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RANDOM REWARDS, FRACTIONAL BROWNIAN LOCAL
TIMES AND STABLE SELF-SIMILAR PROCESSES

By Serge Cohen and Gennady Samorodnitsky∗

We describe a new class of self-similar symmetric α-stable process with
stationary increments arising as a large time scale limit in a situation when
many users are earning random rewards or incurring random costs. The
resulting models are different from the ones studied earlier both in their
memory properties and smoothness of the sample paths.

1. Introduction. With the dramatic increase of importance of communica-

tion networks came the need to understand better their behavior at different scales.

This requires a construction of stochastic models that can plausibly arise as the re-

sult of activities associated with such networks. Limiting stochastic processes often

scale, and one hopes that such models can provide insight into scaling of properties

of the networks.

Perhaps the best known result of this type is the paper [21], where the limiting

model turned out to be (depending on the relationship between the number of users

and the time scale) either Fractional Brownian motion or a Lévy α-stable motion

(this paper followed up and was an improvement of the two earlier papers of [38]

and [36]). The fact that either a light tailed but long range dependent model or

a heavy tailed but short range dependent model could appear has become article

of faith; see e.g. [7] for an application in a network context. Other heavy tailed

limiting models have appeared; see for example [25], but the limiting processes are

not long range dependent (more about this in the sequel).

In this paper we exhibit a natural situation where the limiting model belongs to a

new class of α-stable models. It is a self-similar process with stationary increments,

and we will argue that the increments are long range dependent. Let (Wk, k ∈ Z)
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be a sequence of iid random symmetric variables satisfying

(1.1) FW (x) := P (W0 > x) ∼ σα
W x−α

as x →∞ where 0 < α < 2 and σW > 0. Let further (V1, V2, . . .) be an independent

of (Wk, k ∈ Z) sequence of iid mean zero and unit variance integer valued random

variables, defining a random walk Sn = V1 + . . . + Vn for n ≥ 1. If one views Sn as

describing the “position” of the “state” of a user at time n, and Wk the “reward”

earned by, “cost” incurred by or the “amount of work” produced by the user in

state k, then the total reward earned by the time n is

(1.2) R(n) =
n∑

j=1

WSj .

Assuming that there are many such users earning independent rewards, or generat-

ing independent work, it turns out that a properly normalized sequence of rewards

converges weakly to a limit, which we will call a FBM-1/2-local time fractional

symmetric α-stable motion, which is a particular case of a larger class of models,

FBM-H-local time fractional symmetric α-stable motion, 0 < H < 1 (which are

self-similar with exponent of self-similarity H ′ = 1−H + H/α). We will represent

this process as a stochastic integral with respect to an α-stable random measure,

with the integrand being the local time process of a Fractional Brownian motion

with exponent H, hence the name of the model. The increments of this process are

generated by a conservative null flow (see below for the details) and, hence, this

process turns out to be different from all other classes of α-stable self-similar pro-

cesses with stationary increments that have been considered so far in the extensive

literature on the subject.

Two remarks have to be made at this point. First of all, the only reason for

assuming symmetry of (Wk, k ∈ Z) is that dealing with symmetric α-stable (SαS)

models leads to simpler expressions and unified exposition for all 0 < α < 2. Classes

of non-symmetric stable models parallel to those we are working with in this paper

can be defined without difficulty, the case α = 1 being the exception. Under suitable

tail conditions the random reward scheme with appropriate translation and scaling

will converge to these stable processes. Second, our processes are related to a family
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of limiting models obtained in similar circumstances (but with a single user) by [15].

In their case the limiting process is self-similar with stationary increments, but not

stable.

This paper is organized as follows. In the next section we will summarize the

required information on α-stable processes and random measures, on self-similarity

and on local times of Fractional Brownian motions. Our process is formally intro-

duced in Section 3. The properties of the increment process are discussed in Section

4. In Section 5 we study the smoothness of the sample paths of local time fractional

stable motions through their Hölder continuity properties. It turns out that local

time fractional stable motions can be naturally written as a sum of absolutely con-

tinuous self-similar stable processes, and the decomposition goes through the chaos

expansion of the local times of Fractional Brownian motions. This is done in Section

6. In Section 7 we prove the announced above convergence of the random reward

scheme to the FBM-1/2-local time fractional stable motion. We conclude with some

comments and a discussion of possible extensions in Section 8.

2. Preliminaries. Throughout this paper we will deal with SαS processes

given in the form

(2.1) X(t) =
∫

E

f(t, x) M(dx) , t ∈ T ,

where T is a parameter space, M is a symmetric α-stable random measure on a

measurable space (E, E) with a σ-finite control measure m, and f(t, ·) ∈ Lα(m, E)

for all t ∈ T . See Chapter 3 in [34] for information on α-stable random measures

and integrals with respect to these measures.

If the parameter space is countable (e.g. if T = Z), and the process is stationary

(under the usual left shift operator), then it has an integral representation as above,

but the kernels fn = f(n, ·), n ∈ Z are of a special form. Specifically, one can choose

(2.2) fn(x) = an(x)
(

dm ◦ φn

dm
(x)
)1/α

f ◦ φn(x) , x ∈ E ,

for n = 0, 1, 2, . . ., where φ : E → E is a measurable non-singular map (i.e. a one-

to-one map with both φ and φ−1 measurable, mapping the control measure m into
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an equivalent measure),

an(x) =
n−1∏
j=0

u ◦ φj(x) , x ∈ E ,

for n = 0, 1, 2, . . ., with u : E → {−1, 1} a measurable function and f ∈ Lα(m, E).

See [29]. Many properties of the resulting stable process are closely connected with

the ergodic-theoretical properties of the flow (the group of maps) (φn, n ∈ Z), an

important classification of which is into dissipative, conservative null and positive

flows; see [29], [32] and [33]. In particular, a message from the latter two papers is

that it is possible to view stationary stable processes corresponding to dissipative

flows as short memory processes, those corresponding to positive flows as infinite

memory processes, and those corresponding to conservative null flows as processes

with a finite but long memory. Good general references on ergodic theory are [17]

and [1].

