then the approximate policy does not make product j

available. Letting cmin =mini∈L ci, we choose the tuning parameter as θ = 1−
√

2 log cmin
cmin

. Letting

JApp(c) be the total expected revenue of the approximate policy, noting that J1(c) is the optimal

total expected revenue, we have J1(c) ≥ JApp(c). In the next theorem, we lower bound the total

expected revenue of the approximate policy.

Theorem 5.1 (Asymptotic Tightness) Letting cmin =mini∈L ci and L=maxj∈J |Aj|, the total

expected revenue of the approximate policy and the optimal total expected revenue satisfy

J1(c)

Z∗
LP

≥ JApp(c)

Z∗
LP

≥ 1−
√

2 log cmin

cmin

− L

cmin

.

We give the proof of the theorem in Appendix B. Because 1≥ J1(c)

Z∗
LP

by Theorem 4.1, the theorem

above implies that J1(c)

Z∗
LP

converges to one as cmin gets large. Thus, the relative gap between the

optimal objective value of the Universal Fluid approximation and the optimal total expected revenue

vanishes as the resource capacities get large, which implies that the Universal Fluid satisfies the second

property in the introduction that we would expect from a sound fluid approximation. Furthermore,

because 1 ≥ JApp(c)

J1(c)
≥ JApp(c)

Z∗
LP

, the theorem above also implies that
JApp(c)

J1(c)
converges to one as cmin

gets large. Thus, the relative gap between the total expected revenue of the approximate policy

and the optimal total expected revenue vanishes as the resource capacities get large. In this case,

the Universal Fluid satisfies the third property in the introduction that we would expect from a

sound fluid approximation. Note that when L is fixed, the theorem above implies that J1(c)

Z∗
LP

=

Ω
(
1−
√

log cmin
cmin

)
and

JApp(c)

Z∗
LP

=Ω
(
1−
√

log cmin
cmin

)
. The tuning parameter θ trades off the probability

that the approximate policy runs out of resource capacities to serve a request for a product with

the total expected revenue collected by the approximate policy. In the proof of Theorem 5.1, we

choose θ= 1−
√

2 log cmin
cmin

. Building on Lemma E.1 in Bai et al. (2022), we can also choose θ= 1 to
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obtain a similar relative performance guarantee. This guarantee would still converge to one as cmin

gets large but it would depend on the ratio maxj∈J fj/minj∈J fj, as well as cmin and L.

Theorem 5.1 also implies that the Universal Fluid approximation is asymptotically tight in a regime

that proportionally scales the resource capacities and the total expected demand by an integer

parameter k. Consider a sequence of problems {Pk : k ∈ Z+}. In problem Pk, the capacity of

resource i is cki = k ci. We use the random variable Dk to capture the number of customer arrivals

in problem Pk. The support of Dk is given by T k = {1, . . . , k T}, whereas the distribution of Dk is

given by P{Dk ≥ t}= P{D≥ ⌈t/k⌉} for all t= 1, . . . , k T . The probability that we have a request for

product j at time period t is λk
jt = λj,⌈t/k⌉. Problem P1 corresponds to the problem formulated in

Section 2. We can view problem Pk as a version of problem P1, where we divide each time period

in problem P1 into k micro periods and multiply the capacity of each resource in problem P1 by k.

Thus, the capacity of each resource and the total expected demand for each product in problem Pk

are k times those in problem P1. Considering problem Pk, letting Jk
App(kc) be the total expected

revenue of the approximate policy and Jk
1 (kc) be the optimal total expected revenue, Theorem 5.1

implies that limk→∞
Jk
App(kc)

Jk
1 (kc)

= 1. Nevertheless, Theorem 5.1, as it is stated, is more general because

it does not require the expected demand to be scaled in any particular fashion.

6. Numerical Study

We give a numerical study to show the benefits from using the Universal Fluid approximation instead

of the Traditional Fluid one when we have a random number of customer arrivals. In our experimental

setup, we generate a number of test problems. For each test problem, we check the upper bound on

the optimal total expected revenue from the two fluid approximations, as well as the performance

of the policies driven by the two fluid approximations. Our test problems are on an airline network,

where a resource corresponds to a flight leg and a product corresponds to an itinerary. There is

one hub and six spokes. We have a flight that connects each spoke to the hub and the hub to each

spoke, so the number of resources is 12. We have a high-fare and a low-fare itinerary that connect

every origin-destination pair. Thus, the number of products is 2× 7× 6 = 84. The itineraries that

connect a spoke to the hub or the hub to a spoke are direct, including one flight leg, whereas

the itineraries that connect a spoke to a spoke connect at the hub, including two flight legs. The

number of customer arrivals is discretized and truncated log-normal with mean µ and coefficient

of variation v. We vary µ∈ {400,800,1600,3200} and v ∈ { 1
128

, 1
64
, 1
32
, 1
16
, 1
8
, 1
4
, 1
2
,1}. In Appendix C,

we give the details of our approach for generating our test problems.

