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We consider unconstrained and constrained multi-product pricing problems when customers choose according

to an arbitrary generalized extreme value (GEV) model and the products have the same price sensitivity

parameter. In the unconstrained problem, there is a unit cost associated with the sale of each product. The

goal is to choose the prices for the products to maximize the expected profit obtained from each

customer. We show that the optimal prices of the different products have a constant markup over their unit

costs. We provide an explicit formula for the optimal markup in terms of the Lambert-W function. In the

constrained problem, motivated by the applications with inventory considerations, the expected sales of

the products are constrained to lie in a convex set. The goal is to choose the prices for the products to

maximize the expected revenue obtained from each customer, while making sure that the constraints for the

expected sales are satisfied. If we formulate the constrained problem by using the prices of the products as

the decision variables, then we end up with a non-convex program. We give an equivalent market-share-based

formulation, where the purchase probabilities of the products are the decision variables. We show that the

market-share-based formulation is a convex program, the gradient of its objective function can be computed

efficiently, and we can recover the optimal prices for the products by using the optimal purchase probabilities

from the market-share-based formulation. Our results for both unconstrained and constrained problems hold

for any arbitrary GEV model.

Key words : customer choice modeling, generalized extreme value models, price optimization

1. Introduction

In most revenue management settings, customers make a choice among the set of products that

are offered for purchase. While making their choices, customers substitute among the products

based on attributes such as price, quality, and richness of features. In these situations, increasing

the price for one product may shift the demand of other products, and such substitutions create

complex interactions among the demands for the different products. There is a growing body
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of literature pointing out that capturing the choice process of customers and the interactions

among the demands for different products through discrete choice models can significantly improve

operational decisions; see, for example, Talluri and van Ryzin (2004), Gallego et al. (2004), and

Vulcano et al. (2010). Nevertheless, as the discrete choice models become more complex, finding

the optimal prices to charge for the products becomes more difficult as well. This challenge reflects

the fundamental tradeoff between choice model complexity and operational tractability.

In this paper, we study unconstrained and constrained multi-product pricing problems when

customers choose according to an arbitrary choice model from the generalized extreme value (GEV)

family. The GEV family is a rather broad family of discrete choice models, as it encapsulates

many widely studied discrete choice models as special cases, including the multinomial logit

(Luce 1959, McFadden 1974, McFadden 1980), nested logit (Williams 1977, McFadden 1978),

d-level logit (Daganzo and Kusnic 1993, Li et al. 2015, Li and Huh 2015), and paired combinatorial

logit (Koppelman and Wen 2000, Chen et al. 2003, Li and Webster 2015). Throughout this paper,

when we refer to a GEV model, we refer to an arbitrary choice model within the GEV family. For

both unconstrained and constrained multi-product pricing problems studied in this paper, we

consider the case where different products share the same price sensitivity parameter. We present

results that hold simultaneously for all GEV models.

Our Contributions: In the unconstrained problem, there is a unit cost associated with the sale

of each product. The goal is to set the prices for the products to maximize the expected profit from

each customer. We show that the optimal prices of the different products have the same markup,

which is to say that the optimal price of each product is equal to its unit cost plus a constant

markup that does not depend on the product; see Theorem 3.1. We provide an explicit formula

for the optimal markup in terms of the Lambert-W function; see Proposition 3.2. These results

greatly simplify the computation of the optimal prices and they hold under any GEV model. We

give comparative statistics that describe how the optimal prices change as a function of the unit

costs; see Corollary 3.3. In particular, if the unit cost of a product increases, then its optimal price

increases and the optimal prices of the other products decreases. If the unit costs of all products

increase by the same amount, then the optimal prices of all products increase.

In the constrained problem, motivated by the applications with inventory considerations, the

expected sales of the products are constrained to lie in a convex set. The goal is to set the prices for

the products to maximize the expected revenue obtained from each customer while satisfying the

constraints on the expected sales. A natural formulation of the constrained problem, which uses

the prices of the products as the decision variables, is a non-convex program. We give an equivalent

market-share-based formulation, where the purchase probabilities of the products are the decision



Zhang, Rusmevichientong, and Topaloglu: Pricing under the Generalized Extreme Value Models
3

variables. We show that the market-share-based formulation is a convex program that can be

solved efficiently. In particular, for any given purchase probabilities for the products, we can recover

the unique prices that achieve these purchase probabilities; see Theorem 4.1. Also, the objective

function of the market-share-based formulation is concave in the purchase probabilities and its

gradient can be computed efficiently; see Theorem 4.3. Thus, we can solve the market-share-based

formulation and recover the optimal prices by using the optimal purchase probabilities.

The solution methods that we provide for the unconstrained and constrained problems are

applicable to any GEV model. This generality comes at the expense of requiring homogeneous

price sensitivity parameters. As discussed shortly in our literature review, there is a significant

amount of work that studies pricing problems for specific instances of the GEV models, such as the

multinomial logit and nested logit, under the assumption that the price sensitivities for the products

are the same. Also, in many applications, customers choose among products that are in the same

product category. In such cases, it is reasonable to expect similar price sensitivities across products.

Cotterill (1994), Hausman et al. (1994), Chidmi and Lopez (2007), and Mumbower et al. (2014)

estimate the price sensitivities for the products within the categories of soft drinks, domestic beer,

breakfast cereal, and flights with the same change restrictions in an origin-destination market. They

report similar price sensitivities for the products in each category.

Even when the price sensitivities of the products are the same, the GEV models can provide

significant modeling flexibility, as they include many other parameters. Consider the generalized

nested logit model, which is a GEV model. Let N be the set of all products and β be the price

sensitivity of the products. Besides the price sensitivity β, the generalized nested logit model has

the parameters {αi : i ∈N}, {τk : k ∈ L}, and {σik : i ∈N, k ∈ L} for a generic index set L. If the

prices of the products are p= (pi : i∈N), then the choice probability of product i is

ΘGenNest
i (p) =

∑
k∈L(σik e

αi−β pi)1/τk

(∑
j∈N(σjk e

αj−β pj )1/τk

)τk−1

1 +
∑

k∈L

(∑
j∈N(σjk e

αj−β pj )1/τk

)τk .

Letting ci be the unit cost for product i, if we charge the prices p, then the expected profit

from a customer is
∑

i∈N(pi− ci)ΘGenNest
i (p). This expected profit function is rather complicated

when the purchase probabilities are as above, but our results show that we can efficiently find the

prices that maximize this expected profit function. Also, Swait (2003), Daly and Bierlaire (2006)

and Newman (2008) give general approaches to combine GEV models to generate new ones. The

purchase probabilities under such new GEV models can be even more complicated.

Literature Review: There is a rich vein of literature on unconstrained multi-product pricing

problems under specific members of the GEV family, including the multinomial logit, nested logit,
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and paired combinatorial logit, but these results make use of the specific form of the purchase

probabilities under each specific GEV model. Hopp and Xu (2005) and Dong et al. (2009) consider

the pricing problem under the multinomial logit model, Anderson and de Palma (1992) and Li and

Huh (2011) consider the pricing problem under the nested logit model, and Li and Webster (2015)

consider the pricing problem under the paired combinatorial logit model. Under each of these

choice models, the authors show that if the price sensitivities of the products are the same, then

the optimal prices for the products have a constant markup. We extend the constant markup result

established in these papers from the multinomial logit, nested logit, and paired combinatorial logit

models to an arbitrary choice model within the GEV family. Furthermore, the constant markup

results established in these papers often exploit the structure of the specific choice model to find

an explicit formula for the price of each product as a function of the purchase probabilities. This

approach fails for general GEV models, as there is no explicit formula for the prices as a function

of the choice probabilities, but it turns out that we can still establish that the optimal prices have

a constant markup under any GEV model.

With the exception of Li and Huh (2011) and Li and Webster (2015), the papers mentioned in

the paragraph above exclusively assume that the price sensitivities of the products are the same. Li

and Huh (2011) also go one step beyond to study the pricing problem under the nested logit model

when the products in each nest have the same price sensitivity. In this case, they show that the

optimal prices for the products in each nest have a constant markup. In addition to the case with

homogeneous price sensitivities for the products, Li and Webster (2015) also consider the pricing

problem under the paired combinatorial logit model with arbitrary price sensitivities. The authors

establish sufficient conditions on the price sensitivities to ensure unimodality of the expected profit

function and give an algorithm to compute the optimal prices.

Other work on unconstrained multi-product pricing problems under specific GEV models

includes Wang (2012), where the author considers joint assortment planning and pricing problems

under the multinomial logit model with arbitrary price sensitivities. Gallego and Wang (2014) show

that the expected profit function under the nested logit model can have multiple local maxima

when the price sensitivities are arbitrary and give sufficient conditions on the price sensitivities

to ensure unimodality of the expected profit function. Rayfield et al. (2015) study the pricing

problem under the nested logit model with arbitrary price sensitivities and provide heuristics with

performance guarantees. Li et al. (2015) and Li and Huh (2015) study pricing problems under the

d-level nested logit model with arbitrary price sensitivities.

Our study of constrained multi-product pricing problems is motivated by the applications with

inventory considerations. Gallego and van Ryzin (1997) study a network revenue management
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model where the sale of each product consumes a combination of resources and the resources

have limited inventories. The goal is to find the prices for the products to maximize the expected

revenue from each customer, while making sure that the expected consumptions of the resources

do not exceed their inventories. The authors use their pricing problem to give heuristics for the

case where customers arrive sequentially over time to make product purchases subject to resource

availability. We show that their pricing problem is tractable under GEV models with homogeneous

price sensitivities. Song and Xue (2007) and Zhang and Lu (2013) show that the expected revenue

function under the multinomial logit model is concave in the market shares when the products have

the same price sensitivity. Keller (2013) considers pricing problems under the multinomial logit and

nested logit models when there are linear constraints on the expected sales of the products. The

author establishes sufficient conditions to ensure that the expected revenue is concave in the market

shares. Song and Xue (2007) and Zhang and Lu (2013) focus on the multinomial logit model with

homogeneous price sensitivities for the products. Thus, our work generalizes theirs to an arbitrary

GEV model. Keller (2013) works with non-homogeneous price sensitivities. In that sense, his work

is more general than ours. However, Keller (2013) works with specific GEV models. In that sense,

our work is more general than his.

Each GEV model is uniquely defined by a generating function. McFadden (1978) gives

sufficient conditions on the generating function to ensure that the corresponding GEV model

is compatible with the random utility maximization principle, where each customer associates

random utilities with the available alternatives and chooses the alternative that provides the

largest utility. McFadden (1980) discusses the connections between GEV models and other choice

models. Train (2002) cover the theory and application of GEV models. Swait (2003), Daly and

Bierlaire (2006) and Newman (2008) show how to combine generating functions from different

GEV models to create a new GEV model. The GEV family offers a rich class of choice models.

As discussed above, there is work on pricing problems under the multinomial logit, nested logit,

paired combinatorial logit, and d-level nested logit models, but applications in numerous areas

indicate that using other members of the GEV family can provide useful modeling flexibility. In

particular, Small (1987) uses the ordered GEV model, Bresnahan et al. (1997) use the principles of

differentiation GEV model, Vovsha (1997) uses the cross-nested logit model, Wen and Koppelman

(2001) use the generalized nested logit model, Swait (2001) uses the choice set generation logit

model, and Papola and Marzano (2013) use the network GEV model in applications including

scheduling trips, route selection, travel mode choice, and purchasing computers.

Organization: The paper is organized as follows. In Section 2, we explain how we can

characterize a GEV model by using a generating function. In Section 3, we study the unconstrained

problem. In Section 4, we study the constrained problem. In Section 5, we conclude.
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2. Generalized Extreme Value Models

A general approach to construct discrete choice models is based on the random utility maximization

(RUM) principle. Under the RUM principle, each product, including the no-purchase option, has

a random utility associated with it. The realizations of these random utilities are drawn from a

particular probability distribution and they are known only to the customer. The customer chooses

the alternative that provides the largest utility. We index the products by N = {1, . . . , n}. We use 0

to denote the no-purchase option. For each i∈N ∪{0}, we let Ui = µi + εi be the utility associated

with alternative i, where µi is the deterministic utility component and εi is the random utility

component. Under the RUM principle, the probability that a customer chooses alternative i is given

by Pr{Ui > U` ∀ `∈N ∪{0}, ` 6= i}. The family of GEV models allows us to construct discrete

choice models that are compatible with the RUM principle. A GEV model is characterized by a

generating function G that maps the vector Y = (Y1, . . . , Yn)∈Rn+ to a scalar G(Y ). The function

G satisfies the following four properties.

(i) G(Y )≥ 0 for all Y ∈Rn+.

(ii) The function G is homogeneous of degree one. In other words, we have G(λY ) = λG(Y ) for

all λ∈R+ and Y ∈Rn+.

(iii) For all i∈N , we have G(Y )→∞ as Yi→∞.