A stochastic process (Y (t), t ≥ 0) is called self-similar with exponent H of self-

similarity if for all c > 0 the processes (Y (ct), t ≥ 0) and (cHY (t), t ≥ 0) have

the same finite-dimensional distributions. Most commonly studied are self-similar

processes with stationary increments ((Y (t + a)− Y (a), t ≥ 0) has the same finite-

dimensional distributions for all a ≥ 0). The common abbreviation for such a

process is SSSI (self-similar stationary increments), or H-SSSI, if the exponent H

of self-similarity is to be emphasized.

For SSSI processes with a finite mean, the exponent of self-similarity is restricted

to the range 0 < H < 1 (apart from degenerate cases), and, in that range, there is

a unique H-SSSI Gaussian process. It has zero mean, and covariance function

Cov(Y (s), Y (t)) =
EY 2(1)

2

[
t2H + s2H − (t− s)2H

]
,

0 ≤ s ≤ t. This process is called the Fractional Brownian motion (FBM).

In the α-stable case, 0 < α < 2, the family of SSSI processes is much larger. The

feasible range of pairs (α, H) is

(2.3)

0 < H ≤ 1/α if 0 < α ≤ 1

0 < H < 1 if 1 < α < 2 ,
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and, apart from the case 0 < α < 1 and H = 1/α, a feasible pair (α, H) does not

determine the law of a SαS H-SSSI process.

Remark 2.1. The class of SαS SSSI processes constructed in this paper has

exponent of self-similarity in the range

(2.4)


1 < H < 1/α if 0 < α < 1

H = 1 if α = 1

1/α < H < 1 if 1 < α < 2 .

It has been a long-standing challenge to describe classes of symmetric 1-stable SSSI

processes with H = 1 other than linear combinations of independent symmetric

1-stable Lévy motion and straight line process Y (t) = t Y (1), t ≥ 0. The model

developed in this paper provides, in the particular case α = 1, an entire family of

such processes.

Two most well known families of SαS H-SSSI processes (with 0 < H < 1) are

obtained by taking two of the many possible integral representations of the Frac-

tional Brownian motion and modifying them appropriately (in particular, replacing

the Brownian motion as an integrator by a SαS Lévy motion). These are the Linear

Fractional stable motion and the real Harmonizable Fractional stable motion. The

Linear Fractional stable motion belongs to the class of self-similar stable mixed

moving averages described by [26, 27]. Its increment process is generated by a dis-

sipative flow. On the other hand, the increment process of the real Harmonizable

Fractional stable motion is generated by a positive flow. We refer the reader to

Chapter 7 in [34] and to [10] for more information on self-similar processes.

A Fractional Brownian motion with any exponent of self-similarity 0 < H < 1

has a local time process (l(x, t), x ∈ IR, t ≥ 0) that is jointly continuous in x and t

([3]). The self-similarity property of the Fractional Brownian motion immediately

implies the scaling property of the local time process: for any c > 0,

(2.5) (l(cHx, ct), x ∈ IR, t ≥ 0) d= (c1−H l(x, t), x ∈ IR, t ≥ 0) ,



6 S. COHEN AND G. SAMORODNITSKY

a somewhat more convenient form of which is

(2.6)
(

1
c
l(x, ct), x ∈ IR, t ≥ 0

)
d=
(

1
cH

l(
x

cH
, t), x ∈ IR, t ≥ 0

)
.

It is a simple consequence of (2.5) and of Theorem 6, p. 275 of [14] that on a set of

probability 1,

(2.7) lim
t→∞

l(x, t) = ∞ for all x ∈ IR.

Similarly, the stationarity of increments property of the Fractional Brownian

motion implies a type of stationarity of the increments of the local time, which

can be formulated as follows. Let (Ω,F ,P) be the probability space on which the

Fractional Brownian motion and its local time process live. Then, abusing somewhat

the term “law” by applying it to an infinite induced measure,

(2.8)

the law of
(
l(x, t+h)(ω)− l(x, h)(ω), t ≥ 0

)
under P×Leb does depend on h ≥ 0 .

A modification of the proof of Theorem 1.2 that leads to Corollary 1.1 in [39] gives

us that

(2.9) K := sup
x∈IR

0≤s<t≤1/2

l(x, t)− l(x, s)

(t− s)1−H
(
log 1

t−s

)H
< ∞ a.s.

and has finite moments of all orders. (Note that using instead the estimates in [6]

gives a slightly worse power of the logarithm: H + 1 instead of H.) In particular,

l(x, t) has moments of all orders finite and uniformly bounded in all real x and all

t in a compact set.

3. FBM-H-local time fractional stable motions. We now introduce our

class of models. Let (Ω′,F ′,P′) be a probability space supporting a Fractional

Brownian motion (BH(t), t ≥ 0) with exponent H of self-similarity, and let l =

l(x, t) = l(x, t)(ω′) be its jointly continuous local time process. Let M be a SαS

random measure on the space Ω′ × IR with control measure P′ × Leb, where Leb

is the Lebesgue measure on IR. The random measure itself lives on some other

probability space (Ω,F ,P). We define

(3.1) Y (t) =
∫

Ω′

∫
IR

l(x, t)(ω′)M(dω′, dx), t ≥ 0.
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Our first result below shows that (Y (t), t ≥ 0) is a well defined SαS process, which

is self-similar and has stationary increments. We call this process FBM-H-local time

fractional symmetric α-stable motion.

Theorem 3.1. The process (Y (t), t ≥ 0) in (3.1) is a well defined SαS process.

It has stationary increments, and is self-similar with exponent

(3.2) H ′ = 1−H + H/α = 1 + H

(
1
α
− 1
)

.

Proof. To show that Y is properly defined we need to check that

∫
Ω′

∫
IR

lα(x, t)(ω′)P′(dω′) dx = E′
∫

IR

lα(x, t)dx < ∞.