For each test problem, we solve the Universal Fluid and Traditional Fluid, as well as simulate the

performance of the policies driven by the two approximations. Letting y∗ = (y∗
jt : j ∈J , t∈ T ) be
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an optimal solution to the Universal Fluid or Traditional Fluid, the policy makes product j available at

time period t with probability
y∗jt
λjt

, which corresponds to using θ = 1. Both policies had the best

practical performance with this choice of θ. Our results are in Table 1. The first column gives the

value of (v,µ) for each test problem. Letting cmax =maxi∈L ci, the second column gives the value

of (cmin, cmax). The third, fourth and fifth columns focus on the Universal Fluid approximation and

give the optimal objective value of the Universal Fluid, the total expected revenue of the policy from

the Universal Fluid and the ratio between the performance of the policy and the optimal objective

value of the fluid approximation. By the discussion just after Theorem 5.1, the entries of the

fifth column approach one as cmin gets large. The sixth, seventh and eighth columns focus on the

Traditional Fluid approximation and their interpretation is analogous to that of the third, fourth and

fifth columns. The ninth column gives the percent gap between the optimal objective values of the

two fluid approximations. The tenth column gives the percent gap between the performance of the

two policies. The eleventh column gives the CPU seconds to solve the Universal Fluid on a 2.4 Ghz

8-core Intel i9 CPU with 64 GB of RAM using Java 19 and Gurobi 9.5.2. Letting Dp be the p-th

percentile of the random variable D, the twelfth column gives the value of (D5,D95). Thus, the

number of customer arrivals takes values in the interval [D5,D95] with a probability of 0.9.

Considering the Universal Fluid approximation, our results in the table indicate that the ratio

between the total expected revenue of its corresponding policy and the optimal objective value of

the Universal Fluid approximation, as expected, gets close to one as cmin gets large. For the largest

value of cmin with cmin = 173, the ratio exceeds 0.96 in all of our test problems. On the other hand,

considering the Traditional Fluid approximation, the ratio between the total expected revenue of its

corresponding policy and the optimal objective value of the Traditional Fluid approximation does not

necessarily get close to one as cmin gets large. For the test problems with a coefficient of variation

of 1, the ratio is only 0.63 even when cmin = 173. Thus, the phenomenon that we observed in the

problem instance in Section 3 holds even for randomly generated test problems. Furthermore, the

upper bound on the optimal total expected revenue provided by the Universal Fluid approximation

can be substantially tighter than the one provided by the Traditional Fluid approximation. The upper

bounds from the two fluid approximations can differ by as much as 36.26%. Getting the fluid

approximation right also makes a noticeable impact on the performance of the corresponding policy.

Total expected revenues obtained by the policies driven by the two fluid approximations can differ

by as much as 13.38%, in favor of the Universal Fluid approximation. Overall, the Universal Fluid can

provide significant improvements over the Traditional Fluid.

If the number of customer arrivals is fixed, so that D = T with probability one, then the

Traditional Fluid reduces to the standard fluid approximation under a Bernoulli process. It is known
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Params. Universal Fluid Traditional Fluid Obj. Policy CPU

(v,µ) [cmin, cmax] Obj. Policy Ratio Obj. Policy Ratio Gap Gap Secs. [D5,D95]

( 1
128

, 400) [ 22, 44] 36,036 31,283 0.87 36,250 31,280 0.86 0.59% 0.01% 0.02 [ 394, 404]
( 1
128

, 800) [ 43, 88] 72,076 65,303 0.91 72,503 65,155 0.90 0.59% 0.23% 0.05 [ 789, 808]
( 1
128

,1600) [ 86,177] 143,886 134,532 0.93 144,807 134,237 0.93 0.64% 0.22% 0.11 [1578,1619]
( 1
128

,3200) [173,353] 287,983 275,310 0.96 289,763 274,495 0.95 0.62% 0.30% 0.26 [3158,3238]

( 1
64
, 400) [ 22, 44] 34,909 30,395 0.87 35,330 30,301 0.86 1.21% 0.31% 0.02 [ 389, 408]

( 1
64
, 800) [ 43, 88] 69,370 63,243 0.91 70,282 63,001 0.90 1.31% 0.38% 0.05 [ 778, 819]

( 1
64
,1600) [ 86,177] 139,262 130,934 0.94 141,015 130,417 0.92 1.26% 0.39% 0.11 [1558,1638]

( 1
64
,3200) [173,353] 278,520 268,012 0.96 282,027 267,023 0.95 1.26% 0.37% 0.51 [3117,3277]

( 1
32
, 400) [ 22, 44] 32,330 28,319 0.88 33,212 28,256 0.85 2.73% 0.22% 0.03 [ 378, 420]

( 1
32
, 800) [ 43, 88] 64,968 59,541 0.92 66,670 59,243 0.89 2.62% 0.50% 0.05 [ 758, 839]

( 1
32
,1600) [ 86,177] 130,010 123,358 0.95 133,413 122,494 0.92 2.62% 0.70% 0.33 [1518,1678]

( 1
32
,3200) [173,353] 260,015 251,379 0.97 266,822 249,569 0.94 2.62% 0.72% 0.81 [3037,3357]

( 1
16
, 400) [ 22, 44] 28,202 24,899 0.88 29,782 24,891 0.84 5.60% 0.03% 0.03 [ 359, 439]

( 1
16
, 800) [ 43, 88] 56,501 52,461 0.93 59,656 52,013 0.87 5.59% 0.85% 0.23 [ 719, 879]

( 1
16
,1600) [ 86,177] 112,979 107,413 0.95 119,291 106,317 0.89 5.58% 1.02% 0.58 [1440,1759]

( 1
16
,3200) [173,353] 226,049 219,567 0.97 238,678 217,010 0.91 5.59% 1.16% 1.33 [2880,3519]