(iv) Using ∂Gii,...,ik(Y ) to denote the cross partial derivative of the function G with respect to

Yi1 , . . . , Yik evaluated at Y , if i1, . . . , ik are distinct from each other, then ∂Gi1,...,ik(Y ) ≥ 0

when k is odd, whereas ∂Gi1,...,ik(Y )≤ 0 when k is even.

Then, for any fixed vector Y ∈Rn+, under the GEV model characterized by the generating function

G, the probability that a customer chooses product i∈N is given by

Θi(Y ) =
Yi ∂Gi(Y )

1 +G(Y )
. (1)

With probability Θ0(Y ) = 1−
∑

i∈N Θi(Y ), a customer leaves without purchasing anything. Thus,

the choice probabilities depend on the function G and the fixed vector Y ∈Rn+.

McFadden (1978) shows that if the function G satisfies the four properties described above,

then for any fixed vector Y ∈ Rn+, the choice probability in (1) is compatible with the RUM

principle, where the deterministic utility components (µ1, . . . , µn) are given by µi = logYi for all

i ∈ N , the deterministic utility component for the no-purchase option is fixed at µ0 = 0, and

the random utility components (ε0, ε1, . . . , εn) have a generalized extreme value distribution with

the cumulative distribution function F (x0, x1, . . . , xn) = exp(−e−x0 −G(e−x1 , . . . , e−xn)). The GEV

models allow for correlated utilities and we can use different generating functions to model different
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correlation patterns among the random utilities. In the next example, we show that numerous

choice models that are commonly used in the operations management and economics literature are

specific instances of the GEV models.

Example 2.1 (Specific Instances of GEV Models) The multinomial logit, nested logit, and

paired combinatorial logit models are all instances of the GEV models. For some generic index set

L, consider the function G given by

G(Y ) =
∑
k∈L

(∑
i∈N

(σik Yi)
1/τk

)τk
,

where for all i ∈ N , k ∈ L, τk ∈ (0,1], σik ≥ 0, and for all i ∈ N ,
∑

k∈L σik = 1. The function G

above satisfies the four properties described at the beginning of this section. Thus, the expression

in (1) with this choice of the function G yields a choice model that is consistent with the

RUM principle. The choice model that we obtain by using the function G given above is called

the generalized nested logit model. Train (2002) discusses how specialized choices of the index

set L and the scalars {τj : j ∈ L} and {σik : i∈N, k ∈L} result in well-known choice models.

If the set L is the singleton L = {1} and τ1 = 1, then G(Y ) =
∑

i∈N Yi, and the expression

in (1) yields the choice probabilities under the multinomial logit model. If, for each product

i∈N , there exists a unique ki ∈ L such that σi,ki = 1, then G(Y ) =
∑

g∈L

(∑
i∈Ng Y

1/τg
i

)τg
where

Ng = {i ∈ N : ki = g}, in which case, the expression in (1) yields the choice probabilities under

the nested logit model, and ki is known as the nest of product i. If the set L is given by

{(i, j) ∈ N 2 : i 6= j} and σik = 1/(2(n − 1)) whenever k = (i, j) or (j, i) for some j 6= i, then

G(Y ) =
∑

(i,j)∈N2:i6=j

(
Y

1/τ(i,j)
i +Y

1/τ(i,j)
j

)τ(i,j)
/(2(n−1)), and the expression in (1) yields the choice

probabilities under the paired combinatorial logit model.

The discussion in Example 2.1 indicates that the multinomial logit, nested logit, and paired

combinatorial logit models are special cases of the generalized nested logit model. As discussed by

Wen and Koppelman (2001), the ordered GEV, principles of differentiation GEV, and cross-nested

logit are special cases of the generalized nested logit model as well. However, although the nested

logit model is a special case of the generalized nested logit model, the d-level nested logit model

is not a special case of the generalized nested logit model. In Figure 1, we show the relationship

between well-known GEV models. In this figure, an arc between two GEV models indicates that the

GEV model at the destination is a special case of the GEV model at the origin. In the next lemma,

we give two properties of functions that are homogeneous of degree one. These properties are a

consequence of a more general result, known as Euler’s formula, but we provide a self-contained

proof for completeness. We will use these properties extensively.
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Generalized	Nested	Logit
Wen	&	Koppelman (2001)

d-Level	Nested	Logit
Daganzo &	Kusnic (1993)

Nested	Logit
Williams	(1977)

Paired	Combinatorial	Logit
Koppelman &	Wen	(2000)

Ordered	GEV
Small	(1987)

Principles	of	Diff.	GEV
Bresnahan et	al.	(1997)

Cross-Nested	Logit
Vovsha (1997)

GEV
McFadden	(1978)

Multinomial	Logit
Luce (1959)

Figure 1 Relationship between well-known GEV models.

Lemma 2.2 (Properties of Generating Functions) If G is a homogeneous function of degree

one, then we have G(Y ) =
∑

i∈N Yi ∂Gi(Y ) and
∑

j∈N Yj ∂Gij(Y ) = 0 for all i∈N .

Proof: Since the functionG is homogeneous of degree one, we haveG(λY ) = λG(Y ). Differentiating

both sides of this equality with respect to λ, we obtain
∑

i∈N Yi ∂Gi(λY ) = G(Y ). Using the

last equality with λ = 1, we obtain G(Y ) =
∑

i∈N Yi ∂Gi(Y ), which is the first desired equality.

Also, differentiating both sides of this equality with respect to Yj, we obtain ∂Gj(Y ) = ∂Gj(Y ) +∑
i∈N Yi ∂Gij(Y ), in which case, canceling ∂Gj(Y ) on both sides and noting that ∂Gij(Y ) =

Gji(Y ), we obtain
∑

i∈N Yi ∂Gji(Y ) = 0, which is the second desired equality. 2

3. Unconstrained Pricing

We consider unconstrained pricing problems where the mean utility of a product is a linear function

of its price and we want to find the product prices that maximize the expected profit obtained

from a customer. For each product i∈N , let pi ∈R denote the price charged for product i, and ci

denote its unit cost. As a function of the price of product i, the deterministic utility component

of product i is given by µi = αi − β pi, where αi ∈ R and β ∈ R+ are constants. Anderson et al.

(1992) interpret the parameter αi as a measure of the quality of product i, while the parameter β

is the price sensitivity that is common to all of the products. Throughout the paper, we focus on

the case where all of the products share the same price sensitivity.

Noting the connection of the GEV models to the RUM principle discussed in the previous section,

the deterministic utility component αi−β pi of product i is given by logYi. So, let Yi(pi) = eαi−βpi

for all i∈N , and let Y (p) = (Y1(p1), . . . , Yn(pn)). If we charge the prices p= (p1, . . . , pn)∈Rn, then

it follows from the selection probability in (1) that a customer purchases product i with probability
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Θi(p) = Yi(pi)∂Gi(Y (p))/(1 + G(Y (p))). Our goal is to find the prices for the products to

maximize the expected profit from each customer, yielding the problem

max
p∈Rn

R(p)
def
=
∑
i∈N

(pi− ci)Θi(p) =
∑
i∈N

(pi− ci)
Yi(pi)∂Gi(Y (p))

1 +G(Y (p))
. (Unconstrained)

Since the function G satisfies the four properties at the beginning of Section 2, we have ∂Gi(Y )≥ 0

for all Y ∈ Rn+. We impose a rather mild additional assumption that ∂Gi(Y )> 0 for all Y ∈ Rn+
satisfying Yi > 0 for all i ∈N ; so the partial derivative is strictly positive whenever every entry of

Y is positive. This assumption holds for all of the GEV models we are aware of, including those in

Section 1, Example 2.1 and Figure 1. We shortly point out where this assumption becomes critical.

Let p∗ denote the optimal solution to the Unconstrained problem. In Theorem 3.1, we will

show that p∗ has a constant markup, so p∗i − ci =m∗ for all i ∈N for some constant m∗. In other

words, the optimal price of each product is equal to its unit cost plus a constant markup that

does not depend on the product. In Proposition 3.2, we will also give an explicit formula for the

optimal markup m∗ in terms of the Lambert-W function. Since the Lambert-W function is available

in most mathematical computation packages, this proposition greatly simplifies the computation

of the optimal prices. Recall that the Lambert-W function is defined as follows: for all x ∈ R+,

W (x) is the unique value such that W (x)eW (x) = x. Using standard calculus, it can be verified

that W (x) is increasing and concave in x ∈ R+; see Corless et al. (1996). The starting point for

our discussion is the expression for the partial derivative of the expected profit function. Since

Yi(pi) = eαi−βpi , we have that dYi(pi)/dpi =−β Yi(pi), in which case, using the definition of R(p)

in the Unconstrained problem, we have

∂R(p)

∂pi
=
{
Yi(pi)−β Yi(pi) (pi− ci)

} ∂Gi(Y (p))

1 +G(Y (p))

−
∑
j∈N

(pj − cj)Yj(pj)
∂Gji(Y (p)) (1 +G(Y (p)))− ∂Gj(Y (p))∂Gi(Y (p))

(1 +G(Y (p)))2
β Yi(pi)

=
{
Yi(pi)−β Yi(pi) (pi− ci)

} ∂Gi(Y (p))

1 +G(Y (p))

−β Yi(pi)∂Gi(Y (p))

1 +G(Y (p))

{∑
j∈N

(pj − cj)
Yj(pj)∂Gji(Y (p))

∂Gi(Y (p))
−
∑
j∈N

(pj − cj)
Yj(pj)∂Gj(Y (p))

1 +G(Y (p))

}

= β
Yi(pi)∂Gi(Y (p))

1 +G(Y (p))

{
1

β
− (pi− ci)−

∑
j∈N

(pj − cj)
Yj(pj)∂Gji(Y (p))

∂Gi(Y (p))
+R(p)

}
.

In the next theorem, we use the above derivative expression to show that the optimal prices for

the Unconstrained problem involves a constant markup for all of the products.

Theorem 3.1 (Constant Markup is Optimal) For all i∈N , p∗i − ci = 1
β

+R(p∗).
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Proof: Note that there exist optimal prices that are finite; the proof is straightforward but tedious,

and we defer the details to Appendix A. Since the optimal prices are finite, they satisfy the first

order conditions: ∂R(p)

∂pi

∣∣∣
p=p∗

= 0 for all i. The finiteness also implies that Yi(p
∗
i ) = eαi−β p

∗
i > 0 for

all i ∈N . Since ∂Gi(Y )> 0 for all Y ∈ Rn+ with Yi > 0 for all i ∈N , we have ∂Gi(Y (p∗))> 0 as

well. Thus, if the prices p∗ satisfy the first order conditions ∂R(p)

∂pi

∣∣∣
p=p∗

= 0 for all i, then by the

expression for the partial derivative ∂R(p)

∂pi
right before the statement of the theorem1,

p∗i − ci =
1

β
− 1

∂Gi(Y (p∗))

∑
j∈N

(p∗j − cj)Yj(p∗j )∂Gji(Y (p∗)) +R(p∗).

For notational brevity, define m∗i = p∗i − ci. Without loss of generality, we index the products

such that m∗1 ≥ . . . ≥ m∗n. By the discussion in Section 2, the function G satisfies the property

∂Gji(Y )≤ 0 for any Y ∈Rn+ and i 6= j. In this case, using the equality above for i= 1 and noting

that we have m∗1 ≥ p∗i − ci for all i∈N , we obtain

m∗1 ≤
1

β
− 1

∂G1(Y (p∗))

∑
j∈N

m∗1 Yj(p
∗
j )∂Gj1(Y (p∗)) +R(p∗) =

1

β
+R(p∗),

where the equality follows from Lemma 2.2. Therefore, we obtain m∗1 ≤ 1/β + R(p∗). A similar

argument also yields m∗n ≥ 1/β +R(p∗), in which case, we have m∗1 ≤ 1/β +R(p∗)≤m∗n. Noting

the assumption that m∗1 ≥ . . .≥m∗n, we must have 1/β +R(p∗) =m∗1 = . . .=m∗n and the desired

result follows by noting that m∗i = p∗i − ci. 2

Noting Theorem 3.1, let m∗ = 1
β

+R(p∗) denote the optimal markup. In the next proposition,

we give an explicit formula for m∗ in terms of the Lambert-W function.

Proposition 3.2 (Explicit Formula for the Optimal Markup) Let the scalar γ be defined as

γ =G(Y1(c1), . . . , Yn(cn)) =G(eα1−β c1 , . . . , eαn−β cn). Then,

m∗ =
1 +W (γ e−1)

β
and R(p∗) =

W (γ e−1)

β
.