We have

E′
∫

IR

lα(x, t)dx =
∫

IR

E′
[
lα(x, t)1

(
sup

0≤s≤t
|BH(s)| ≥ |x|

)]
dx(3.3)

≤
∫

IR

(
E′l2(x, t)

)α/2
(
P′( sup

0≤s≤t
|BH(s)| ≥ |x|)

)1/q

dx

with q = 1− α/2. Since the moments of the local time are uniformly bounded and

(3.4)
∫

IR

(
P′( sup

0≤s≤t
|BH(s)| ≥ |x|)

)1/q

dx < ∞

as the supremum of a bounded Gaussian process has Gaussian-like tails, we conclude

that the left hand side of (3.3) is finite and, hence, (Y (t), t ≥ 0) in (3.1) is a well

defined SαS process.

Notice that for any c > 0, k ≥ 1, θ1, . . . , θk ∈ IR and t1, . . . , tk ≥ 0 we have,
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using (2.6)

E exp

i
k∑

j=1

θjY (ctj)

 = exp

−∫
IR

E′

∣∣∣∣∣∣
k∑

j=1

θj l(x, ctj)

∣∣∣∣∣∣
α

dx


= exp

−∫
IR

E′

∣∣∣∣∣∣
k∑

j=1

θjc
1−H l(

x

cH
, tj)

∣∣∣∣∣∣
α

dx


= exp

−cα(1−H)E′
∫

IR

∣∣∣∣∣∣
k∑

j=1

θj l(
x

cH
, tj)

∣∣∣∣∣∣
α

dx


= exp

−cα(1−H)+HE′
∫

IR

∣∣∣∣∣∣
k∑

j=1

θj l(y, tj)

∣∣∣∣∣∣
α

dy


= E exp

i
k∑

j=1

θjc
1−H+H/αY (tj)

 .

Therefore, (Y (t), t ≥ 0) is H ′-self-similar, with H ′ given by (3.2).

Furthermore, for any h ≥ 0 , k ≥ 1, θ1, . . . , θk ∈ IR and t1, . . . , tk ≥ 0 we have

by (2.8)

E exp

i
k∑

j=1

θj(Y (tj + h)− Y (h))

 =

exp

−∫
IR

E′

∣∣∣∣∣∣
k∑

j=1

θj(l(x, tj + h)− l(x, h))

∣∣∣∣∣∣
α

dx



= exp

−∫
IR

E′

∣∣∣∣∣∣
k∑

j=1

θj l(x, tj)

∣∣∣∣∣∣
α

dx

(3.5)

= E exp

i
k∑

j=1

θjY (tj)

 .

Therefore, (Y (t), t ≥ 0) has stationary increments.

Remark 3.2. Observe that

1. For 0 < α < 1 we obtain a family of H ′-SSSI SαS processes with H ′ ∈ (1, 1/α).
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2. For 1 < α < 2 we obtain a family of H ′-SSSI SαS processes with H ′ ∈ (1/α, 1).

3. For α = 1 we obtain a family of 1-SSSI SαS processes.

Notice that for α 6= 1 different choices of the Fractional Brownian motion exponent

of self-similarity H lead to a different exponent of self-similarity H ′ of the SαS

process (Y (t), t ≥ 0) and, hence, to a different process. On the other hand, for

α = 1 the exponent of self-similarity H ′ is independent of H. Nonetheless, the

processes (Y (t), t ≥ 0) corresponding to different H are different in this case as

well, as will be seen in the sequel.

4. The increment process. An object of interest for an SSSI process is its

increment process. It is a stationary process, and its memory properties are often

of interest. For example, the increment process of a Fractional Brownian motion,

the so called Fractional Gaussian noise, is a standard long memory (if H > 1/2)

model that was used by Mandelbrot (see e.g. [19, 20]) to explain the famous Hurst

phenomenon. Similarly the increments of the Linear Fractional stable motion are

called Linear Fractional stable noise, and those of the real Harmonizable Fractional

stable motion are called (real) Harmonizable Fractional stable noise. It is often

believed that the properties of the fractional noises are largely determined by the

exponent of self-similarity of the original process. One of the goals of this section

that studies the increment process of the FBM-H-local time fractional α-stable

motion, is to shed some light on this question.

Let, therefore, (Y (t), t ≥ 0) be an FBM-H-local time fractional SαS motion,

and consider its increment process

(4.1) Zn = Y (n + 1)− Y (n), n = 0, 1, . . . ,

which will be called FBM-H-local time fractional SαS noise.

A very important property of the FBM-H-local time fractional SαS noise is given

in the following result.

Theorem 4.1. The FBM-H-local time fractional SαS noise is generated by a

conservative null flow.
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Proof. Note that the FBM-H-local time fractional SαS noise has an integral

representation

(4.2) Zn =
∫

Ω′

∫
IR

(l(x, n + 1)(ω′)− l(x, n)(ω′))M(dω′, dx), n ≥ 0.

Let C be the space of continuous functions from IR to IR and P′1 a probability

measure on C under which the coordinate map is the Fractional Brownian motion

with exponent H of self-similarity. Let m be a σ-finite measure on C defined by

m = (P′1 × Leb) ◦ T−1, where T : C × IR → C is given by T (ω′, x) = ω′ − x,

ω′ ∈ C, x ∈ IR. Let L : C → IR be a measurable function that associates to a

function ω′ ∈ C its local time at 0 in the interval (0, 1] if ω′ has continuous local

time. Then an alternative representation of the process in (4.2) is

(4.3) Zn =
∫

C

L ◦ φn(ω′)M1(dω′), n ≥ 0 ,

where M1 is a SαS random measure on C with control measure m, and φ : C → C

is given by φ(ω′) = ω′(· + 1). The stationarity of the increments of the Fractional

Brownian motion implies that the map φ preserves the measure m. Note that (4.3)

is a representation of the type (2.2) (with both an ≡ 1 and the Radon-Nykodim

derivative equal to 1). A conclusion is that the flow (φn) and the underlying measure

space on which (φn) acts, are the same independently of the value of α. Therefore,

it is sufficient to prove the theorem in the case α = 1, which we will assume until

the end of the proof.