( 1
8
, 400) [ 22, 44] 21,807 19,502 0.89 24,346 19,488 0.80 11.64% 0.08% 0.14 [ 322, 481]

( 1
8
, 800) [ 43, 88] 43,557 40,666 0.93 48,628 40,139 0.83 11.63% 1.30% 0.29 [ 645, 963]

( 1
8
,1600) [ 86,177] 87,240 83,480 0.96 97,391 81,629 0.84 11.62% 2.22% 0.63 [1292,1927]

( 1
8
,3200) [173,353] 174,479 169,217 0.97 194,782 164,295 0.84 11.64% 2.91% 1.43 [2585,3855]

( 1
4
, 400) [ 22, 44] 17,160 15,823 0.92 19,892 15,426 0.78 15.92% 2.51% 0.31 [ 258, 569]

( 1
4
, 800) [ 43, 88] 34,325 32,260 0.94 39,782 30,748 0.77 15.90% 4.69% 0.65 [ 516,1138]

( 1
4
,1600) [ 86,177] 68,695 66,032 0.96 79,637 62,495 0.78 15.93% 5.36% 1.43 [1033,2277]

( 1
4
,3200) [173,353] 137,377 132,793 0.97 159,256 123,493 0.78 15.93% 7.00% 3.25 [2067,4556]

( 1
2
, 400) [ 22, 44] 15,540 14,505 0.93 18,419 13,562 0.74 18.52% 6.50% 0.37 [ 163, 746]

( 1
2
, 800) [ 43, 88] 31,070 29,956 0.96 36,839 27,300 0.74 18.57% 8.87% 0.86 [ 327,1493]

( 1
2
,1600) [ 86,177] 62,168 59,743 0.96 73,747 53,657 0.73 18.63% 10.19% 2.14 [ 655,2988]

( 1
2
,3200) [173,353] 124,325 122,410 0.98 147,496 110,722 0.75 18.64% 9.55% 5.37 [1312,5977]

(1, 400) [ 22, 44] 13,270 12,384 0.93 18,054 11,096 0.61 36.05% 10.40% 0.68 [ 71,1035]
(1, 800) [ 43, 88] 26,523 25,092 0.95 36,105 21,846 0.61 36.13% 12.94% 1.51 [ 142,2070]
(1,1600) [ 86,177] 53,057 51,176 0.96 72,282 44,331 0.61 36.24% 13.38% 3.45 [ 285,4142]
(1,3200) [173,353] 106,098 105,015 0.99 144,564 90,975 0.63 36.26% 13.37% 9.42 [ 572,8285]

Table 1 Comparison of the two fluid approximations.

that this fluid approximation is asymptotically tight under a Bernoulli process as the resource

capacities get large. Thus, we expect the Traditional Fluid approximation to provide tighter upper

bounds and stronger policies when the coefficient of variation for the number of customer arrivals

is smaller and the resource capacities are larger. Considering the test problems with the smallest of

coefficient of variation of 1/128, when cmin = 173, the ratio between the total expected revenue of

the policy from the Traditional Fluid and the optimal objective value of the same fluid approximation

is 0.95, so the performance of the policy is within 5% of the optimal total expected revenue. For

the same problem instance, the corresponding ratio for the Universal Fluid is 0.96. Furthermore, if

D= T with probability one, then P{D≥ t}= 1 for all t= 1, . . . , T , in which case, the Traditional Fluid

and Universal Fluid approximations become equivalent to each other. Thus, we expect the two fluid

approximations to behave similarly when the coefficient of variation is small. For the test problems

with the smallest coefficient of variation of 1/128, the optimal objective values of the two fluid

approximations differ by at most 0.64% and the total expected revenues of the policies driven by the
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two fluid approximations differ by at most 0.30%. Nevertheless, when the coefficient of variation of

the number of customer arrivals is 1/8 or more, we observe significant gaps in the optimal objective

values of the two fluid approximations and the performance of the policies. For the test problems

with a coefficient of variation of 1/8, the upper bounds provided by the Universal Fluid improve those

provided by the Traditional Fluid by as much as 11.64%. The total expected revenues of the policies

driven by the two fluid approximations differ by as much as 2.91%.

7. Conclusions

We made three contributions. First, the form of the fluid approximation we propose under a random

number of customer arrivals is somewhat unexpected because the distribution of the number of

customer arrivals does not appear in the capacity constraints. A naive fluid approximation that uses

the expected capacity consumption of the resources on the left side of the capacity constraints is

not asymptotically tight. Second, our work shows that we can formulate asymptotically tight fluid

approximations when the number of customer arrivals has arbitrary distributions. The fact that the

coefficient of variation of the demand under the Bernoulli arrival process gets smaller as the mean

demand gets larger is not a requirement to formulate asymptotically tight fluid approximations.

Third, getting the fluid approximation right is practically important. The policy driven by the

right fluid approximation can perform significantly better.