Proof: The optimal prices have a constant markup. So, we focus on price vectors p such that pi−ci =

m for all i∈N for some m∈R+. Let c= (c1, . . . , cn), and Y (me+c) = (Y1(m+c1), . . . , Yn(m+cn)),

where e∈Rn is the vector with all entries of one. In this case, we can write the objective function

of the Unconstrained problem as a function of m, which is given by

R(m) =
∑
i∈N

m
Yi(m+ ci) ∂Gi(Y (me+ c))

1 +G(Y (me+ c))
=m

G(Y (me+ c))

1 +G(Y (me+ c))
,

1 This step in the proof requires our assumption that ∂Gi(Y )> 0 whenever Yi > 0 for all i.



Zhang, Rusmevichientong, and Topaloglu: Pricing under the Generalized Extreme Value Models
11

where the second equality relies on the fact that
∑

i∈N Yi(m+ci)∂Gi(Y (me+c)) =G(Y (me+ c))

by Lemma 2.2. Thus, we can compute the optimal objective value of the Unconstrained

problem by maximizing R(m) over all possible values of m. Since dYi(m+ ci)/dm=−β Yi(m+ ci),

differentiating the objective function above with respect to m, we get

dR(m)

dm
=

G(Y (me+ c))

1 +G(Y (me+ c))
−m

∑
i∈N

∂Gi(Y (me+ c))

(1 +G(Y (me+ c)))2
β Yi(m+ ci)

=

(
G(Y (me+ c))

1 +G(Y (me+ c))

) (
1− βm

1 +G(Y (me+ c))

)
,

where the second equality once again uses the fact that
∑

i∈N Yi(m + ci)∂Gi(Y (me + c)) =

G(Y (me+ c)). Because Yi(m+ci) is decreasing inm, and ∂Gi(Y )≥ 0 for all Y ∈Rn+, it follows that

G(Y (me+ c)) is decreasing in m. Therefore, in the expression for dR(m)

dm
, the term 1− βm

1+G(Y (me+c))

is decreasing in m; this implies that the derivative dR(m)

dm
can change sign from positive to negative

only once as the value of m increases, so R(m) is quasiconcave in m. Thus, setting the derivative

with respect to m to zero provides a maximizer of R(m). By the derivative expression above, if

dR(m)

dm
= 0, then βm= 1 +G(Y (me+ c)), so the optimal markup m∗ satisfies

βm∗ = 1 +G(Y (m∗ e+ c)) = 1 +G(eα1−β (m∗+c1), . . . , eαn−β (m∗+cn))

= 1 + e−βm
∗
G(eα1−β c1 , . . . , eαn−β cn) = 1 + γ e−βm

∗
= 1 + γ e−1e−(βm∗−1),

where the third equality uses the fact that G is homogeneous of degree one. The last chain

of equalities implies that (βm∗ − 1)eβm
∗−1 = γ e−1, so that W (γ e−1) = βm∗ − 1. Solving

for m∗, we obtain m∗ = (1 + W (γ e−1))/β, which is the desired expression for the optimal

markup. Furthermore, since p∗i − ci = m∗ for all i ∈ N , Theorem 3.1 implies that the optimal

objective value of the Unconstrained problem is R(p∗) =m∗− 1/β =W (γ e−1)/β. 2

By Proposition 3.2, to obtain the optimal prices, we can simply compute γ as in the proposition

and set m∗ = (1 +W (γ e−1))/β, in which case, the optimal price for product i is m∗ + ci. When

the price sensitivities of the products are the same, the fact that the optimal prices have constant

markup is shown in Proposition 1 in Hopp and Xu (2005) for the multinomial logit model, in

Lemma 1 in Anderson and de Palma (1992) for the nested logit model, and in Lemma 3 in Li and

Webster (2015) for the paired combinatorial logit model. Theorem 3.1 generalizes these results to

an arbitrary GEV model. Explicit formulas for the optimal markup are given in Theorem 1 in

Dong et al. (2009) for the multinomial logit model and in Theorem 1 in Li and Webster (2015)

for the paired combinatorial logit model. Proposition 3.2 generalizes these results to an arbitrary

GEV model. Theorem 3.1 also allows us to give comparative statistics that describe how the

optimal prices change as a function of the unit costs. As a function of the unit product costs
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c= (c1, . . . , cn) in the Unconstrained problem, let p∗(c) = (p∗1(c), . . . , p∗n(c)) denote the optimal

prices. To facilitate our exposition, we use ei ∈ Rn+ for the vector with one in the i-th entry and

zeros everywhere else, and designate e ∈Rn+ as the vector of all ones. In the next corollary, which

is a corollary to Theorem 3.1, we show that if the unit cost of a product increases, then its optimal

price increases and the optimal prices of the other products decreases, whereas if the unit costs

of all products increase by the same amount, then the optimal prices of all products increase as

well. We defer the proof to Appendix B.

Corollary 3.3 (Comparative Statistics) For all δ≥ 0,

(a) For all i∈N , p∗i (c+ δ ei)≥ p∗i (c), and for all j 6= i, p∗j (c+ δ ei)≤ p∗j (c);

(b) For all i∈N , p∗i (c+ δ e)≥ p∗i (c).

We can give somewhat more general versions of the results in this section. In particular, we

partition the set of products N into the disjoint subsets N 1, . . . ,Nm such that N = ∪mk=1N
k and

Nk∩Nk′ =∅ for k 6= k′. Similarly, we partition the vector Y = (Y1, . . . , Yn)∈Rn+ into the subvectors

Y 1, . . . ,Y m such that each subvector Y k is given by Y k = (Yi : i∈Nk). Assume that the products

in each partition Nk share the same price sensitivity βk, and the generating function G is a

separable function of the form G(Y ) =
∑m

k=1G
k(Y k), where the functions G1, . . . ,Gm satisfy the

four properties discussed at the beginning of Section 2. In Appendix C, we use an approach similar

to the one used in this section to show that the optimal prices for the products in the same

partition have a constant markup and give a formula to compute the optimal markups. Considering

unconstrained pricing problems under the nested logit model, when the products in each nest have

the same price sensitivity, Theorem 2 in Li and Huh (2011) shows that the optimal prices for the

products in each nest have a constant markup and gives a formula that can be used to compute

the optimal markup. The generating function for the nested logit model is a separable function of

the form
∑m

k=1 γ
kGk(Y k), where the products in a partition Nk correspond to the products in a

nest. Thus, our results in Appendix C generalize Theorem 2 in Li and Huh (2011) to an arbitrary

GEV model with a separable generating function. Throughout the paper, we do not explicitly work

with separable generating functions to minimize notational burden.

4. Constrained Pricing

We consider constrained pricing problems where the expected sales of the products are constrained

to lie in a convex set. Similar to the previous section, the products have the same price sensitivity

parameter β. The goal is to find the product prices that maximize the expected revenue obtained
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from each customer, while satisfying the constraints on the expected sales. To formulate the

constrained pricing problem, we define the vector Θ(p) = (Θ1(p), . . . ,Θn(p)), which includes the

purchase probabilities of the products. To capture the constraints on the expected sales, let M

denote some generic index set. For each `∈M , we let F` be a convex function that maps the vector

q= (q1, . . . , qn)∈Rn+ to a scalar. We are interested in solving the problem

max
p∈Rn

{∑
i∈N

piΘi(Y (p)) : F`(Θ(p))≤ 0 ∀ `∈M

}
. (Constrained)

The objective function above accounts for the expected revenue from each customer. Interpreting

Θi(p) as the expected sales for product i, the constraints ensure that the expected sales for the

products lie in the convex set {q ∈Rn+ : F`(q)≤ 0 ∀ `∈M}. The Constrained problem finds

applications in the network revenue management setting, where the sale of each product consumes

a combination of resources (Gallego and van Ryzin 1997). In this setting, the set M indexes the

set of resources. The sale of product i consumes a`i units of resource `. There are C` units of

resource `. The expected number of customer arrivals is T . We want to find the product prices to

maximize the expected revenue from each customer, while ensuring that the expected consumption

of each resource does not exceed its availability. If we charge the prices p, then the expected

sales for product i is T Θi(p). Thus, the constraint
∑

i∈N a`i T Θi(p) ≤ C` ensures that the total

expected consumption of resource ` does not exceed its inventory. In this case, defining F` as

F`(q) =
∑

i∈N a`i T qi−C`, the constraints in the Constrained problem ensure that the expected

capacity consumption of each resource does not exceed its inventory.

In the Constrained problem, the objective function is generally not concave in the

prices p. Also, although F` is convex, F`(Θ(p)) is not necessarily convex is p. Thus, the

Constrained problem is not a convex program2. However, by expressing the Constrained

problem in terms of the purchase probabilities or market shares, we will reformulate the problem

into a convex program. In our reformulation, the decision variables q = (q1, . . . , qn) correspond to

the purchase probabilities of the products. We let p(q) = (p1(q), . . . , pn(q)) denote the prices that

achieve the purchase probabilities q. Our reformulation of the Constrained problem is

max
q∈Rn+

{∑
i∈N

pi(q) qi : F`(q)≤ 0 ∀ `∈M,
∑
i∈N

qi ≤ 1

}
. (Market-Share-Based)

2 The objective function of the Constrained problem is not quasi-concave. As an example, consider the multinomial
logit choice model with N = {1,2} and α1 = α2 = 10 and β = 1. Then, the objective function is given by

f(p1, p2) =
p1e

10−p1 + p2e
10−p2

1 + e10−p1 + e10−p2
∀ (p1, p2)∈R2.

If (x1, x2) = (10,20) and (y1, y2) = (20,10), then f(x1, x2) = f(y1, y2) ≈ 5.0 but f(0.5(x1, x2) + 0.5(y1, y2)) =
f(15,15)≈ 0.2 < min{f(x1, x2), f(y1, y2)}. So, the objective function is not quasi-concave.
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The interpretations of the objective function and the first constraint in the Market-Share-Based

formulation are similar to those of the Constrained problem. The last constraint in the

Market-Share-Based formulation ensures that the total purchase probability of all products

does not exceed one. We will establish the following results for the Market-Share-Based

formulation. In Theorem 4.1 in Section 4.1, we show that for each market share vector

q, there exists the unique price vector p(q) that achieves the market shares in the vector

q. Furthermore, the price vector p(q) is the solution of an unconstrained minimization problem

with a strictly convex objective function. Therefore, computing p(q) is tractable. Then, in

Theorem 4.3 in Section 4.2, we show that the objective function in the Market-Share-Based

formulation q 7→
∑

i∈N pi(q) qi is concave in q and we give an expression for its gradient. Since

the constraints in the Market-Share-Based formulation are convex q, we have a convex

program. Thus, we can efficiently solve the Market-Share-Based formulation and obtain

the optimal purchase probabilities q∗ by using standard convex optimization methods

(Boyd and Vandenberghe 2004). Once we compute the optimal purchase probabilities q∗, we can

also compute the corresponding optimal prices p(q∗).

4.1 Prices as a Function of Purchase Probabilities

We focus on the question of how to compute the unique prices p(q) = (p1(q), . . . , pn(q)) that are

necessary to achieve the given purchase probabilities q= (q1, . . . , qn). The main result of this section

is stated in the following theorem.

Theorem 4.1 (Inverse Mapping) For each q ∈ Rn+ such that qi > 0 for all i ∈ N and∑
i∈N qi < 1, there exists a unique price vector p(q) such that qi = Θi(Y (p(q))) for all i ∈ N .

Moreover, p(q) is the finite and unique solution to the strictly convex minimization problem

min
s∈Rn

{
1

β
log(1 +G(Y (s))) +

∑
i∈N

qi si

}
.

The proof of Theorem 4.1 makes use of the lemma given below. Throughout this section, all

vectors are assumed to be column vectors. For any vector s ∈ Rn, s> denotes its transpose and

will be always be a row vector, whereas diag(s) denotes an n-by-n diagonal matrix whose diagonal

entries correspond to the vector s. Also, let ∇G(Y (s)) denote the gradient vector of the generator

function G evaluated at Y (s) and ∇2G(Y (s)) denote the Hessian matrix of G evaluated at

Y (s). Last but not least, we use Θ(Y (s)) ∈ Rn to denote an n-dimensional vector whose entries
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are the selection probabilities Θ1(Y (s)), . . . ,Θn(Y (s)). Fix an arbitrary q ∈ Rn+ such that qi > 0

for all i and
∑

i∈N qi < 1, and let f :Rn→R be defined by: for all s∈Rn,

f(s) =
1

β
log(1 +G(Y (s))) +

∑
i∈N

qi si.

In the next lemma, we give the expressions for the gradient ∇f(s) and the Hessian ∇2f(s). The

proof of this lemma directly follows by differentiating the function f and using the definition of

the choice probabilities in (1). We defer the proof to Appendix D.

Lemma 4.2 (Gradient and Hessian) For all s∈Rn, ∇f(s) = q − Θ(Y (s)) and

1

β
∇2f(s) = diag (Θ(Y (s))) − Θ(Y (s))Θ(Y (s))> +

diag (Y (s))∇2G(Y (s))diag (Y (s))

1 +G(Y (s))
.