We continue working with the representation (4.2). Note that by (2.7)

(4.4)
m∑

n=0

[l(x, n + 1)(ω′)− l(x, n)(ω′)] = l(x,m + 1)(ω′) →∞ as m →∞

outside of a subset of Ω′×IR of measure 0. By Corollary 4.2 in [29] this implies that

the FBM-H-local time fractional SαS noise is generated by a conservative flow. It

also, evidently, shows that the kernel in the representation (4.2) has a full support.

In order to prove that the FBM-H-local time fractional SαS noise is generated by

a null flow, we will apply Corollary 2.2 in [33] to the obvious two-sided extension

of the process to (Zn, n ∈ Z). By the symmetry, it is enough to exhibit a non-
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increasing nonnegative sequence wn such that

(4.5)
∞∑

n=0

wn = ∞

and

(4.6)
∞∑

n=0

wn [l(x, n + 1)(ω′)− l(x, n)(ω′)] < ∞

for P′ × Leb-almost every (ω′, x).

Let wn = (1 + n)−θ with some 1−H < θ ≤ 1. Since θ ≤ 1 the condition (4.5) is

satisfied. To check (4.6) it is clearly enough to find a strictly positive measurable

function g such that

(4.7) E′
∫

IR

g(x)
∞∑

n=0

wn [l(x, n + 1)(ω′)− l(x, n)(ω′)] dx < ∞.

Note that

E′
∫

IR

g(x)
∞∑

n=0

wn [l(x, n + 1)(ω′)− l(x, n)(ω′)] dx =
∞∑

n=0

wn

∫ n+1

n

E′g(BH(t))dt .

Choose g(x) = exp(−x2

2 ) so that for all t ≥ 0

E′g(BH(t)) =
1

(1 + t2Hσ2)1/2
,

where σ2 = VarBH(1). Then the left hand side of (4.7) is

(4.8)
∞∑

n=0

wn

∫ n+1

n

dt

(1 + t2Hσ2)1/2
≤

∞∑
n=0

wn
1

(1 + n2Hσ2)1/2
< ∞

by the choice of θ. Hence (4.6) follows.

Remark 4.2. It follows from Theorem 4.1 that (for 1 < α < 2) the FBM-H-

local time fractional SαS motion is different from the Linear fractional SαS motion

(or, more generally, from the self-similar mixed average processes of [26]) since the

increments of the latter are generated by dissipative flows, and it is also different

from the real Harmonizable fractional SαS motion whose increments are generated

by positive flows.
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In particular, the FBM-H-local time fractional SαS noise can be viewed as a

long memory process; its memory is longer than that of the Linear fractional SαS

noise, but shorter than that of the Harmonizable fractional SαS noise. Implications

of that will be seen, in particular, when we discuss smoothness of the sample paths

in the next section. This is a reminder that very little is determined merely by the

exponent of self-similarity for α-stable SSSI processes.

Remark 4.3. It follows immediately from Theorem 4.1 and Theorem 3.1 in

[33] that the FBM-H-local time fractional SαS noise is (unlike the Harmonizable

fractional SαS noise) ergodic. It is easy to show that it is also a mixing process.

Indeed, it suffices to show that for any 0 < a < b and ε > 0

(4.9)

lim
n→∞

(P′ ×Leb)
{

(ω′, x) : a ≤ l(x, 1)(ω′) ≤ b, l(x, n + 1)(ω′)− l(x, n)(ω′) > ε
}

= 0 ,

see e.g. [11] or [30]. Since the left hand side of (3.3) is finite, we see that

(P′ × Leb)
{

(ω′, x) : a ≤ l(x, 1)(ω′) ≤ b
}

< ∞,,

and so, given δ > 0, for K large enough,

(P′ × Leb)
{

(ω′, x) : a ≤ l(x, 1)(ω′) ≤ b, sup
0≤t≤1

|BH(t)| > K
}
≤ δ .

For such K,

(P′ × Leb)
{

(ω′, x) : a ≤ l(x, 1)(ω′) ≤ b, l(x, n + 1)(ω′)− l(x, n)(ω′) > ε
}

≤ δ + (P′ × Leb)
{

(ω′, x) : |x| ≤ K, l(x, n + 1)(ω′)− l(x, n)(ω′) > ε
}

≤ δ + 2K P′ (BH(t) ∈ [−K, K] for some n < t ≤ n + 1) .

Since the last probability clearly goes to zero as n →∞, we conclude that

lim sup
n→∞

P′×Leb
{

(ω′, x) : a ≤ l(x, 1)(ω′) ≤ b, l(x, n+1)(ω′)− l(x, n)(ω′) > ε
}
≤ δ ,

which proves (4.9) since δ > 0 is arbitrary.

We close this section by addressing the point mentioned in Remark 3.2. Since, in

the case α = 1, the exponent of self-similarity of an FBM-H-local time fractional
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motion does not depend on H, one may suspect that H does not change the law of

the process itself (up to, perhaps, a multiplicative constant). The following result

shows that this is not the case, and so the parameter H parameterizes an entire

family of different 1-stable SSSI processes that does not have either a Lévy 1-stable

motion or a straight line process as a component (indeed, the former would have

introduced a dissipative component to the flow generating the increment process,

while the latter would have introduced a positive component to that flow).

Proposition 4.4. Let α = 1 and 0 < H1,H2 < 1 with H1 6= H2. Then there

is no constant C such that

(YH1(t), t ≥ 0) d= (CYH2(t), t ≥ 0) ,

where (YHi(t), t ≥ 0) is an FBM-Hi-local time fractional motion with α = 1,

i = 1, 2.