Working with richer customer arrival processes is an interesting research area. In our model, we

have a random number of customer arrivals with a finite upper bound. This finite upper bound is

not a huge practical concern, but our fluid approximation can also work with number of customer

arrivals without a finite upper bound. In Appendix D, we give one possible approach to address

the case where no such finite upper bound is available. There is a host of other approximation

strategies, beside fluid approximations, for large-scale revenue management problems. It would

be interesting to study whether they can be extended to incorporate high-variance demand. As

discussed in the introduction, there is also work on improving the performance of the policy by

periodically solving the fluid approximation. It would be useful to explore the analogues of these

results under random number of customer arrivals.
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Online Supplement

Fluid Approximations for Revenue Management under

High-Variance Demand

Appendix A: An Upper Bound on the Optimal Total Expected Revenue

In this section, we give a proof for Theorem 4.1. We will use an equivalent reformulation of the

dynamic program in Section 2 that is more suitable for Lagrangian relaxation. In our equivalent

reformulation, we use the decision variables u = (uj : j ∈ J ) ∈ {0,1}|J |, where uj = 1 if and

only if we make product j available at a generic time period. If the remaining capacities of

the resources are given by the vector x ∈ Z|L|
+ , then the set of feasible decisions is given by

U(x) = {u∈ {0,1}|J | : 1(i∈Aj) uj ≤ xi ∀ i∈L, j ∈J }, which ensures that we can make product j

available only when there is at least one unit of remaining capacity for all resources that are used

by product j. In this case, the dynamic program in Section 2 is equivalent to

Jt(x) = max
u∈U(x)

{∑
j∈J

λjt

{
fj uj + ρt Jt+1

(
x−uj

∑
i∈Aj

ei

)}}
, (1)

with the boundary condition that JT+1 = 0. The value functions computed through the dynamic

program in (1) are identical to those computed through the dynamic program in Section 2.

Considering (1), for each i∈L and j ∈J , we relax the constraint 1(i∈Aj) uj ≤ xi at time period t

by associating the Lagrange multiplier θijt with it to obtain the dynamic program

Ĵθ
t (x) = max

u∈{0,1}|J |

{∑
j∈J

λjt

{
fj uj + ρt Ĵ

θ
t+1

(
x−uj

∑
i∈Aj

ei

)}
+
∑
i∈L

∑
j∈J

λjt θijt

[
xi −1(i∈Aj) uj

]}

= max
u∈{0,1}|J |

{∑
j∈J

λjt

{[
fj −

∑
i∈L

1(i∈Aj) θijt

]
uj + ρt Ĵ

θ
t+1

(
x−uj

∑
i∈Aj

ei

)}}
+
∑
i∈L

∑
j∈J

λjt θijt xi, (2)

with the boundary condition that Ĵθ
T+1 = 0. In the first equality above, we scaled the Lagrange

multiplier θijt with λjt, which will simplify our notation. The second equality follows by arranging

the terms. We refer to the dynamic program in (2) as the relaxed dynamic program. In the

relaxed dynamic program, we make it explicit that the value functions depend on our choice of

the Lagrange multipliers θ = (θijt : i ∈ L, j ∈ J , t ∈ T ) ∈ R|L||J ||T |
+ . It is a standard result that

the value functions of the relaxed dynamic program provide upper bounds on the value functions

in (1); see, for example, Adelman and Mersereau (2008). Thus, for any choice of the Lagrange

multipliers θ ∈R|L||J ||T |
+ , we have Ĵθ

t (x)≥ Jt(x) for all t∈ T .

Noting that J1(c) is the optimal total expected revenue, by the discussion in the previous

paragraph, for any θ ∈R|L||J ||T |
+ , Ĵθ

1 (c) is an upper bound on the optimal total expected revenue. To
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show Theorem 4.1, we focus on a specific choice of the Lagrange multipliers, where the Lagrange

multipliers at all time periods except for the last one are zero, whereas the Lagrange multipliers at

the last time period depend on the resources but not on the products. For any η= (ηi : i∈L)∈R|L|
+ ,

define F(η) = {θ ∈ R|L||J ||T |
+ : θijT = ηi ∀ i ∈ L, j ∈ J , θijt = 0 ∀ i ∈ L, j ∈ J , t ∈ T \ {T}}, so

if θ ∈ F(η), then the Lagrange multipliers (θijT : j ∈ J ) take the common value of ηi, but the

Lagrange multipliers (θijt : i∈L , j ∈J , t∈ T \ {T}) take the value of zero. Focusing on a specific

choice of the Lagrange multipliers does not take full advantage of the flexibility provided by the

possibility of using a different Lagrange multiplier for each resource, product and time period, but

it will be enough to show that the optimal objective value of the Universal Fluid approximation is

an upper bound on the optimal total expected revenue. In the next lemma, we give a closed form

expression for the value functions {Ĵθ
t : t∈ T } when we have θ ∈F(η).

Lemma A.1 Letting Rt = ρt ρt+1 . . . ρT−1 with RT = 1, for any η ∈R|L|
+ , if the Lagrange multipliers

satisfy θ ∈F(η), then we have

Ĵθ
t (x) =

T∑
k=t

∑
j∈J

λjk

[ Rt

Rk

fj −Rt

∑
i∈Aj

ηi

]+
+Rt

∑
i∈L

ηi xi.

Proof: We show the result by using induction over the time periods. At time period T , noting that

Ĵθ
T+1 = 0 and θijT = ηi, as well as using the fact that

∑
j∈J λjT = 1, by (2), we have

Ĵθ
T (x) = max

u∈{0,1}|J |

{∑
j∈J

λjT

[
fj −

∑
i∈L

1(i∈Aj) ηi

]
uj

}
+
∑
i∈L

∑
j∈J

λjT ηi xi =
∑
j∈J

λjT

[
fj −

∑
i∈Aj

ηi

]+
+
∑
i∈L

ηi xi.