In the proof of Theorem 4.1, we will also use two results in linear algebra. First, if the vector v ∈

Rn+ satisfies vi > 0 for all i and
∑n

i=1 vi < 1, then the matrix diag(v)−vv> is positive definite. To see

this result, since 1−v>diag(v)−1 v= 1−
∑n

i=1 vi > 0, by the Sherman-Morrison formula, the inverse

of diag(v)−vv> exists and it is given by diag(v)−1 + (diag(v))−1 v v> diag(v)−1/(1 − e> v) =

diag(v)−1 + ee>/(1−
∑n

i=1 vi); see Section 0.7.4 in Horn and Johnson (2012). The last matrix is

clearly positive definite, which implies that diag(v)−vv> is also positive definite. Second, if A is a

symmetric matrix such that each row sums to zero and all off-diagonal entries are non-positive, then

A is positive semidefinite. To see this result, by our assumption, A is a symmetric and diagonally

dominant matrix with non-negative diagonal entries, and such a matrix is known to be positive

semidefinite; see Theorem A.6 in de Klerk (2004). Here is the proof of Theorem 4.1.

Proof of Theorem 4.1: Note that the objective function of the minimization problem in the theorem

is f(s). We claim that f is strictly convex. For any s ∈ Rn, let Yi(si) = eαi−β si > 0 for all i ∈N ,

so that Θi(Y (s)) = Yi(si)∂Gi(Y (s))/(1 +G(Y (s))> 0, where the inequality is by the assumption

that ∂Gi(Y )> 0 when Yi > 0 for all i∈N . Using Lemma 2.2, we also have∑
i∈N

Θi(Y (s)) =
∑
i∈N

Yi(si)∂Gi(Y (s))

1 +G(Y (s))
=

G(Y (s))

1 +G(Y (s))
< 1.

In this case, by the first linear algebra result, the matrix diag (Θ(Y (s)))−Θ(Y (s))Θ(Y (s))> is

positive definite. Next, consider the matrix diag (Y (s)) ∇2G(Y (s))diag (Y (s)), which is symmetric

and its (i, j)-th component is given by Yi(si)∂Gij(Y (s))Yj(sj). For i 6= j, we have ∂Gij(Y (s))≤ 0

by the property of the generating function G, so all off-diagonal entries of the matrix are

non-positive. Furthermore, by Lemma 2.2, we have
∑

j∈N Yi(si)∂Gij(Y (s))Yj(sj) = 0, so that each

row of the matrix sums the zero. In this case, by the second linear algebra result, the matrix

diag (Y (s)) ∇2G(Y (s))diag (Y (s)) is positive semidefinite.
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By the discussion in the previous paragraph, the matrix diag (Θ(Y (s)))−Θ(Y (s))Θ(Y (s))> is

positive definite and the matrix diag (Y (s)) ∇2G(Y (s))diag (Y (s)) is positive semidefinite. Adding

a positive definite matrix to a positive semidefinite matrix gives a positive definite matrix. In this

case, noting the expression for the Hessian of f given in Lemma 4.2, f is strictly convex, which

establishes the claim. Therefore, f has a unique minimizer. Furthermore, we can show that for

any L≥ 0, there exists an M ≥ 0, such that having ‖s‖ ≥M implies that f(s)≥ L; the proof is

straightforward but tedious, and we defer the details to Appendix E. Therefore, given some s0 with

f(s0)≥ 0, there exists M0 ≥ 0 such that having ‖s‖ ≥M0 implies that f(s)≥ f(s0). In this case, the

minimizer of f must lie in the set {s∈Rn : ‖s‖ ≤M0}, which implies that f has a finite minimizer.

Since f is strictly convex and it has a finite minimizer, its minimizer p(q) is the solution to the

first-order condition ∇f(p(q)) = 0, where 0 is the vector of all zeros. In this case, by the expression

for the gradient of f given in Lemma 4.2, we must have ∇f(p(q)) = q−Θ (Y (p(q))) = 0, which

implies that qi = Θi(Y (p(q))) for all i∈N , as desired. 2

To summarize, given a vector of purchase probabilities q, the unique price vector p(q) that

achieves these purchase probabilities is the unique optimal solution to the minimization problem

mins∈Rn
{

1
β

log(1 +G(Y (s))) +
∑n

i=1 qi si

}
. Because the objective function in this problem is

strictly convex, with its gradient given in Lemma 4.2, and there are no constraints on the decision

variables, we can compute p(q) efficiently using standard convex optimization methods. We

emphasize that one might be tempted to set qi = Θi(Y (p)) for all i ∈N and solve for p in terms

of q in order to compute p(q). However, solving this system of equations directly is difficult.

Even showing that there is a unique solution to this system of equations is not straightforward.

Theorem 4.1 shows that there is a unique solution to this system of equations, and we can compute

the solution by solving an unconstrained convex optimization problem.

4.2 Concavity of the Expected Revenue Function and its Gradient

Let R(q) =
∑

i∈N pi(q) qi denote the expected revenue function that is defined in terms of the

market shares. The main result of this section is stated in the following theorem, which shows that

R(q) is concave in q and provides an expression for its gradient.

Theorem 4.3 (Concavity of the Revenue Function in terms of Market Shares) For all

q ∈Rn+ such that qi > 0 for all i and
∑

i∈N qi < 1, the Hessian matrix ∇2R(q) is negative definite

and ∇R(q) = p(q)− 1

β (1−e>q)
e.

Before we proceed to the proof, we discuss the significance of Theorem 4.3. As noted at the

beginning of Section 4, the function p 7→
∑

i∈N piΘi(Y (p)) is not necessarily concave in the
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prices p. However, the theorem above shows that when we express the problem in terms of market

shares q, the expected revenue function R(q) is concave in q. Using the gradient of the expected

revenue function in the theorem, we can then immediately solve the Market-Share-Based

problem using standard tools from convex programming.

Also, we note that the restriction that qi > 0 for all i and
∑

i∈N qi < 1 is necessary for the expected

revenue function R(q) and its derivatives to be well-defined. To give an example, we consider

the multinomial logit model. Under this choice model, the selection probability of product i is

ΘMNL
i (p) = eαi−β pi/(1+

∑
k∈N e

αk−β pk). We can check that pi(q) = 1
β
(αi+log(1−

∑
k∈N qk)− log qi)

so that R(q) =
∑

i∈N
1
β

(αi + log(1−
∑

k∈N qk)− log qi) qi. This expected revenue function and its

derivatives is well-defined only when qi > 0 for all i ∈ N and
∑

i∈N qi < 1. A key ingredient in

the proof of Theorem 4.3 is the Jacobian matrix J(q) associated with the vector-valued mapping

q 7→ p(q), which is given in the following lemma. To characterize this Jacobian, we define the

n-by-n matrix B(q) = (Bij(q) : i, j ∈N) as

B(q) =
diag (Y (p(q))) ∇2G(Y (p(q)))diag (Y (p(q)))

1 +G(Y (p(q)))
.

The proof of Lemma 4.4 is given in Appendix F.

Lemma 4.4 (Jacobian) The Jacobian matrix J(q) =
(
∂pi(q)

∂qj
: i, j ∈N

)
is given by

J(q) =− 1

β

(
diag(q)− qq>+ B(q)

)−1
.

We are ready to give the proof of Theorem 4.3.

Proof of Theorem 4.3: First, we show the expression for ∇R(q). Since R(q) =
∑

i∈N pi(q) qi, it

follows that

∇R(q) = p(q) + J(q)>q= p(q)− 1

β

(
diag(q)− qq>+ B(q)

)−1
q,

where the last equality follows from Lemma 4.4. Consider the matrix (diag(q)− qq>+ B(q))−1 on

the right side above. In the proof of Theorem 4.1, we show that diag (Y (s)) ∇2G(Y (s))diag (Y (s))

is positive semidefinite and each of its rows sums to zero. Noting the definition of B(q), we can use

precisely the same argument to show that B(q) is positive semidefinite and each of its rows sums

to zero as well. Since diag(q) is positive definite and B(q) is positive semidefinite, diag(q) + B(q)

is invertible, in which case, we get (diag(q) + B(q))−1(diag(q) + B(q))e= e. We have B(q)e= 0

because the rows of B(q) sum to zero. Noting also that diag(q)e= q, the last equality implies that

(diag(q)+B(q))−1q= e. Using the fact that diag(q)+B(q) is symmetric, taking the transpose, we

have q>(diag(q) + B(q))−1 = e> as well. In this case, since we have 1− q>(diag(q) + B(q))−1q =
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1− q>e= 1−
∑n

i=1 qi > 0, by the Sherman-Morrison formula, the inverse of diag(q)− qq>+ B(q)

exists and it is given by

(diag(q)− qq>+ B(q))−1 = (diag(q) + B(q))−1 +
(diag(q) + B(q))−1q q> (diag(q) + B(q))−1

1− q>(diag(q) + B(q))−1 q

= (diag(q) + B(q))−1 +
1

1−e>q
ee>.

Using the equality above in the expression for ∇R(q) at the beginning of the proof, together with

the fact that (diag(q) + B(q))−1q= e, we get

∇R(q) = p(q)− 1

β

[
e+

(
e>q

1−e>q

)
e

]
= p(q)− 1

β (1−e>q)
e,

which is the desired expression for ∇R(q). Second, we show that ∇2R(q) is negative definite.

By the discussion at the beginning of the proof, B(q) is positive semidefinite. By the first

linear algebra result discussed right after Lemma 4.2, diag(q) − q q> is positive definite. Thus,

(diag(q)−q q>+B(q))−1 is positive definite. Writing the gradient expression above componentwise,

we get ∂R(q)/∂qi = pi(q)− 1/(β (1−
∑

k∈N qk)); differentiating it with respect to qj, we obtain

∂2R(q)/∂qi∂qj = ∂pi(q)/∂qj − 1/(β (1−
∑

k∈N qk)
2). The last equality in matrix notation is

∇2R(q) = J(q)− 1

β (1−
∑

k∈N qk)
2
ee> = − 1

β

[(
diag(q)− qq>+ B(q)

)−1
+

1

(1−
∑

k∈N qk)
2
ee>

]
,

where the last equality uses Lemma 4.4. The above equality shows that ∇2R(q) is negative definite,

because diag(q)− qq>+ B(q) is positive definite, so its inverse is also positive definite. 2

Note that all of the results in this section continue to hold when products have unit costs. In that

case, the revenue function is given by R(q) =
∑

i∈N(pi(q)− ci) qi, where ci denotes the unit cost of

product i. The statements of all theorems and lemmas remain the same, except in Theorem 4.3,

where the expression of the gradient ∇R(q) will change to ∇R(q) = p(q)− 1

β (1−e>q)
e− c to

include the unit cost vector c= (c1, . . . , cn).

The results that we present in this section demonstrate that any optimization problem that

maximizes the expected revenue subject to constraints that are convex in the market shares

of the products can be solved efficiently, as long as customers choose under a member of the

GEV family with homogeneous price sensitivities. As discussed at the beginning of Section 4, our

formulation of the constrained pricing problem finds applications in network revenue management

settings, where the goal is to set the prices for the products to maximize the expected revenue

obtained from each customer, the sale of a product consumes a combination of resources, and the

resources have limited inventories (Gallego and van Ryzin 1997, Bitran and Caldentey 2003). Our

formulation also becomes useful when the products have limited inventories and we set the
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prices for the products to maximize the expected revenue obtained from each customer, subject

to the constraint that the expected sales of the products do not exceed their inventories

(Gupta et al. 2006, Gallego and Hu 2014). There may be other applications, where the goal is to

set the prices for the products so that the market shares of the products deviate from fixed

desired market shares by at most a given margin. We can handle such constraints through convex

functions of the market shares as well. In Appendix G, we provide a short numerical study in

the network revenue management setting, where the choices of the customers are governed by the

paired combinatorial logit model with homogeneous price sensitivities. When we have as many

as 200 products and 80 resources, we can use our results to solve the corresponding constrained

multi-product pricing problem in less than 20 seconds.

Under the multinomial logit model with homogeneous price sensitivities, Proposition 2 in Song

and Xue (2007) and Section 3.3 in Zhang and Lu (2013) give a formula for the prices that

achieve given market shares and show that the expected revenue function is concave in the market

shares. Our Theorems 4.1 and 4.3 generalize these results to an arbitrary GEV model. When the

customers choose according to the nested logit model and the products in each nest have the same

price sensitivity, the discussion at the beginning of Section 2.1 and Theorem 1 in Li and Huh (2011)

give a formula for the prices that achieve given market shares and show that the expected revenue

function is concave in the market shares. Naturally, if the price sensitivities of all products are the

same, then these results apply and imply that the expected revenue function under the nested logit

model is concave in the market shares. Also, considering the same setup discussed at the end of

Section 3, where the set of products are partitioned into the subsets and the generating function is

separable by the partitions, in Appendix H, we show that if the products in each partition share the

same price sensitivity, then we can compute the prices that achieve given market shares efficiently

and the expected revenue function is concave in the market shares. The generating function for

the nested logit model is separable by the products in each nest, so our results in Appendix H

generalize the discussion at the beginning of Section 2.1 and Theorem 1 in Li and Huh (2011) to

an arbitrary GEV model with a separable generating function.