Proof. Assume that H1 < H2. If C with the above property existed, then we

could use the fact that the kernel in the representation (4.2) has full support and

Theorem 1.1 in [29] to connect the kernels with different H. Specifically, there would

exist measurable maps

A : Ω′ × IR 7→ IR \ {0}

Φ1 : Ω′ × IR 7→ IR

Φ2 : Ω′ × IR 7→ Ω′

such that

(4.10) lH1(x, n + 1)(ω′)− lH1(x, n)(ω′)

= A(ω′, x)
(
lH2(Φ1(ω′, x), n + 1)(Φ2(ω′, x))− lH2(Φ1(ω′, x), n)(Φ2(ω′, x))

)
, n ∈ N

for P′1 × Leb-almost every ω′ ∈ Ω′, x ∈ IR, where we have added subscripts to

the local times with the obvious meaning, and P′i is the probability measure on Ω′
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corresponding to the Fractional Brownian motion with exponent Hi. By adding up,

we obtain

(4.11) lH1(x, n)(ω′) = A(ω′, x)lH2(Φ1(ω′, x), n)(Φ2(ω′, x)), n ∈ N

for P′1 × Leb-almost every ω′ ∈ Ω′, x ∈ IR.

By (2.6), Markov inequality and boundedness of the moments of the local time,

there is a finite K such that for every x ∈ IR, t > 0 and ε, δ > 0

(4.12) P′2
(
lH2(x, t) > εt1−H2+δ

)
≤ Kε−2t−2δ

and so by Borel-Cantelli lemma

(4.13) P′2
(
lH2(x, 2m) > ε2m(1−H2+δ)infinitely often in m

)
= 0

for every x ∈ IR. By Fubini theorem,

(4.14) (P′2 × Leb)(Gc) = 0

where

(4.15) G =
{

(ω′, x), lim
m→∞

lH2(x, 2m)(ω′)
2m(1−H2+δ)

= 0
}

.

Therefore in the definition (3.1) of the process (Y (t), t ≥ 0) for H = H2, we can

restrict the integral from Ω′ × IR to G only and then in (4.10) and (4.11) we will

have

(4.16) (Φ1(ω′, x)),Φ2(ω′, x))) ∈ G

for all ω ∈ Ω′, x ∈ IR. This means that for P′1 × Leb-almost every ω ∈ Ω′, x ∈ IR

we have

(4.17) lim
m→∞

lH1(x, 2m)(ω)
2m(1−H2+δ)

= 0.

Therefore, there is x ∈ IR, such that (4.17) holds P′1 a.s.

However by (2.6)

P′1
(
lH1(x, 2m) > 2m(1−H2+δ)

)
= P′1

(
lH1(

x

2mH1
, 1) > 2m(H1−H2+δ)

)
.
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If δ < H2 −H1 then this gives us

lim inf
m→∞

P′1
(
lH1(x, 2m) > 2m(1−H2+δ)

)
≥ P′1

(
lH1(0, 1) > 0

)
= 1 > 0.

This contradicts (4.17). Therefore (4.10) is impossible and the proposition is proved.

5. Hölder continuity. The fact that the local times of the Fractional Brown-

ian motion are continuous and monotone in the time variable already imply that a

FBM-H-local time fractional symmetric α-stable motion with 0 < α < 1 are sample

continuous (see e.g. Theorem 10.4.2 in [34]) and the same is true for 1 < α < 2 by

the mere fact that H ′ > 1/α (see Theorem 12.4.1 ibid.) Our goal in this section

is to prove Hölder continuity of a FBM-H-local time fractional SαS motion for all

0 < α < 2.

Theorem 5.1. Let (Y (t), t ≥ 0) be a FBM-H-local time fractional SαS motion,

0 < α < 2. Then it has a version with continuous sample paths satisfying

(5.1) sup
0≤s<t≤1/2

|Y (t)− Y (s)|

(t− s)1−H
(
log 1

t−s

)H+1/2
< ∞ a.s.

Remark 5.2. It is instructive to express the Hölder continuity statement in

(5.1) in terms of the exponent H ′ of self-similarity of the FBM-H-local time frac-

tional SαS motion and α, which can be done for α 6= 1). For such α (5.1) means

that a FBM-H-local time fractional SαS motion is d-Hölder continuous with any

(5.2) d <
H ′ − 1/α

1− 1/α
.

Let, for example, 1 < α < 2. Recall that a Linear fractional SαS motion with

exponent of self-similarity H ′ > 1/α is d-Hölder continuous with any d < H ′− 1/α

([35]) while a Harmonizable fractional SαS motion is d-Hölder continuous with

any d < H ′ ([16]). In particular, a FBM-H-local time fractional SαS motion has

smoother sample paths than a Linear fractional SαS motion with the same exponent

of self-similarity, and less smooth sample paths than a Harmonizable fractional SαS

motion with the same exponent of self-similarity. This is not surprising if one recalls
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that the increments of a FBM-H-local time fractional SαS motion have “stronger

dependence” than those of a Linear fractional SαS motion, but not as strong as

that of the increments of a Harmonizable fractional SαS motion.

Of course, since Theorem 5.1 only provides a lower bound on how smooth the

sample functions are, the above discussion should be taken with “a degree of salt”.

We conjecture, however, that the upper bound on the Hölder exponent of the FBM-

H-local time fractional SαS motion cannot be improved. In the case H = 1/2 this

is shown in Remark 5.3 below.

Proof of Theorem 5.1. We will use a series representation of the stochastic

integral (3.1) defining the FBM-H-local time fractional SαS motion. In distribution,

(5.3) Y (t) = Cα

∞∑
j=1

GjΓ
−1/α
j eX2

j /2αlj(Xj , t), t ≥ 0 ,

where Cα is a finite positive constant that depends only on α, (Gj), (Γj), (Xj)

and (lj) are four independent sequences such that (Gj) and (Xj) are iid standard

normal random variables, (Γj) are the arrival times of a unit rate Poisson process

on (0,∞), and (lj) are iid copies of the local time process of a Fractional Brownian

motion. See Section 3.10 in [34].