Thus, the result holds at time period T . Assuming that the result holds at time period t+1, we

show that the result holds at time period t as well.

Letting Kt =
∑T

k=t

∑
j∈J λjk [

Rt
Rk

fj − Rt

∑
i∈Aj

ηi]
+, by the induction assumption, we have

Ĵθ
t+1(x) =Kt+1 +Rt+1

∑
i∈L ηi xi. Noting that θijt = 0 for t∈ T \ {T}, by (2), we have

Ĵθ
t (x)

(a)
= max

u∈{0,1}|J |

{∑
j∈J

λjt

{
fj uj + ρtKt+1 + ρtRt+1

∑
i∈L

ηi (xi −1(i∈Aj) uj)

}}
(b)
= max

u∈{0,1}|J |

{∑
j∈J

λjt

[
fj − ρtRt+1

∑
i∈Aj

ηi

]
uj

}
+ ρtKt+1 + ρtRt+1

∑
i∈L

ηi xi

=
∑
j∈J

λjt

[
fj − ρtRt+1

∑
i∈Aj

ηi

]+
+ ρtKt+1 + ρtRt+1

∑
i∈L

ηi xi

(c)
= Kt +Rt

∑
i∈L

ηi xi,

where (a) holds because we have Ĵθ
t+1(x− uj

∑
i∈Aj

ei) =Kt+1 +Rt+1

∑
i∈L ηi (xi − 1(i∈Aj) uj) by

the induction assumption, (b) follows by arranging the terms and using the fact that
∑

j∈J λjt = 1
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and (c) holds because we have Rt = ρtRt+1 and Kt =
∑

j∈J λjt [fj −Rt

∑
i∈Aj

θi]
+ + ρtKt+1 by the

definitions of Rt and Kt. By the chain of equalities above, the result holds at time period t.

We have Rt = ρt ρt+1 . . . ρT−1 =
P{D≥t+1}
P{D≥t}

P{D≥t+2}
P{D≥t+1} . . .

P{D≥T}
P{D≥T−1} =

P{D≥T}
P{D≥t} . Since P{D≥ 1}= 1, the

last equality also yields R1 = P{D≥ T}. By Lemma A.1, for any η ∈R|L|
+ and θ ∈F(η), we get

Ĵθ
1 (c) =

T∑
t=1

∑
j∈J

λjt

[ R1

Rt

fj −R1

∑
i∈Aj

ηi

]+
+R1

∑
i∈L

ηi ci

=
T∑

t=1

∑
j∈J

λjt

[
P{D≥ t}fj −P{D≥ T}

∑
i∈L

1(i∈Aj) ηi

]+
+ P{D≥ T}

∑
i∈L

ηi ci. (3)

We have Ĵθ
1 (c)≥ J1(c) for all θ ∈R|L||J ||T |

+ , but we have θ ∈R|L||J ||T |
+ for any η ∈R|L|

+ and θ ∈F(η).

Thus, the expression on the right side of (3) is an upper bound on J1(c) for any η ∈R|L|
+ .

By the discussion in the previous paragraph, if we minimize the expression on the right side of

(3) over all η ∈R|L|
+ , then we get an upper bound on J1(c). Below is the proof of Theorem 4.1.

Proof of Theorem 4.1:

Using the decision variables η = (ηi : i ∈ L) ∈ R|L|
+ and z = (zjt : j ∈ J , t ∈ T ) ∈ R|J ||T |

+ , we can

minimize the expression on the right side of (3) over all η ∈R|L|
+ by solving the linear program

min
(η,z)∈R|L|+|J ||T |

+

{∑
t∈T

∑
j∈J

λjt zjt +P{D≥ T}
∑
i∈L

ci ηi :

zjt ≥ P{D≥ t}fj − P{D≥ T}
∑
i∈L

1(i∈Aj) ηi ∀ j ∈J , t∈ T

}
. (4)

We can assume that P{D≥ T}> 0, because if P{D≥ T}= 0, then we can choose the upper bound

of the support of D as the largest value of τ ∈ {1, . . . , T − 1} such that P{D≥ τ}> 0.

Associating the dual variables y = (yjt : j ∈ J , t ∈ T ) ∈ R|J ||T |
+ with the constraints in the

problem above, the dual of problem (4) is given by

max
y∈R|J ||T |

+

{∑
t∈T

∑
j∈J

fj P{D≥ t}yjt : P{D≥ T}
∑
t∈T

∑
j∈J

1(i∈Aj) yjt ≤ P{D≥ T} ci ∀ i∈L

yjt ≤ λjt ∀ j ∈J , t∈ T

}
. (5)

Because P{D ≥ T}> 0, problem (5) is equivalent to the Universal Fluid. The desired result follows

since (4) and (5) have the same optimal objective value, which is an upper bound on J1(c).

In our derivation of the Universal Fluid approximation, we used the relaxed dynamic program with

a specific choice of the Lagrange multipliers, where the Lagrange multipliers at all time periods
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except for the last one are zero, whereas the Lagrange multipliers at the last time period depend

on the resources but not on the products. We can potentially derive other fluid approximations

by using more general Lagrange multipliers that exploit the possibility that we can use a different

Lagrange multiplier for each resource, product and time period. The upper bounds on the optimal

total expected revenue provided by such fluid approximations would be at least as tight as those

provided by the Universal Fluid approximation, but such fluid approximations do not have a form

that is as simple as the Universal Fluid approximation. Furthermore, the Universal Fluid approximation

turns out to be enough to obtain asymptotically tight upper bounds.