5. Conclusions

This paper unifies and extends some of the pricing results that were discovered under special

cases of the GEV model, such as the multinomial logit, nested logit, and paired combinatorial

logit models. The value of our results derives from the fact that they hold under any arbitrary

GEV model. For instance, to our knowledge, there has been no attempt to solve multi-product

constrained pricing problems under the paired combinatorial logit model. The generality of our
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results comes at the cost of assuming that the price sensitivity parameters of the products are

identical. Existing research has shown that this assumption is reasonable for certain product

categories, including soft drinks, domestic beer, breakfast cereal, and flights with the same change

restrictions in an origin-destination market. An important avenue for research is to investigate to

what extent our results can be extended to non-homogeneous price sensitivities. In Appendices C

and H, we extend our results to the case where the set of products are partitioned into subsets,

the generating function is separable by the products in different partitions, and the products in a

partition share the same price sensitivity. This extension is a step towards non-homogeneous price

sensitivities, but addressing completely general price sensitivities seems rather nontrivial. Another

interesting research direction is to investigate a unified approach for product assortment problems

under GEV models. Product assortment problems have a combinatorial nature, and thus, they

appear to need an entirely new line of attack.
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Appendix A: Finiteness of the Optimal Prices

We show that the optimal prices in the Unconstrained problem are finite. In the next lemma, we

begin by showing that if we increase the prices of some products, then the purchase probabilities

of the remaining products, as well as the probability of no-purchase, increase.

Lemma A.1 For some M ⊆N , assume that the prices p̂= (p̂1, . . . , p̂n) and p̃= (p̃1, . . . , p̃n) satisfy

p̂i ≥ p̃i for all i ∈M and p̂i = p̃i for all i ∈ N \M . Then, we have Θi(Y (p̂)) ≥ Θi(Y (p̃)) for all

i∈N \M and Θ0(Y (p̂))≥Θ0(Y (p̃)).

Proof: First, we show that Θi(Y (p̂)) ≥ Θi(Y (p̃)) for all i ∈ N \M . Fix i ∈ N \M . Noting that

Yj(pj) = exp(αj − β pj), since p̂j ≥ p̃j for all j ∈ M and p̂j = p̃j for all j ∈ N \ M , we have

Yj(p̂j) ≤ Yj(p̃j) for all j ∈M and Yj(p̂j) = Yj(p̃j) for all j ∈ N \M . Furthermore, noting that

the function G satisfies ∂Gij(Y ) ≤ 0 for all j ∈M , ∂Gi(Y ) is decreasing in Yj for all j ∈M . In

this case, having Yj(p̂j)≤ Yj(p̃j) for all j ∈M and Yj(p̂j) = Yj(p̃j) for all j ∈N \M implies that

∂Gi(Y (p̂))≥ ∂Gi(Y (p̃)). Similarly, since the function G satisfies ∂Gj(Y )≥ 0 for all j ∈N , G(Y )

is increasing Yj for all j ∈ N , in which case, using the fact that Yj(p̂j) ≤ Yj(p̃j) for all j ∈M

and Yj(p̂j) = Yj(p̃j) for all j ∈N \M , we obtain G(Y (p̂))≤G(Y (p̃)). Lastly, since i ∈N \M , we

have Yi(p̂i) = Yi(p̃i). Because ∂Gi(Y (p̂))≥ ∂Gi(Y (p̃)) andG(Y (p̂))≤G(Y (p̃)), using the definition

of the choice probability under the GEV model, we get

Θi(Y (p̂)) =
Yi(p̂i)∂Gi(Y (p̂))

1 +G(Y (p̂))
≥ Yi(p̃i)∂Gi(Y (p̃))

1 +G(Y (p̃))
= Θi(Y (p̃)).

Second, we show that Θ0(Y (p̂))≥Θ0(Y (p̃)). By the discussion at the beginning of the proof, we

have G(Y (p̂))≤G(Y (p̃)). The no-purchase probability at prices p is given by

Θ0(Y (p)) = 1−
∑
i∈N

Θi(Y (p)) = 1−
∑

i∈N Yi(pi)∂Gi(Y (p))

1 +G(Y (p))
=

1

1 +G(Y (p))
,

where the last equality above is by Lemma 2.2. In this case, since G(Y (p̂))≤G(Y (p̃)), we obtain

Θ0(Y (p̂)) = 1/(1 +G(Y (p̂)))≥ 1/(1 +G(Y (p̃))) = Θ0(Y (p̃)). 2

In the next proposition, we use the lemma above to show that the optimal prices in the

Unconstrained problem are finite.

Proposition A.2 There exists an optimal solution p∗ to the Unconstrained problem such that

p∗i ∈ [ci,∞) for all i∈N .

Proof: Let p∗ be an optimal solution to the Unconstrained problem and setN− = {i∈N : p∗i < ci}

to capture the set of products whose prices are below their unit costs. We define the prices p− as
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p−i = ci for all i ∈N− and p−i = p∗i for all i ∈N \N−. Note that we have p−i ≥ p∗i for all i ∈N−

and p−i = p∗i for all i ∈ N \N−, in which case, by Lemma A.1, we get Θi(Y (p−)) ≥ Θi(Y (p∗))

for all i ∈N \N−. Therefore, we have
∑

i∈N(p∗i − ci)Θi(Y (p∗))≤
∑

i∈N\N−(p∗i − ci)Θi(Y (p∗))≤∑
i∈N\N−(p−i − ci)Θi(Y (p−)) =

∑
i∈N(p−i − ci)Θi(Y (p−)), where the first inequality uses the fact

that p∗i < ci for all i ∈N−, the second inequality uses the fact that p−i = p∗i ≥ ci and Θi(Y (p−))≥

Θi(Y (p∗)) for all i ∈N \N−, and the last equality uses the fact that p−i = ci for all i ∈N−. By

the last chain of inequalities, the objective value of the Unconstrained problem corresponding

to the prices p− is at least as large as the one corresponding to the prices p∗, which implies that

there exists an optimal solution p∗ such that p∗i ≥ ci for all i ∈N . Thus, there exists an optimal

solution such that the prices of all of the products are lower bounded by their corresponding unit

costs. In the rest of the proof, we can assume that p∗i ≥ ci for all i∈N .

Let N+ = {i∈N : p∗i =∞} to capture the set of products whose prices are infinite. Noting that

Yi(pi) = exp(αi − β pi), we have limpi→∞ Yi(pi) = 0 and limpi→∞ pi Yi(pi) = 0, in which case, by

the definition of the purchase probabilities in (1), we have Θi(Y (p∗)) = 0 and p∗i Θi(Y (p∗)) =

0 for all i ∈ N+. Letting p̄ = max{p∗i : i ∈ N \ N+} < ∞, define the prices p+ as p+
i =

p̄ + ci for all i ∈ N+ and p+
i = p∗i for all i ∈ N \ N+. Note that we have p∗i ≥ p+

i for all

i∈N+ and p∗i = p+
i for all i ∈ N \ N+. In this case, by Lemma A.1, we obtain Θi(Y (p∗)) ≥

Θi(Y (p+)) for all i∈N \N+ and Θ0(Y (p∗))≥Θ0(Y (p+)). Using the last two inequalities, we get∑
i∈N+ Θi(Y (p+)) +

∑
i∈N\N+ Θi(Y (p+)) =

∑
i∈N Θi(Y (p+)) = 1−Θ0(Y (p+))≥ 1−Θ0(Y (p∗)) =∑

i∈N Θi(Y (p∗)) =
∑

i∈N\N+ Θi(Y (p∗)), where the last equality uses the fact that Θi(Y (p∗)) = 0

for all i ∈N+. Focusing on the first and last expressions in the last chain of inequalities, we have∑
i∈N+ Θi(Y (p+))≥

∑
i∈N\N+ (Θi(Y (p∗))−Θi(Y (p+))), which implies that∑

i∈N

(p∗i − ci)Θi(Y (p∗)) =
∑

i∈N\N+

(p∗i − ci)Θi(Y (p∗))

=
∑

i∈N\N+

(p+
i − ci)Θi(Y (p+)) +

∑
i∈N\N+

(p∗i − ci) (Θi(Y (p∗))−Θi(Y (p+)))

≤
∑

i∈N\N+

(p+
i − ci)Θi(Y (p+)) +

∑
i∈N\N+

p̄ (Θi(Y (p∗))−Θi(Y (p+)))

≤
∑

i∈N\N+

(p+
i − ci)Θi(Y (p+)) +

∑
i∈N+

p̄Θi(Y (p+)) =
∑
i∈N

(p+
i − ci)Θi(Y (p+)),

where the first equality holds because Θi(Y (p∗)) = 0 and p∗i Θi(Y (p∗)) = 0 for all i∈N+, the first

inequality is by the fact that p̄≥ p∗i for all i∈N \N+ and Θi(Y (p∗))≥Θi(Y (p+)) for all i∈N \N+,

and the second inequality holds as
∑

i∈N+ Θi(Y (p+))≥
∑

i∈N\N+(Θi(Y (p∗))−Θi(Y (p+))). Thus,

the expected profit at the prices p+ is at least as large as the one at the prices p∗, in which case,

there exists an optimal solution p∗ such that p∗i <∞ for all i∈N . 2
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Appendix B: Proof of Corollary 3.3

As a function of the unit product costs c, let R∗(c) be the optimal expected profit in the

Unconstrained problem. We claim that R∗(c) ≥ R∗(c + δ ei) ≥ R∗(c + δ e) ≥ R∗(c) − δ. Note

that the chain of inequalities R∗(c) ≥ R∗(c+ δ ei) ≥ R∗(c+ δ e) follows immediately because we

have c≤ c+ δ ei ≤ c+ δ e, and as the unit costs increase, the optimal expected profits decrease. To

establish that R∗(c+ δ e)≥R∗(c)− δ, observe that

R∗(c+ δ e) =
∑
i∈N

(p∗i (c+ δ e)− ci− δ)Θi(p
∗(c+ δ e)) ≥

∑
i∈N

(p∗i (c)− ci− δ)Θi(p
∗(c))

=
∑
i∈N

(p∗i (c)− ci)Θi(p
∗(c))− δ

∑
i∈N

Θi(p
∗(c)) ≥ R∗(c)− δ,

where the first inequality follows because p∗(c) may not be optimal when the unit costs are

c + δe and the last inequality follows from the fact that R∗(c) =
∑

i∈N (p∗i (c)− ci)Θi(p
∗(c)) and∑

i∈N Θi(p
∗(c))≤ 1. Thus, the claim holds. To show the first part of the corollary, as a function

of the unit costs of the products, we let m∗(c) be the optimal markup in the Unconstrained

problem. Noting that R∗(c + δ ei) ≥ R∗(c) − δ by the discussion at the beginning of the proof,

by Theorem 3.1, we obtain m∗(c + δ ei) = 1/β + R∗(c + δ ei) ≥ 1/β + R∗(c) − δ = m∗(c) − δ,
which implies that p∗i (c+ δ ei) =m∗(c+ δ ei) + ci + δ ≥m∗(c) + ci = p∗i (c). Similarly, we also have

m∗(c+ δ ei) = 1/β +R∗(c+ δ ei)≤ 1/β +R∗(c) =m∗(c). Thus, for all j 6= i, we get p∗j (c+ δ ei) =

m∗(c+δ ei)+cj ≤m∗(c)+cj = p∗j (c), which completes the first part. Considering the second part of

the corollary, by Theorem 3.1 and the discussion at the beginning of the proof, we havem∗(c+δ e) =

1/β +R∗(c+ δ e)≥ 1/β +R∗(c)− δ =m∗(c)− δ. Thus, we get p∗i (c+ δ e) =m∗i (c+ δ e) + ci + δ ≥
m∗i (c) + ci = p∗i (c), which completes the second part.

Appendix C: Optimal Markup Under Separable Generating Functions

We consider the Unconstrained problem when the products are partitioned into disjoint subsets,

the generating function is separable by the partitions, and the products in each partition share the

same price sensitivity parameter. We partition the set of products N into the subsets N 1, . . . ,Nm

such that N = ∪mk=1N
k and Nk ∩Nk′ = ∅ for k 6= k′. Similarly, we partition the vector Y =

(Y1, . . . , Yn) into the subvectors Y 1, . . . ,Y m such that each subvector Y k is given by Y k =

(Yi : i∈Nk). We assume that the generating function G is separable by the partitions so that

G(Y ) =
∑m

k=1G
k(Y k), where the functions G1, . . . ,Gm satisfy the four properties discussed at the

beginning of Section 2. Furthermore, we assume that the products in each partition Nk share the

same price sensitivity βk. In the next theorem, we show that the optimal prices for the products in

each partition have a constant markup and we give a formula to compute the optimal markup. In

this theorem, we let Y k(p) = (Yi(pi) : i∈Nk) = (eαi−β
kpi : i∈Nk), p∗ be the optimal solution to

the Unconstrained problem, and c= (c1, . . . , cn) be the vector of unit product costs.
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Theorem C.1 For all i ∈Nk, p∗i − ci = 1
βk

+R(p∗), so that the products in Nk have a constant

markup. Furthermore, letting R∗ be the unique value of R satisfying

R=
m∑
k=1

1

βk
e−(βkR+1)Gk(Y k(c)),

the optimal expected profit in the Unconstrained problem is R(p∗) = R∗, in which case, the

optimal markup for the products in Nk is p∗i − ci = 1
βk

+R(p∗) = 1
βk

+R∗.