Assume that the sequence (Gj) is defined on some probability space (Ω1,F1,P1)

while the rest of the random variables in the right hand side of (5.3) are defined on

some other probability space (Ω2,F2,P2), so that the FBM-H-local time fractional

SαS motion in the left-hand side of (5.3) is defined on the product of these two

spaces. Let

Kj = sup
x∈IR

0≤s<t≤1/2

lj(x, t)− lj(x, s)

(t− s)1−H
(
log 1

t−s

)H
, j = 1, 2, . . . ,

and notice that, for a fixed ω2 ∈ Ω2, the process in (5.3) is centered Gaussian with

the incremental variance

(5.4) E1

(
Y (t)− Y (s)

)2

= C2
α

∞∑
j=1

Γ−2/α
j eX2

j /α
(
lj(Xj , t)− lj(Xj , s)

)2

≤

C2
α

∞∑
j=1

Γ−2/α
j eX2

j /αK2
j

 (t− s)2(1−H)

(
log

1
t− s

)2H
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:= M(ω2)(t− s)2(1−H)

(
log

1
t− s

)2H

for all 0 ≤ s < t ≤ 1/2, where M is a P2-a.s. finite random variable on (Ω2,F2,P2)

(the latter statement follows from the fact that E2K
α
j < ∞).

Applying now classical results on moduli of continuity of Gaussian processes (see

e.g. Theorem 2.1 in [8]) we obtain that for P2-almost every ω2 ∈ Ω2,

sup
0≤s<t≤1/2
s,t rational

|Y (t)− Y (s)|

(t− s)1−H
(
log 1

t−s

)H+1/2
< ∞ P1- a.s.

By Fubini’s theorem,

sup
0≤s<t≤1/2
s,t rational

|Y (t)− Y (s)|

(t− s)1−H
(
log 1

t−s

)H+1/2
< ∞ P1 ×P2- a.s.,

which is equivalent to the statement of the theorem.

Remark 5.3. It is easy to show that, at least for H = 1/2, the result of

Theorem 5.1 is “almost” sharp in the sense that there does not exist a function

g : (0, 1/2) → (0,∞) with

lim
t→0

g(t)

t1/2
(
log 1

t

)1/2
= 0

and, with positive probability,

(5.5) sup
0≤s<t≤1/2

|Y (t)− Y (s)|
g(t− s)

< ∞ .

Indeed, assume that such a function, in fact, exists. By the zero-one law for stable

processes (see Section 9.5 in [34]) (5.5) would then hold with probability 1. It

follows, e.g. by [28], that we must have

(5.6) sup
0≤s<t≤1/2

|l(x, t)− l(x, s)|
g(t− s)

< ∞ a.s.

for almost every x ∈ IR. Choose x for which (5.6) holds, and note that by the strong

Markov property and [12]

P′
(

sup
0≤s<t≤1/2

|l(x, t)− l(x, s)|
g(t− s)

= ∞

)
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≥ P′
(

inf
{

u ≥ 0 : B1/2(u) = x
}
≤ 1

4

)
P′
(

sup
0≤s<t≤1/4

|l(0, t)− l(0, s)|
g(t− s)

= ∞

)

= P′
(

inf
{

u ≥ 0 : B1/2(u) = x
}
≤ 1

4

)
> 0 ,

contradicting the necessity of (5.5) to hold with probability 1.

6. Expansion into absolutely continuous terms. The sample paths of

(measurable) H-SSSI processes are almost never absolutely continuous with re-

spect to the Lebesgue measure, the only exception being the case H = 1 with the

process being the straight line process Y (t) = t Y (1) a.s. for all t (see Theorem

3.3 in [37]). Nonetheless, there is a school of thought viewing nature as “produc-

ing smooth objects”, with the others being more of a mathematical abstraction.

In particular, smooth modifications of various mathematical models are of interest;

see for example the “physical fractional Brownian motion” of [13]. In this section

we use the chaos expansion of the local times of Fractional Brownian motions due

to [9] to construct an expansion of the FBM-H-local time fractional SαS motion

into a series of absolutely continuous SαS self-similar processes, all with the same

exponent of self-similarity as the original process. We introduce first the required

notation.

For σ > 0 let pσ2 denote the density of a zero mean normal random variable

with variance σ2, Hn is the nth Hermite polynomial

Hn(x) =
(−1)n

n!
exp

(
x2

2

)
dn

dxn

(
exp

(
−x2

2

))
, x ∈ IR

with H0(x) ≡ 1. Let (Ω′,F ′,P′) be a probability space supporting a Brownian

motion (W (s), s ∈ IR), and let In be the nth Wiener-Itô integral with respect to

this Brownian motion. We refer the reader to [23] for information on these notions.

Finally, let KH be the kernel defined by

KH(t, s) = (t− s)H−1/2 − (H − 1/2)
∫ t

s

(r − s)H−3/2

(
1−

(s

r

)−(H−1/2)
)

dr

for 0 < s < t and equal to zero for other values of s, t. Note that, in distribution,

(6.1) BH(t) =
(

VarBH(1)
CH

)1/2 ∫ t

0

KH(t, s) W (ds), t ≥ 0 ,
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where CH is finite positive constant depending only on H (see e.g. [2]).

Theorem 6.1. Let (Y (t), t ≥ 0) be an FBM-H-local time fractional SαS mo-

tion. In distribution,

(6.2) Y (t) =
∞∑

n=0

Wn(t)

:=
∞∑

n=0

∫
Ω′

∫
IR

hn(x, t)(ω′)M(dω′, dx), t ≥ 0 ,

where for n = 0, 1, . . .

(6.3)

hn(x, t) = hn(x, t)(ω′) =
C
−n/2
H

σ

∫ t

0

ps2H (x/σ)
snH

Hn

(
x/σ

sH

)
In

(
KH(s, ·)⊗n

)
ds ,

with σ2 = VarBH(1), and M is a SαS random measure on the space Ω′ × IR

with control measure P′ × Leb. Each process (Wn(t), t ≥ 0) is a self-similar SαS

process with exponent of self-similarity H ′ = 1−H + H/α and has a modification

with absolutely continuous sample paths. Moreover, the series in (6.2) converges in

probability.