Appendix B: Asymptotic Tightness of the Fluid Approximation

We give a proof for Theorem 5.1. Let y∗ = (y∗
jt : j ∈ J , t ∈ T ) be an optimal solution to the

Universal Fluid approximation. Consider the following approximate policy for some θ ∈ (0,1). At time

period t, we make product j available for purchase with probability θ
y∗jt
λjt

. If the customer arriving

at time period t wants to purchase product j and there is capacity available to serve a request for

product j, then we sell a unit of product j and consume the capacities of the resources used by the

product. Define three Bernoulli random variables. The first one, denoted by Ajt, takes value one if

the approximate policy makes product j available at time period t. We have P{Ajt = 1}= θ
y∗jt
λjt

. The

second one, denoted by Λjt, takes value one if the customer arriving at time period t is interested

in purchasing product j. We have P{Λjt = 1}= λjt. The third one, denoted by Gjt, takes value one

if we have capacity to serve a request for product j at time period t under the approximate policy.

In this case, the total revenue obtained by the approximate policy is given by the random variable∑T

t=1

∑
j∈J fj 1(D≥t,Ajt=1,Λjt=1,Gjt=1), where we use the fact that the approximate policy makes

a sale for product j at time period t if and only if the selling horizon reaches beyond this time

period, the approximate policy makes product j available, the arriving customer is interested in

purchasing product j and we have capacity to serve a request for product j. Note that Gjt depends

on the decisions of the approximate policy at time periods 1, . . . , t−1 and D is independent of the

decisions of the approximate policy and the products of interest to the arriving customers. Thus,

letting JApp(c) be the total expected revenue of the approximate policy, we get

JApp(c) =
T∑

t=1

∑
j∈J

fj P{D≥ t}P{Ajt = 1}P{Λjt = 1}P{Gjt = 1}

=
T∑

t=1

∑
j∈J

fj P{D≥ t}θ
y∗
jt

λjt

λjt P{Gjt = 1}. (6)

We lower bound the probability P{Gjt = 1}. At time period t, the approximate policy makes

product j available with probability θ
y∗jt
λjt

, whereas we have a request for product j with
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probability λjt. Thus, under the approximate policy, there is a unit of demand for capacity of

resource i at time period t with probability
∑

j∈J 1(i∈Aj) θ
y∗jt
λjt

λjt = θ
∑

j∈J 1(i∈Aj) y
∗
jt. However,

having demand for capacity of resource i at time period t does not mean that the approximate

policy depletes the capacity of the resource at time period t. In particular, considering some product

j that uses the capacity of resource i, even if the approximate policy makes product j available

at time period t and the customer arriving at time period t is interested in product j, we may

not have capacity on some other resource used by product j, in which case, we would not be

serving the demand for the product. Thus, letting {Nit : t ∈ T } be a collection of independent

Bernoulli random variables, where Nit takes value one with probability θ
∑

j∈J 1(i∈Aj) y
∗
jt, under

the approximate policy, the total capacity consumption of resource i over time periods 1, . . . , t− 1

is upper bounded by
∑T

k=1Nik. Thus, having
∑T

k=1Nik < ci for all i ∈Aj implies that Gjt = 1, so

P{
∑T

k=1Nik < ci ∀ i∈Aj} ≤ P{Gjt = 1}. We need the concentration bound in the next lemma.

Lemma B.1 Letting {Nit : t∈ T } be a collection of independent Bernoulli random variables, where

Nit takes value one with probability θ
∑

j∈J 1(i∈Aj) y
∗
jt, we have

P

{
T∑

t=1

Nit ≥ ci

}
≤ exp

(
−

3
2
(1− θ)2cmin

2θ+1

)
.

Proof: Letting ρit = θ
∑

j∈J 1(i∈Aj) y
∗
jt for notational brevity, so that we have E{Nit} = ρit and

Var(Nit) = ρit (1− ρit), we upper bound the expectation and variance of
∑T

t=1Nit as

Var

(
T∑

t=1

Nit

)
=

T∑
t=1

ρit (1− ρit)≤
T∑

t=1

ρit =E

{
T∑

t=1

Nit

}
= θ

T∑
t=1

∑
j∈J

1(i∈Aj) y
∗
jt ≤ θ ci,

where the last inequality holds because y∗ = (y∗
jt : j ∈J , t∈ T ) is an optimal solution to the

Universal Fluid approximation, so it satisfies the first constraint in the fluid approximation.

Noting that E{
∑T

t=1Nit} ≤ θ ci by the chain of inequalities above, using the one-sided Bernstein

inequality, we obtain the chain of inequalities

P

{
T∑

t=1

Nit ≥ ci

}
(a)

≤ P

{
T∑

t=1

[
Nit −E{Nit}

]
≥ (1− θ) ci

}
(b)

≤ exp

(
−

1
2
(1− θ)2 c2i∑T

t=1Var(Nit)+
1
3
(1− θ)ci

)
(c)

≤ exp

(
−

1
2
(1− θ)2 c2i

θ ci +
1
3
(1− θ)ci

)
= exp

(
−

3
2
(1− θ)2 ci

2θ+1

)
(d)

≤ exp

(
−

3
2
(1− θ)2 cmin

2θ+1

)
,

where (a) holds because E{
∑T

t=1Nit} ≤ θ ci, (b) is the one-sided Bernstein inequality, (c) uses the

fact that
∑T

t=1Var(Nit)≤ θ ci and (d) uses the fact that cmin ≤ ci.