Proof: For notational brevity, let Rk(p) =
∑

j∈Nk(pj−cj)Yj(pj)∂Gk
j (Y

k(p))/(1+G(Y (p)), so that

R(p) =
∑m

k=1R
k(p). Fix product i. Let k be such that i∈Nk. Noting that the definition of Rk(p) is

similar to that of R(p), following precisely the same approach that we use right before Theorem 3.1,

we can verify that

∂Rk(p)

∂pi
= βk

Yi(pi)∂G
k
i (Y

k(p))

1 +G(Y (p))

{
1

βk
− (pi− ci)−

∑
j∈Nk

(pj − cj)
Yj(pj)∂G

k
ji(Y

k(p))

∂Gk
i (Y

k(p))
+Rk(p)

}
.

One the other hand, consider any ` such that i 6∈N `. In the definition of R`(p), which is given by∑
j∈N`(pj − cj)Yj(pj)∂G`

j(Y
`(p))/(1 +G(Y (p)), since i 6∈N `, only the expression 1 +G(Y (p)) in

the denominator depends on the price of product i. In this case, differentiating R`(p) with respect

to pi, it follows that

∂R`(p)

∂pi
=
∑
j∈N`

(pj − cj)
Yj(pj)∂G

`
j(Y

`(p))

(1 +G(Y (p)))2
∂Gk

i (Y
k(p))βk Yi(pi) = βk

Yi(pi)∂G
k
i (Y

k(p))

1 +G(Y (p))
R`(p).

SinceR(p) =Rk(p)+
∑
6̀=kR

`(p), we have ∂R(p)/∂pi = ∂Rk(p)/∂pi+
∑

` 6=k ∂R
`(p)/∂pi. Therefore,

the two equalities above yield

∂R(p)

∂pi
= βk

Yi(pi)∂G
k
i (Y

k(p))

1 +G(Y (p))

{
1

βk
− (pi− ci)−

∑
j∈Nk

(pj − cj)
Yj(pj)∂G

k
ji(Y

k(p))

∂Gk
i (Y

k(p))
+R(p)

}
.

Once we have the expression above for the derivative of the expected profit function, we can follow

precisely the same argument in the proof of Theorem 3.1 to get p∗i − ci = 1
βk

+R(p∗).

The right side of the equation in the theorem is decreasing in R, whereas the left side is strictly

increasing. Furthermore, the right side of the equation evaluated at R= 0 is non-negative, whereas

the left side evaluated at R= 0 is zero. Thus, there exists a unique value of R satisfying the equation

in the theorem. We proceed to showing that the value of R satisfying this equation corresponds

to the optimal expected profit in the Unconstrained problem. The optimal price of each

product i ∈Nk is of the form p∗i = ci + 1
βk

+R(p∗), so that we have Yi(p
∗
i ) = e

αi−βk (ci+
1
βk

+R(p∗))
=

e−(βkR(p∗)+1) Yi(ci). In this case, noting that p∗i − ci = 1
βk

+R∗(p∗) for all i ∈Nk and plugging the
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optimal prices into the expected profit function in the Unconstrained problem, the optimal

expected profit satisfies the equation

R(p∗) =

m∑
k=1

∑
i∈Nk

(
1

βk
+R(p∗)

)
e−(βkR(p∗)+1) Yi(ci)∂G

k
i (e
−(βkR(p∗)+1)Y k(c))

1 +
m∑
k=1

Gk(e−(βkR(p∗)+1)Y k(c))

=

m∑
k=1

(
1

βk
+R(p∗)

)
Gk(e−(βkR(p∗)+1)Y k(c))

1 +
m∑
k=1

Gk(e−(βkR(p∗)+1)Y k(c))

=

m∑
k=1

(
1

βk
+R(p∗)

)
e−(βkR(p∗)+1)Gk(Y k(c))

1 +
m∑
k=1

e−(βkR(p∗)+1)Gk(Y k(c))

,

where the second equality uses Lemma 2.2 and Gk is a generating function, and the third equality

uses the fact that G1, . . . ,Gm satisfy the properties of a generating function so that these functions

are homogeneous of degree one. Focusing on the first and last expressions in the chain of equalities

above and rearranging the terms, we get R(p∗) =
∑m

k=1
1
βk
e−(βkR(p∗)+1)Gk(Y k(c)). 2

There are instances of existing GEV models with a separable generating function. Under the

nested logit model, the generating function is G(Y ) =
∑m

k=1(
∑

j∈Nk Y
1/λk

j )λ
k
, where (λ1, . . . , λm)

are constants, each in the interval (0,1]. The products in each partition Nk correspond to the

products in a particular nest. Letting Gk(Y k) = (
∑

j∈Nk Y
1/λk

j )λ
k
, this generating function is a

separable function of the form G(Y ) =
∑m

k=1G
k(Y k). Also, under the d-level nested logit model,

the products are organized in a tree. The tree starts at a root node. The products are at the leaf

nodes. The degree of overlap between the paths from the root node to the leaf nodes corresponding

to different products captures the degree of substitution between the different products. Figure 2

shows a sample tree. Li et al. (2015) show that the generating function under the d-level nested

logit model is of the form G(Y ) =
∑m

k=1G
k(Y k), where 1, . . . ,m correspond to the children nodes

of the root node, and the partition Nk corresponds to the subset of products such that if i ∈Nk,

then the path from the root node to the leaf node corresponding to product i passes through the

k-th child node of the root node. Thus, if the products in each partition Nk share the same price

sensitivity, then the optimal prices for these products have a constant markup. To our knowledge,

this result was not known earlier. Lastly, we note that if G is a generating function, then for θ > 0,

θG is a generating function as well. Therefore, Theorem C.1 applies when G is a separable function

of the form G(Y ) =
∑m

k=1 θ
kGk(Y k) for positive scalars θ1, . . . , θm.
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root	node

children	of
root	node

products

1 2 m

1 2 3 4 5 n

N 1 N 2 Nm

Figure 2 A sample tree for the d-level nested logit model with n= 16 and m= 4.

Appendix D: Proof of Lemma 4.2

Note that Yi(si) = eαi−βsi , so dYi(si)/dsi = −β Yi(si). In this case, using the definition of f and

differentiating, for all i∈N , we obtain

∂f(s)

∂si
= − Yi(si)∂Gi(Y (s))

1 +G(Y (s))
+ qi = qi−Θi (Y (s)) ,

where the second equality uses the definition of the selection probabilities in (1). The equality

above establishes the expression for the gradient f . Letting 1l{·} be the indicator function and

differentiating the middle expression above once more, we get

1

β

∂2f(s)

∂si∂sj
=

1l{i=j} Yi(si)∂Gi(Y (s))

1 +G(Y (s))
+
Yi(si)∂Gij(Y (s))Yj(sj)

1 +G(Y (s))
− Yi(si)∂Gi(Y (s))∂Gj(Y (s))Yj(sj)

(1 +G(Y (s)))2
,

where we use the fact that the derivative of h(x)/g(x) with respect to x is given by the formula

h′(x)/g(x)−h(x)g′(x)/g(x)2. By (1), we have

1l{i=j} Yi(si)∂Gi(Y (s))

1 +G(Y (s))
= 1l{i=j}Θi(Y (s)) ,

Yi(si)∂Gi(Y (s))∂Gj(Y (s))Yj(sj)

(1 +G(Y (s)))2
= Θi(Y (s))Θj(Y (s)),

and Yi(si)∂Gij(Y (s))Yj(sj) is the (i, j)-th entry of the matrix diag (Y (s)) ∇2G(Y (s))diag (Y (s)).

Putting everything together, we have

1

β
∇2f(s) = diag (Θ(Y (s))) +

diag (Y (s)) ∇2G(Y (s))diag (Y (s))

1 +G(Y (s))
− Θ(Y (s))Θ(Y (s))> ,

which is the desired result.

Appendix E: Product Prices to Achieve Given Market Shares

For fixed q ∈Rn+ such that qi > 0 for all i∈N and
∑

i∈N qi < 1, let f : Rn→R be defined by: for

all s∈Rn, f(s) = 1
β

log(1+G(Y (s)))+
∑

i∈N qi si. In the next lemma, we show that the value f(s)

gets arbitrarily large as the norm of s gets arbitrarily large.
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Lemma E.1 Given any L≥ 0, there exists an M ≥ 0, such if ‖s‖ ≥M , then f(s)≥L.

Proof: Let ∆ = mini∈N{Yi(0)∂Gi(Y (0))}. Since Yi(0)> 0 for all i∈N , noting the assumption that

∂Gi(Y )> 0 when Yi > 0 for all i∈N , we have ∆> 0. Given any L≥ 0, we choose M ≥ 0 such that

it satisfies the equality

L= min

{
1

β
log ∆ + min

i∈N
{qi}

(
1−

∑
i∈N

qi

)
M

2
√
n
, min

i∈N
{qi}

M

2
√
n

}
.

The right side of the equality above evaluated at M = 0 is non-positive. Furthermore, the right side

is strictly increasing in M . Therefore, for any L≥ 0, there exists M ≥ 0 that satisfies the equality

above. We show that if ‖s‖ ≥M , then f(s)≥L. Consider two cases.

Case 1: Assume that there exists j ∈N such that sj ≥ M√
n

, and we have si ≥−min`∈N{q`} M
2
√
n

for

all i∈N . In this case, since log(1 +G(Y (s)))≥ 0, we obtain

f(s) =
1

β
log(1 +G(Y (s))) +

∑
i∈N

qi si ≥
∑

i∈N\{j}

qi si + qj sj

≥ −

( ∑
i∈N\{j}

qi

)
min
`∈N
{q`}

M

2
√
n

+ qj
M√
n
≥ −min

`∈N
{q`}

M

2
√
n

+ min
`∈N
{q`}

M√
n

= min
`∈N
{q`}

M

2
√
n
≥ L,

where the third inequality uses the fact that
∑

i∈N qi < 1 and the last inequality follows from the

definition of L. Thus, we have f(s)≥L, as desired.

Case 2: This is the opposite of Case 1. Assume that we have si <
M√
n

for all i∈N , or there exists

j ∈N such that sj <−min`∈N{q`} M
2
√
n

. In this case, we claim that there must exist j ∈N such that

sj ≤−min`∈N{q`} M
2
√
n

. To see the claim, assume on the contrary, we have sj >−min`∈N{q`} M
2
√
n

for all j ∈N . Thus, noting the requirements of Case 2, we must have si <
M√
n

for all i∈N , in which

case, we get − M√
n
≤−min`∈N{q`} M

2
√
n
< sj <

M√
n

, so |sj|< M√
n

for all j, which contradicts the fact

that ‖s‖ ≥M . So, the claim holds and there exists j ∈N such that sj ≤ −min`∈N{q`} M
2
√
n

.

In the rest of the proof, we let ` = arg mini∈N{si} and t = mini∈N{si} so that we have

t ≤−mini∈N{qi} M
2
√
n

, si ≥ t for all i∈N , and s` = t. Using Lemma 2.2, we have

G(Y (s− te)) =
∑
i∈N

Yi(si− t)∂Gi(Y (s− te)) ≥ Y`(s`− t)∂G`(Y (s− te))

≥ Y`(0)∂G`(Y (0)) ≥ ∆.