Proof. We first check that each (Wn(t), t ≥ 0) is a well defined SαS process.

Note that

(σC
n/2
H )α

∫
Ω′

∫
IR

hα
n(x, t)(ω′)P′(dω′) dx = (σC

n/2
H )αE′

∫
IR

hα
n(x, t)dx

≤
∫

IR

[
E′
(∫ t

0

ps2H (x/σ)
snH

Hn

(
x/σ

sH

)
In

(
KH(s, ·)⊗n

)
ds

)2
]α/2

dx

≤
∫

IR

{∫ t

0

ps2H (x/σ)
snH

∣∣∣∣Hn

(
x/σ

sH

)∣∣∣∣ [E′ (In

(
KH(s, ·)⊗n

))2]1/2

ds

}α

dx .

By (6.1)

E′
(
In

(
KH(s, ·)⊗n

))2 = n!
∥∥KH(s, ·)⊗n

∥∥2

2

= n! ‖KH(s, ·)‖2n
2 = n!Cn

H

(
s2H

)n
.

Therefore,

σα

(n!)α/2
E′
∫

IR

hα
n(x, t)dx ≤

∫
IR

(∫ t

0

ps2H (x/σ)
∣∣∣∣Hn

(
x/σ

sH

)∣∣∣∣ ds

)α

dx
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=
∫

IR

(∫ t

0

p1

( x

σsH

) ∣∣∣∣Hn

(
x/σ

sH

)∣∣∣∣ ds

sH

)α

dx .

Observe that the function ϕ(x) = p1(x)1/2 |Hn(x)| is continous and bounded on

the entire real line. Therefore∫ t

0

p1

( x

σsH

) ∣∣∣∣Hn

(
x/σ

sH

)∣∣∣∣ ds

sH
≤ c

(
p1

( x

σtH

))1/2
∫ t

0

ds

sH

for some finite positive c independent of x. Therefore,

(6.4) E′
∫

IR

hα
n(x, t)dx < ∞ ,

and so each (Wn(t), t ≥ 0) is a well defined SαS process.

The next step is to check that each process (Wn(t), t ≥ 0) is self-similar with

the exponent of self-similarity given by (3.2). We will use two simple scaling facts,

the first is simply

(6.5) KH(au,w) = aH−1/2KH(u, w/a)

for all a > 0 and all u, w and the second is a consequence of the self-similarity of a

Brownian motion: for any n ≥ 1, m ≥ 1, any square integrable symmetric functions

f1, . . . , fm, and a > 0,

(6.6) (In(fi(·a)), i = 1, . . . ,m) d=
(
a−n/2In(fi), i = 1, . . . ,m

)
.

We assume, for simplicity, that σ = 1.

Let now m ≥ 1, 0 < t1 < . . . < tm, θ1, . . . , θm ∈ IR and a > 0. We have

− log E exp

i C
n/2
H

m∑
j=1

θjWn(atj)


=
∫

IR

E′

∣∣∣∣∣∣
m∑

j=1

θj

∫ atj

0

ps2H (x)
snH

Hn

( x

sH

)
In

(
KH(s, ·)⊗n

)
ds

∣∣∣∣∣∣
α dx

= aα−αnH

∫
IR

E′

∣∣∣∣∣∣
m∑

j=1

θj

∫ tj

0

pa2Hu2H (x)
unH

Hn

( x

aHuH

)
In

(
KH(au, ·)⊗n

)
du

∣∣∣∣∣∣
α dx

= aα−αnH

∫
IR

E′

∣∣∣∣∣∣
m∑

j=1

θj

∫ tj

0

pu2H (x/aH)
aHunH

Hn

( x

aHuH

)
In

(
KH(au, ·)⊗n

)
du

∣∣∣∣∣∣
α dx
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= aα−αnH+H−αH

∫
IR

E′

∣∣∣∣∣∣
m∑

j=1

θj

∫ tj

0

pu2H (y)
unH

Hn

( y

uH

)
In

(
KH(au, ·)⊗n

)
du

∣∣∣∣∣∣
α dy

= aα−αn/2+H−αH

∫
IR

E′

∣∣∣∣∣∣
m∑

j=1

θj

∫ tj

0

pu2H (y)
unH

Hn

( y

uH

)
In

(
KH(u,

·
a
)⊗n
)

du

∣∣∣∣∣∣
α dy

= aα+H−αH

∫
IR

E′

∣∣∣∣∣∣
m∑

j=1

θj

∫ tj

0

pu2H (y)
unH

Hn

( y

uH

)
In

(
KH(u, ·)⊗n

)
du

∣∣∣∣∣∣
α dy

= − log E exp

i C
n/2
H

m∑
j=1

θja
H′

Wn(atj)

 ,

where the 5th equality follows from (6.5) and the 6th equality follows from (6.6).

This proves the claimed self-similarity.

Because of self-similarity, it is enough to prove absolute continuity on interval

[0, 1]. The proof will be done in 3 different cases, and consist of checking the con-

ditions of Theorem 11.7.4 in [34].

If 0 < α < 1, we need to check that∫
IR

E′
(∫ 1

0

∣∣∣∣∂hn

∂t
(x, t)

∣∣∣∣ dt

)α

dx < ∞ .

This is, however, an immediate consequence of the computation leading to (6.4).

If 1 < α < 2, we need to check

(6.7)
∫ 1

0

(∫
IR

E′
∣∣∣∣∂hn

∂t
(x, t)

∣∣∣∣α dx

)1/α

dt < ∞ .