We can use the bound in the lemma above along with the union bound to come up with a lower

bound on the probability P{
∑T

t=1Nit < ci ∀ i ∈Aj}. By the discussion right before the lemma, a
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lower bound on the last probability is also a lower bound on the probability P{Gjt = 1}. Putting

these observations together will yield a proof for Theorem 5.1.

Proof of Theorem 5.1:

Noting the discussion just before Lemma B.1, P{
∑T

k=1Nik < ci ∀ i∈Aj} ≤ P{Gjt = 1}. We lower

bound the probability P{Gjt = 1} as

P{Gjt = 1} ≥ P

{
T∑

t=1

Nit < ci ∀ i∈Aj

}
= 1−P

{
∃ i∈Aj such that

T∑
t=1

Nit ≥ ci

}
(a)

≥ 1−
∑
i∈Aj

P

{
T∑

t=1

Nit ≥ ci

}
(b)

≥ 1−L exp

(
−

3
2
(1− θ)2cmin

2θ+1

)
(c)

≥ 1−L exp

(
− (1− θ)2cmin

2

)
,

where (a) is the union bound, (b) follows from Lemma B.1, as well as the fact that |Aj| ≤ L and

(c) uses the fact that θ ∈ (0,1), in which case, we have 2θ+1< 3.

If we use θ= 1−
√

2 log cmin
cmin

in our approximate policy, then the right of the chain of inequalities

above reads 1− L
cmin

, so P{Gjt = 1} ≥ 1− L
cmin

with this choice of θ. Thus, by (6), we get

JApp(c) ≥

(
1−

√
2 log cmin

cmin

)
T∑

t=1

∑
j∈J

fj P{D≥ t}y∗
jt

(
1− L

cmin

)
(d)
=

(
1−

√
2 log cmin

cmin

)(
1− L

cmin

)
Z∗

LP ≥

(
1−

√
2 log cmin

cmin

− L

cmin

)
Z∗

LP,

where (d) holds because the solution y∗ = (y∗
jt : j ∈ J , t ∈ T ) is optimal to the Universal Fluid. The

desired result follows because the optimal total expected revenue satisfies J1(c)≥ JApp(c).

Appendix C: Experimental Setup for the Test Problems

We give the details of our approach for generating our test problems. Letting Γ be a log-normal

random variable with mean µ and standard deviation µv and k be the smallest integer such

that P{Γ ≤ k} ≥ 0.99, we set the maximum length of the selling horizon as T = k. For each

t = 1, . . . , T , letting γt = P{t − 1 ≤ Γ ≤ t}, the probability mass function of D evaluated at t is

proportional to γt. In particular, for each t= 1, . . . , T , we set P{D= t}= γt/
∑T

s=1 γs. We place the

hub at the center of a 100×100 square and generate the locations of the spokes uniformly over the

same square. The fare associated with a low-fare itinerary is the sum of the Euclidean distances

traversed by the flights in the itinerary. The fare associated with a high-fare itinerary is κ times

the fare of the corresponding low-fare itinerary. We set κ= 4.

To come up with the arrival probabilities for the customers interested in different itineraries,

for each origin-destination pair (f, g), we generate ξfg from the uniform distribution over [0,1].
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One of the locations in the origin-destination pair can be the hub. Letting N be the set of all

locations, we normalize these samples by setting ζfg = ξfg/
∑

(p,q)∈N2,p̸=q ξpq so that they add up

to one. The probability that the customer arriving at any time period is interested in an itinerary

that connects the origin-destination pair (f, g) is ζfg. The probability that a customer is interested

in a low-fare itinerary decreases over time, whereas we have the reverse trend for the probability

that a customer is interested in a high-fare itinerary. In this way, we generate test problems

where the requests for high-fare itineraries tend to arrive later and we need to protect capacity

for the high-fare itinerary requests that tend to arrive later. To generate test problems with this

feature, for each origin-destination pair (f, g), we generate a time threshold τfg uniformly over

{1, . . . , T}. The probability of having a request for a low-fare itinerary linearly decreases over time,

whereas the probability of having a request for a high-fare itinerary is zero until time period τfg, but

it increases linearly after time period τfg. In particular, we define the functions G,Hfg : T →R+ as

G(t) = 1− t−1
T−1

and Hfg(t) =
[

t−τfg
T−τfg

]+
. In this case, if itinerary j is the low-fare itinerary connecting

origin-destination pair (f, g), then λjt = ζfg
G(t)

G(t)+Hfg(t)
and if itinerary j is the high-fare itinerary

connecting origin-destination pair (f, g), then λjt = ζfg
Hfg(t)

G(t)+Hfg(t)
. Once we generate the customer

arrival probabilities, we set the capacities of the flight legs so that the total expected demand for

the capacity on the flight leg exceeds the capacity of the flight leg by a factor of 1.6. In other words,

noting that the total expected demand for the capacity on flight leg i is
∑

t∈T
∑

j∈J 1(i∈Aj) λjt, the

capacity of flight leg i is ci = ⌈
∑

t∈T
∑

j∈J 1(i∈Aj) λjt/1.6⌉.