In the chain of inequalities above, the first inequality holds because, for any price vector p, we

have Yi(pi)≥ 0 and ∂Gi(Y (p))≥ 0 for all i ∈N . To see the second inequality, note that Yi(pi) is
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decreasing in pi and si− t≥ 0, so that Yi(si− t)≤ Yi(0) for all i 6= `. Furthermore, by the properties

of a generating function discussed at the beginning of Section 2, since ∂G`i(Y ) ≤ 0 for all i 6= `,

∂G`(Y ) ≥ 0 is decreasing in Yi for all i 6= `. Also noting that we have Y`(s` − t) = Y`(0), we get

∂G`(Y (s− te))≥ ∂G`(Y (0)) because Yi(si − t)≤ Yi(0) for all i 6= `. The last inequality uses the

definition of ∆. Thus, the chain of inequalities above yields G(Y (s− te))≥∆. In addition, observe

that log(G(Y (s+ te))) = log(G(e−β tY (s))) = log(e−β tG(Y (s))) =−β t+log(G(Y (s))), where the

first equality follows from the fact that Yi(pi) = eαi−β pi and the second equality follows from the

fact that G is homogeneous of degree one. Thus, we have

f(s) =
1

β
log(1 +G(Y (s))) +

∑
i∈N

qi si ≥
1

β
log(G(Y (s− te+ te))) +

∑
i∈N

qi si

=
1

β

(
−β t+ log(G(Y (s− te)))

)
+
∑
i∈N

qi si

=
1

β
log(G(Y (s− te))) +

∑
i∈N

qi(si− t)−
(

1−
∑
i∈N

qi

)
t

≥ 1

β
log ∆−

(
1−

∑
i∈N

qi

)
t ≥ 1

β
log ∆ + min

i∈N
{qi}

(
1−

∑
i∈N

qi

) M

2
√
n
≥ L,

where the second equality is by the fact that log(G(Y (s+ te))) =−β t+ log(G(Y (s))), the second

inequality holds because G(Y (s− te))≥∆ and si− t≥ 0 for all i∈N , the third inequality follows

since t ≤ −mini∈N{qi} M
2
√
n

, and the last inequality is by the definition of L. So, f(s)≥L. 2

Appendix F: Proof of Lemma 4.4

Let f(s) = 1
β

log(1 + G(Y (s))) +
∑

i∈N qi si denote the objective function of the optimization

problem in Theorem 4.1. By Lemma 4.2, we have ∇f(s) = q−Θ (Y (s)) for all s∈Rn. Since p(q)

is the unique minimizer of f , it follows that for all i∈N ,

0 =
∂f(s)

∂si

∣∣∣∣
s=p(q)

= qi−Θi(Y (p(q))).

Taking the derivative of the above equation with respect to qj, we obtain that for all i, j ∈N ,

0 = 1l{i=j}−
∑
`∈N

∂Θi(Y (s))

∂s`

∣∣∣∣
s=p(q)

× ∂p`(q)

∂qj
.

Since ∇f(s) = q−Θ(Y (s)) by Lemma 4.2, we have that ∇2f(s) =
(
− ∂Θi(Y (s))

∂s`
: i, ` ∈N

)
, and

thus, the expression −
∑

`∈N
∂Θi(Y (s))

∂s`

∣∣
s=p(q)

× ∂p`(q)

∂qj
is the inner product between the i-th row of

the Hessian matrix ∇2f(p(q)) and the j-th column of the Jacobian matrix J(q). Letting I denote

the n-by-n identity matrix, we can write the above system of equations in matrix notation as

0 = I +∇2f (p(q))J(q).
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Note that, by definition, Θ(Y (p(q))) = q, and thus, it follows from Lemma 4.2 that

∇2f (p(q)) = β

(
diag(q)− qq>+

diag (Y (p(q)))∇2G(Y (p(q)))diag (Y (p(q)))

1 +G(Y (p(q)))

)
= β (diag(q)− qq>+ B(q)),

where the last equality follows from the definition of B(q). Since ∇2f(·) is positive definite, and

thus, invertible, the desired result follows by the fact that 0 = I +∇2f (p(q))J(q).

Appendix G: Numerical Study for Constrained Pricing

We provide a numerical study to understand how efficiently we can solve instances of the

Constrained problem by using our results in Section 4. In our numerical study, we consider the

network revenue management setting, where we have a set of resources with limited inventories and

the sale of a product consumes a combination of resources. We index the set of resources by M . The

sale of product i consumes a`i units of resource i. There are C` units of resource `. The expected

number of customer arrivals over the selling horizon is T . The goal is to find the prices to charge

for the products to maximize the expected revenue obtained from each customer, while making

sure that the expected consumption of each resource does not exceed its inventory. As discussed

at the beginning of Section 4, we can formulate this problem as an instance of the Constrained

problem, where the function F` is given by F`(q) =
∑

i∈N a`i T qi − C`. However, the objective

function of the Constrained problem is not necessarily concave in the prices p and its feasible

space is not necessarily convex. To obtain the optimal prices p∗ in the Constrained problem, we

solve the Market-Share-Based formulation to obtain the optimal purchase probabilities q∗. In

Theorem 4.3, we show that the objective function of the Market-Share-Based formulation is

concave in the purchase probabilities, and we give an expression that can be used to compute

the gradient of the objective function. With the function F` as given above, the constraints in

the Market-Share-Based formulation are linear in the purchase probabilities. Therefore, we

can obtain the optimal purchase probabilities by solving the Market-Share-Based formulation

through standard convex optimization methods. In our numerical study, we use the primal-dual

algorithm for convex programs; see Chapter 11 in Boyd and Vandenberghe (2004). In Theorem 4.1,

we show how to compute the prices that achieve given purchase probabilities. Once we obtain the

optimal purchase probabilities q∗ through the Market-Share-Based formulation, we compute

the optimal prices p∗ = p(q∗) that achieve the optimal purchase probabilities. In our numerical

study, we generate a large number of test problems with varying sizes. We begin by describing how

we generate our test problems. Next, we give our numerical results.

Generation of Test Problems: We generate our test problems as follows. In all of our

test problems, the choice process of the customers is governed by the paired combinatorial logit
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model, whose generating function G is given by G(Y ) =
∑

(i,j)∈N2:i 6=j

(
Y

1/τ(i,j)
i +Y

1/τ(i,j)
j

)τ(i,j)
. This

generating function differs from the one corresponding to the paired combinatorial logit model in

Example 2.1 by a constant factor, but if we multiply a generating function by a constant, then the

generating function still satisfies the properties at the beginning of Section 2. To come up with the

parameters of the paired combinatorial logit model, we sample τ(i,j) from the uniform distribution

over [0.2,1] for all i, j ∈N with i 6= j. Recalling that the deterministic utility component for product

i is αi−β pi, to come up with (α1, . . . , αn) and β, we sample αi from the uniform distribution over

[−2,2] for all i∈N , and we sample β from the uniform distribution over [1,4].

We index the set of resources by M = {1, . . . ,m}. For each product i, we randomly choose a

resource νi and set aνi,i = 1. For each other resource `∈M \ {νi}, we set a`i = 1 with probability ζ

and a`i = 0 with probability 1− ζ, where ζ is a parameter that we vary. In this way, the expected

number of resources used by a product is given by 1 + (m− 1) ζ, and we vary ζ to control the

expected number of resources used by a product. To come up with the capacities for the resources,

we solve the unconstrained pricing problem maxp∈Rn{
∑

i∈N piΘi(Y (p))}. Using pUNC to denote

an optimal solution to the unconstrained problem, we set the capacity of resource ` as C` =

κ
∑

i∈N T a`iΘi(Y (pUNC)), where κ is another parameter that we vary to control the tightness

of the resource capacities. Thus, the capacity of resource ` is a κ fraction of the total expected

capacity consumed when we charge the optimal prices pUNC in the unconstrained problem. We fix

the expected number of customers at T = 100.

In our test problems, we vary the number of resources m and the number of products n

over (m,n) ∈ {(20,50), (20,100), (40,50), (40,100), (60,100), (60,200), (80,100), (80,200)}, yielding

a total of eight combinations. We vary the parameters ζ and κ over ζ ∈ {0.02,0.2} and

κ ∈ {0.5,0.8}. This setup yields 32 parameter combinations for (m,n, ζ,κ). In each parameter

combination, we generate 100 test problems by using the approach described above.

Numerical Results: In Table 1, we show the average CPU seconds required to solve

our test problems, where the average is taken over all 100 test problems in a parameter

combination. The first column in the table shows the parameters of the test problem by using

the tuple (m,n, ζ,κ). The second column shows the average CPU seconds. Our numerical results

indicate that we can solve even the largest test problems with n = 200 products and m = 80

resources within 20 seconds on average. Over all of our test problems, the average CPU seconds

is 5.44. Since the Market-Share-Based formulation is a convex program, our approach always

obtains the optimal purchase probabilities and the corresponding optimal prices. To give some

context to our numerical results, we also tried computing the optimal prices by directly solving the
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Param. Combination CPU
(m, n, ζ, κ) Secs.

(20, 50, 0.02, 0.5) 1.33
(20, 50, 0.02, 0.8) 1.04
(20, 50, 0.2, 0.5) 1.95
(20, 50, 0.2, 0.8) 1.32

(20, 100, 0.02, 0.5) 1.83
(20, 100, 0.02, 0.8) 1.54
(20, 100, 0.2, 0.5) 3.5
(20, 100, 0.2, 0.8) 2.11

(40, 50, 0.02, 0.5) 1.88
(40, 50, 0.02, 0.8) 0.98
(40, 50, 0.2, 0.5) 2.75
(40, 50, 0.2, 0.8) 3.14

(40, 100, 0.02, 0.5) 3.41
(40, 100, 0.02, 0.8) 2.72
(40, 100, 0.2, 0.5) 6.24
(40, 100, 0.2, 0.8) 4.42

Param. Combination CPU
(m, n, ζ, κ) Secs.

(60, 100, 0.02, 0.5) 4.23
(60, 100, 0.02, 0.8) 3.32
(60, 100, 0.2, 0.5) 6.21
(60, 100, 0.2, 0.8) 4.98

(60, 200, 0.02, 0.5) 8.27
(60, 200, 0.02, 0.8) 6.64
(60, 200, 0.2, 0.5) 12.62
(60, 200, 0.2, 0.8) 9.72

(80, 100, 0.02, 0.5) 6.81
(80, 100, 0.02, 0.8) 4.31
(80, 100, 0.2, 0.5) 5.58
(80, 100, 0.2, 0.8) 5.6

(80, 200, 0.02, 0.5) 11.54
(80, 200, 0.02, 0.8) 10.88
(80, 200, 0.2, 0.5) 18.3
(80, 200, 0.2, 0.8) 15.08

Table 1 Numerical results for constrained pricing.

Constrained problem through the fmincon routine in Matlab. Since the objective function of the

Constrained problem may not be concave in the prices and the feasible space may not be convex,

directly solving the Constrained problem may not yield the optimal prices. For economy of space,

we provide only summary statistics. In 35% of our test problems, directly solving the Constrained

problem yields optimality gaps of 1% or more. In 27% of our test problems, directly solving the

Constrained problem yields optimality gaps of 5% or more. Over all test problems, the average

CPU seconds to directly solve the Constrained problem by using the fmincon routine in Matlab

is 38.28 seconds. Thus, our approach, where we solve the Market-Share-Based formulation to

find the optimal purchase probabilities and compute the corresponding optimal prices, provides

advantages both in terms of solution quality and CPU seconds.

Appendix H: Concavity of Expected Revenue Under Separable Generating Functions

We consider the Constrained problem under the same setup discussed in Appendix C. In

particular, we partition the set of products N into the subsets N 1, . . . ,Nm such that N =∪mk=1N
k

and Nk ∩Nk′ =∅ for k 6= k′. Similarly, we partition the vector Y = (Y1, . . . , Yn) into the subvectors

Y 1, . . . ,Y m such that each subvector Y k is given by Y k = (Yi : i∈Nk). We assume that the

generating function G is separable by the partitions such that G(Y ) =
∑m

k=1G
k(Y k), where the

functions G1, . . . ,Gm satisfy the four properties discussed at the beginning of Section 2. Also,

we assume that the products in each partition Nk share the same price sensitivity βk. Observe

that we can carry out a change of variables to compute the prices that achieve given purchase

probabilities. In particular, we let p̂i = βk pi for all i ∈ Nk and k = 1, . . . ,m. Furthermore, we
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let Ŷi(p̂i) = eαi−p̂i and define vector Ŷ (p̂) = (Ŷ1(p̂1), . . . , Ŷn(p̂n)). For given purchase probabilities

q ∈Rn+ such that qi > 0 for all i∈N and
∑

i∈N qi < 1, we consider the problem

min
s∈Rn

{
log(1 +G(Ŷ (s))) +

∑
i∈N

qi si

}
.

The problem above is a specialized version of the problem given in Theorem 4.1, when the

price sensitivities of all of the products are one. Thus, by Theorem 4.1, the objective function

of the problem above is strictly convex and there exists a finite and unique solution to this

problem. Letting p̂(q) = (p̂1(q), . . . , p̂n(q)) be the optimal solution to the problem above, by our

change of variables, it follows that if we set pi(q) = 1
βk
p̂i(q) for all i ∈Nk and k = 1, . . . ,m, then

the prices p(q) achieve the purchase probabilities q. Note that our change of variables applies

even when the price sensitivities of the products are completely arbitrary. In other words, even

if the price sensitivities of the products are arbitrary, given purchase probabilities q ∈ Rn+ such

that qi > 0 for all i ∈ N and
∑

i∈N qi < 1, we can compute the prices p(q) that achieve these

purchase probabilities by solving a convex optimization problem. However, if the price sensitivities

are arbitrary, then the expected revenue may not be concave in the purchase probabilities.