We can choose the coefficient of variation of a log-normal random variable as large as we would

like, which was the motivation for using this distribution for D in our experimental setup.

Appendix D: Finite Upper Bound on the Number of Customer Arrivals

We start by considering the case where there exists some λ > 0 such that λjt ≥ λ for all j ∈ J
and t ∈ T . Thus, the probability that an arriving customer is interested in a particular product

is uniformly lower bounded by λ. We discuss relaxations of this setup at the end of this section.

Making the dependence of the Universal Fluid on the set of possible values for the length of the selling

horizon explicit, we write the optimal objective value of this problem as Z∗
LP(T ). Define the time

threshold τ = ⌈maxi∈L ci/λ⌉. In the next proposition, we show that if T > τ , then we can drop the

last time period T in the Universal Fluid approximation. Therefore, we can always use a finite upper

bound of τ on the possible realizations of the number of customer arrivals.

Proposition D.1 If T > τ , then we have Z∗
LP(T ) =Z∗

LP(T \ {T}).

Proof: Let y∗ = (y∗
jt : j ∈ J , t ∈ T ) be an optimal solution to the Universal Fluid. If y∗

jT = 0 for

all j ∈ J , then the result follows. Otherwise, there exists some product k such that y∗
kT > 0. We
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will construct another optimal solution ŷ= (ŷjt : j ∈J , t∈ T ) to the Universal Fluid approximation

such that ŷkT = 0 and ŷjT = y∗
jtT for all j ∈ J \ {k}, in which case, repeatedly applying the same

construction for each k ∈ J such that y∗
kT > 0, the desired result follows. Let k ∈ J be such that

y∗
kT > 0. Choose some resource i that is used by product k, so 1(i∈Ak) = 1. Using the fact that T > τ

we have y∗
kT +

∑τ

t=1 y
∗
kt ≤

∑
t∈T 1(i∈Ak) y

∗
kt ≤

∑
j∈J

∑
t∈T 1(i∈Aj) y

∗
jt ≤ ci, where the last inequality

holds because y∗ satisfies the first constraint in the Universal Fluid approximation. By the definition

of τ , we have τ ≥ ci/λ, so the last chain of inequalities yields y∗
kT +

∑τ

t=1 y
∗
kT ≤ τ λ ≤

∑τ

t=1 λkt,

where we use the fact that λkt ≥ λ for all t∈ T . Thus, we have y∗
kT ≤

∑τ

t=1(λkt − y∗
kt). Noting that

λkt−y∗
kt ≥ 0 for all t= 1, . . . , τ by the second constraint in the Universal Fluid approximation, having

y∗
kT ≤

∑τ

t=1(λkt− y∗
kt) implies that there exists a collection of non-negative numbers δ1, . . . , δτ such

that we have
∑τ

t=1 δt = y∗
kT and δt ≤ λkt−y∗

kt for all t= 1, . . . , τ . In this case, we define the solution

ŷ= (ŷjt : j ∈J , t∈ T ) as ŷjt = y∗
jt for all j ∈J \ {k}, t∈ T and

ŷkt =


y∗
kt + δt if t= 1, . . . , τ

y∗
kt if t= τ +1, . . . , T − 1

0 if t= T .

Because
∑τ

t=1 δt = y∗
kT , we have

∑
t∈T ŷjt =

∑
t∈T y∗

jt for all j ∈J , so noting that y∗ satisfies the first

constraint in the Universal Fluid approximation, ŷ satisfies this constraint too. Because δt ≤ λkt−y∗
kt,

the solution ŷ satisfies the second constraint in the Universal Fluid approximation as well.

Thus, the solution ŷ is feasible to the Universal Fluid approximation. The difference between

the objective function values provided by ŷ and y∗ is fk
∑τ

t=1 P{D ≥ t} δt − fk P{D ≥ T}y∗
kT =

fk
∑τ

t=1[P{D≥ t}−P{D≥ T}] δt ≥ 0, where we use P{D≥ t} ≥ P{D≥ T} for all t= 1, . . . , τ .

By the proposition above, we can drop all time periods in T \ {1, . . . , τ} from consideration in

the Universal Fluid approximation. We can extend the proposition above to the case where there

exists some λ > 0 such that λjt ≥ 1(λjt>0) λ for all j ∈ J and t ∈ T , so that the nonzero values

for the probability that an arriving customer is interested in a particular product is uniformly

lower bounded by λ. In this case, we define as τ before. Furthermore, for each j ∈ J , we choose

Kj = 1, . . . , T +1 such that we have either
∑Kj

t=1 1(λjt>0) ≥ τ or
∑T

Kj
1(λjt>0) = 0. Note that we can

always chooseKj = T+1, so there is always a value forKj that satisfies one of the two conditions. In

this case, we can show that if T >maxj∈J Kj, then we have Z∗
LP(T ) =Z∗

LP(T \{T}). In particular, if∑T

Kj
1(λjt>0) = 0, then there are no requests for product j after time periodKj. Thus, we can indeed

set the decision variable yjT to zero in the Universal Fluid. On the other hand, if
∑Kj

t=1 1(λjt>0) ≥ τ ,

then there are τ time periods at which there is demand for product j with a probability of at least

λ. In this case, we can use the same argument in the proof of Proposition D.1 to conclude that we

can set the decision variable yjT to zero in the Universal Fluid.