Going back to the case where the generating function is separable by the partitions and the

products in a partition have the same price sensitivity parameter, let β ∈ Rn+ be the vector of

price sensitivities, so that β = (b1, . . . , bn), where bi = βk for all i ∈ Nk and k = 1, . . . ,m. In the

following theorem, which is the main result of this section, we show that if the generating function

is separable by the partitions and the products in each partition share the same price sensitivity

parameter, then the expected revenue function is concave in the purchase probabilities. Also, we

give an expression for the gradient of the expected revenue function.

Theorem H.1 For all q ∈ Rn+ such that qi > 0 for all i and
∑

i∈N qi < 1, the Hessian matrix

∇2R(q) is negative definite and

∇R(q) = p(q)−diag(β)−1 e− e
>diag(β)−1 q

1−e>q
e.

The proof of the theorem above uses a sequence of three lemmas. We begin by defining a matrix

that will ultimately be useful to characterize the Jacobian matrix of the vector-valued mapping

q 7→ p(q). Recalling that Ŷi(p̂) = eαi−p̂i , and p̂(q) is the optimal solution to the optimization

problem given at the beginning of this section, we define the matrix

B̂(q) =
diag(Ŷ (p̂(q)))∇2G(Ŷ (p̂(q)))diag(Ŷ (p̂(q)))

1 +G(Ŷ (p̂(q)))
.



Zhang, Rusmevichientong, and Topaloglu: Pricing under the Generalized Extreme Value Models
35

The matrix B̂(q) is a specialized version of the matrix B(q) defined right before Lemma 4.4,

when the price sensitivities of all of the products are one. So, by the discussion in the proof of

Theorem 4.3, B̂(q) is positive semidefinite. Since ∇2G(Ŷ (p̂(q))) is symmetric, B̂(q) is symmetric

as well. In the following lemma, we give other useful properties of B̂(q).

Lemma H.2 We have B̂(q)diag(β)−1 e= 0, B̂(q)diag(β)e= 0, and B̂(q)e= 0.

Proof: Note that the (i, j)-th entry of B̂(q) is Ŷi(p̂i(q))∂Gij(Ŷ (p̂(q))) Ŷj(p̂j(q))/(1+G(Ŷ (p̂(q)))).

Furthermore, since the generating function G is a separable function of the form G(Y ) =∑m

k=1G
k(Y k), letting Ŷ k(p̂(q)) = (Ŷi(p̂i(q)) : i ∈ Nk), for i ∈ Nk, we have ∂Gij(Ŷ (p̂(q))) =

∂Gk
ij(Ŷ

k(p̂(q))) when j ∈Nk, whereas ∂Gij(Ŷ (p̂(q))) = 0 when j 6∈Nk. In this case, noting that

we use bi to denote the price sensitivity of product i, for i ∈ Nk, the i-th entry of the vector

B̂(q)diag(β)−1 e is given by∑
j∈N

Ŷi(p̂i(q))∂Gij(Ŷ (p̂(q))) Ŷj(p̂j(q))
1

bj

1 +G(Ŷ (p̂(q)))
=

Ŷi(p̂i(q))
∑
j∈Nk

∂Gk
ij(Ŷ

k(p̂(q))) Ŷj(p̂j(q))
1

βk

1 +G(Ŷ (p̂(q)))
= 0.

In the equalities above, the first equality is by the fact that ∂Gij(Ŷ (p̂(q))) = ∂Gk
ij(Ŷ

k(p̂(q))) when

j ∈Nk, whereas ∂Gij(Ŷ (p̂(q))) = 0 when j 6∈Nk, along with the fact that bj = βk for all j ∈Nk.

The second equality follows from Lemma 2.2 and the fact that Gk is a generating function. Since

our choice of the entry i is arbitrary, it follows that B̂(q)diag(β)−1 e= 0, showing the first equality

in the lemma. The other two equalities in the lemma follow by using the same approach after

replacing 1/bj, respectively, with bj and 1 in the chain of equalities above. 2

In the following lemma, we use the matrix B̂(q) to give an expression for the Jacobian matrix

J(q) associated with the vector-valued mapping q 7→ p(q), which maps any purchase probabilities

q to the prices p(q) that achieve these purchase probabilities.

Lemma H.3 The Jacobian matrix J(q) =
(
∂pi(q)

∂qj
: i, j ∈N

)
is given by

J(q) =−diag(β)−1(diag(q)− q q>+ B̂(q))−1.

Proof: The optimization problem given at the beginning of this section is a specialized version of

the one in Theorem 4.1, when the price sensitivities of all of the products are one. Noting that the

unique optimal solution to this problem is denoted by p̂(q), Lemma 4.4 immediately implies that

the Jacobian matrix Ĵ(q) =
(
∂p̂i(q)

∂qj
: i, j ∈N

)
associated with the vector-valued mapping q 7→ p̂(q)

is given by Ĵ(q) =−(diag(q)− q q>+ B̂(q))−1. By the discussion at the beginning of this section,
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we have p(q) = diag(β)−1 p̂(q), in which case, by the chain rule, we obtain J(q) = diag(β)−1 Ĵ(q) =

−diag(β)−1(diag(q)− q q>+ B̂(q))−1, which is the desired result. 2

In the following lemma, we consider a matrix that will appear in the computation of the Hessian

matrix of the expected revenue function. We define

D(q) =
1

1−e>q
(ee>diag(β)−1 + diag(β)−1ee>) +

e>diag(β)−1 q

(1−e>q)2
ee>.

One can verify that D(q) is not necessarily positive semidefinite, but as we show next, if we add

the matrix diag(β)−1 diag(q)−1 to D(q), then we obtain a positive definite matrix.

Lemma H.4 For all q ∈Rn+ such that qi > 0 for all i and
∑

i∈N qi < 1, the matrix C(q) = D(q) +

diag(β)−1 diag(q)−1 is positive definite.

Proof: Define g(q) =
∑

k∈M
1
βk

∑
i∈Nk qi (log qi− log(1−

∑
j∈N qj)). By direct differentiation, it can

be verified that ∇2g(q) = C(q). So, it is enough to show that g is strictly convex. Let H :R2n
+ →R

be defined by: for all x,y ∈Rn+, H(x,y) =
∑

k∈M
1
βk

∑
i∈Nk xi (logxi− log yi). The relative entropy

function f(x, y) = x (logx− log y) is strictly convex in (x, y) ∈ R2
+; see Section 3.1.5 in Boyd and

Vandenberghe (2004). Therefore, H(x,y) is strictly convex in (x,y) ∈R2n
+ . Let the vector-valued

mapping h : Rn+→R2n
+ be defined by: for all q ∈Rn+, h(q) = (h1(q), . . . , h2n(q)) with hi(q) = qi for

all i= 1, . . . , n, and hi(q) = 1−
∑

j∈N qj for all i= n+1, . . . ,2n. Then, the definitions of g, H and h

imply that g(q) =H(h(q)). Thus, g is the composition of a strictly convex function with an affine

mapping, which only implies that g is convex. To show that g is strictly convex, we let Jh(q) be

the Jacobian matrix of the vector-valued mapping h. Note that Jh(q) is a 2n-by-n matrix. For

i= 1, . . . , n, (i, i)-th entry of Jh(q) is 1. For i= n+ 1, . . . ,2n and j = 1, . . . , n, the (i, j)-th entry of

Jh(q) is −1. The other entries are zero. Therefore, the Jacobian matrix Jh(q) includes the n-by-n

identity matrix as a submatrix. Noting that g(q) = H(h(q)) and h is linear, by the chain rule,

we have ∇2g(q) = Jh(q)>∇2H(h(q))Jh(q). Since Jh(q) includes the n-by-n identity matrix as a

submatrix, for any x ∈ Rn with x 6= 0, we have Jh(q)x 6= 0. In this case, for any x ∈ Rn with

x 6= 0, we obtain x>∇2g(q)x= (Jh(q)x)>∇2H(h(q)) (Jh(q)x)> 0, where the inequality follows

from the fact that H is strictly convex and Jh(q)x 6= 0. 2

Here is the proof of Theorem H.1.

Proof of Theorem H.1: First, we show the expression for ∇R(q). In the proof of Theorem 4.3, we

use the Sherman-Morrison formula to obtain (diag(q) − q q> + B(q))−1 = (diag(q) + B(q))−1 +

ee>/(1−e>q). Using the same argument, it follows that we have (diag(q) − q q> + B̂(q))−1 =

(diag(q) + B̂(q))−1 + ee>/(1−e>q). Furthermore, since B̂(q) is positive semidefinite, the inverse
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of diag(q) + B̂(q) exists, in which case, we have (diag(q) + B̂(q))−1(diag(q) + B̂(q))diag(β)−1 e=

diag(β)−1e. Noting that B̂(q)diag(β)−1 e = 0 by Lemma H.2, the last equality implies that

(diag(q) + B̂(q))−1diag(q)diag(β)−1 e= diag(β)−1 e. Since R(q) =
∑

i∈N pi(q) qi, we get

∇R(q) = p(q) + J(q)>q = p(q)− (diag(q)− q q>+ B̂(q))−1diag(β)−1q

= p(q)−
[
(diag(q) + B̂(q))−1 +

1

1−e>q
ee>

]
diag(β)−1q

= p(q)−diag(β)−1 e− e
>diag(β)−1 q

1−e>q
e,

where the second equality follows from Lemma H.3 and the last equality uses the fact that

(diag(q) + B̂(q))−1diag(β)−1 q = (diag(q) + B̂(q))−1diag(q)diag(β)−1 e = diag(β)−1 e. Thus, we

have the desired expression for ∇R(q).

Second, we show that the inverse of ∇2R(q) is negative definite, which implies that ∇2R(q) is

negative definite as well. Differentiating the last expression above for the gradient of the expected

revenue function, we have

∇2R(q) = J(q)− 1

1−e> q
ee>diag(β)−1− e

>diag(β)−1q

(1−e> q)2
ee>

= −diag(β)−1(diag(q)− q q>+ B̂(q))−1− 1

1−e> q
ee>diag(β)−1− e

>diag(β)−1q

(1−e> q)2
ee>

= −diag(β)−1(diag(q) + B̂(q))−1

− 1

1−e> q

[
(diag(β)−1ee>+ee>diag(β)−1

]
− e

>diag(β)−1q

(1−e> q)2
ee>

= −diag(β)−1(diag(q) + B̂(q))−1−D(q)

= −diag(β)−1(diag(q) + B̂(q))−1
[
I + (diag(q) + B̂(q))diag(β)D(q)

]
,

where the third equality follows from the fact that (diag(q)−q q>+B̂(q))−1 = (diag(q)+B̂(q))−1 +

ee>/(1−e>q). Noting the definition of D(q), multiplying both sides of the equality in this

definition by B̂(q)diag(β) from left, Lemma H.2 implies that B̂(q)diag(β)D(q) = 0. In this case,

considering the term I + (diag(q) + B̂(q))diag(β)D(q) on the right side of the chain of equalities

above, we have I + (diag(q) + B̂(q))diag(β)D(q) = I + diag(q)diag(β)D(q), in which case, the

last chain of equalities above implies that ∇2R(q) is given by

∇2R(q) = −diag(β)−1 (diag(q) + B̂(q))−1(I + diag(q)diag(β)D(q))

= −diag(β)−1 (diag(q) + B̂(q))−1diag(q)diag(β)
[
diag(β)−1diag(q)−1 + D(q)

]
.

For notational brevity, we define the diagonal matrix Λ = diag(q)diag(β), in which case, we write

the Hessian of R(q) as ∇2R(q) =−diag(β)−1(diag(q) + B̂(q))−1 Λ (Λ−1 + D(q)). Noting Lemma

H.4, the inverse of Λ−1 + D(q) exists. By the Sherman-Morrison formula, it is given by

(Λ−1 + D(q))−1 = Λ− (I + ΛD(q))−1ΛD(q)Λ.
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By Lemma H.2, noting the definition of D(q), we have B̂(q)D(q) = 0. Since B̂(q) and D(q) are

both symmetric, taking the transpose, it follows that D(q) B̂(q) = 0. Using the last expression for

the Hessian matrix of R(q) and taking the inverse, we obtain

∇2R(q)−1 = − (Λ−1 + D(q))−1Λ−1(diag(q) + B̂(q))diag(β)

= − (Λ−1 + D(q))−1Λ−1diag(q)diag(β)− (Λ−1 + D(q))−1Λ−1B̂(q)diag(β)

= − (Λ−1 + D(q))−1−
[
Λ− (I + ΛD(q))−1ΛD(q)Λ

]
Λ−1 B̂(q)diag(β)

= − (Λ−1 + D(q))−1− B̂(q)diag(β),

where third equality uses the fact that Λ = diag(q)diag(β), whereas the last equality holds since

D(q) B̂(q) = 0. By Lemma H.4, (Λ−1 + D(q))−1 is positive definite. Also, recall that B̂(q) is

positive semidefinite. Therefore, the inverse of ∇2R(q) is negative definite. 2