We have for t > 0∫
IR

E′
∣∣∣∣∂hn

∂t
(x, t)

∣∣∣∣α dx =
∫

IR

E′
∣∣∣∣pt2H (x)

tnH
Hn

( x

tH

)
In

(
KH(t, ·)⊗n

)∣∣∣∣α dx

≤ t−αnH
(
E′In

(
KH(t, ·)⊗n

)2)α/2
∫

IR

(
p1(x/tH)

∣∣Hn

(
x

tH

)∣∣)α
tαH

dx

= bn t−(α−1)H

for some 0 < bn < ∞. Since ∫ 1

0

t−(α−1)H/α dt < ∞ ,
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(6.7) follows.

Finally, in the case α = 1, the necessary and sufficient conditions for absolute

continuity are less convenient to check. However, a stronger statement, that the

process is absolutely continuous with a derivative in Lp[0, 1] for some 1 < p ≤ 2

requires checking that

∫
IR

E′
(∫ 1

0

∣∣∣∣∂hn

∂t
(x, t)

∣∣∣∣p dt

)1/p

dx < ∞ ,

which follows in the same way as (6.4). We omit the repetitive details.

It remains to prove that the sequence (6.2) converges in probability. By Propo-

sition 4 in [9] for every x and t

l(x, t) =
∞∑

n=0

hn(x, t) P′-a.s.

By the definition (3.1) of the process (Y (t), t ≥ 0) it is enough to prove that

(6.8)
∫

IR

E′
∣∣∣∣∣l(x, t)−

m∑
n=0

hn(x, t)

∣∣∣∣∣
α

dx → 0 as m →∞.

We will estimate the expectation in (6.8) in two different ways. Note, first of all,

that for every m

E′

∣∣∣∣∣l(x, t)−
m∑

n=0

hn(x, t)

∣∣∣∣∣
α

≤ Cα

E′l(x, t)α +

E′

(
m∑

n=0

hn(x, t)

)2
α/2


≤ Cα

[
E′l(x, t)α +

(
E′l(x, t)2

)α/2
]
≤ Cα

(
E′l(x, t)2

)α/2
,

where Cα is a finite positive constant depending only on α and allowed to change

from place to place. The argument used in (3.3) shows that∫
IR

(
E′l(x, t)2

)α/2
dx < ∞ .

Therefore, given ε > 0 one can choose M ∈ (0,∞) such that for all m ≥ 1

(6.9)
∫

IR

E′
∣∣∣∣∣l(x, t)−

m∑
n=0

hn(x, t)

∣∣∣∣∣
α

dx ≤ ε +
∫ M

−M

E′
∣∣∣∣∣l(x, t)−

m∑
n=0

hn(x, t)

∣∣∣∣∣
α

dx .
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Next we estimate the expectation in (6.8) in a different way. Note that by the

orthogonality of (hn)s with different n

E′

∣∣∣∣∣l(x, t)−
m∑

n=0

hn(x, t)

∣∣∣∣∣
α

≤

E′

(
l(x, t)−

m∑
n=0

hn(x, t)

)2
α/2

=

E′

( ∞∑
n=m+1

hn(x, t)

)2
α/2

=

( ∞∑
n=m+1

E′ (hn(x, t))2
)α/2

,

and, as in the proof of Proposition 4 in [9], we conclude that there is δm,t → 0 as

m →∞ such that for all x ∈ IR

E′

∣∣∣∣∣l(x, t)−
m∑

n=0

hn(x, t)

∣∣∣∣∣
α

≤ δm,t .

Substituting this bound into (6.9) we conclude that∫
IR

E′
∣∣∣∣∣l(x, t)−

m∑
n=0

hn(x, t)

∣∣∣∣∣
α

dx ≤ ε + 2Mδm,t .

Letting first m →∞ and then ε → 0 proves (6.8), and so the proof of the theorem

is now complete.

Remark 6.2. It is clear from the proof of the theorem that the derivative of

each process (Wn(t), t ≥ 0) is in Lp[0, 1] for a range of p > 1 in all cases, and not

only for α = 1. We will not pursue this point here, however.

7. Convergence of the random reward scheme. In this section we es-

tablish the limit theorem in the random reward scheme discussed in the intro-

duction. We start with setting up the notation. Let (W (i)
k , k ∈ Z, i ≥ 1) be

an array of iid symmetric random variables whose distribution satisfies (1.1). Let

(V (i)
k , k ≥ 1, i ≥ 1) be an independent of (W (i)

k , k ∈ Z, i ≥ 1) array of iid mean

zero and unit variance integer valued random variables Let S
(i)
n = V

(i)
1 + . . .+V

(i)
n ,

n ≥ 0 be the ith random walk, i = 1, 2, . . ., and define for j ∈ Z and n ≥ 1

(7.1) ϕ(j, n; i) =
n∑

k=1

1
(
S

(i)
k = j

)
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to be the number of times the ith random walk visits the state j by the time n,

i = 1, 2, . . ., and define ϕ(j, t; i) for non-integer values of t ≥ 0 by interpolating

linearly between ϕ(j, n; i) and ϕ(j, n + 1; i) if n ≤ t < n + 1 (we use ϕ(j, 0; i) = 0).

Notice that the total reward earned by the ith user by the time t can be written as

R(i)(t) =
∞∑

k=−∞

W
(i)
k ϕ(k, t; i)

(of course, this is really a linear interpolation for non-integer t). The limit theorem

below shows that, if both the number of users and the time scale grow at an arbitrary

rate then the properly normalized total reward converges weakly to the FBM-1/2-

local time fractional symmetric α-stable motion. This is related to the convergence

result in [15] (which allows more general random walks) where only one user is

present.

Theorem 7.1. For every sequence (bn) of positive integers with bn → ∞ we

have, as n →∞,

(7.2)

 1(
n b

(α+1)/2
n

)1/α

n∑
i=1

R(i)(bnt), t ≥ 0

⇒
(
(2/Cα)1/ασW Y (t), t ≥ 0

)

weakly in C([0,∞), where (Y (t), t ≥ 0) is the FBM-1/2-local time fractional sym-

metric α-stable motion defined in (3.1) (with the local time being that of a standard

Brownian motion). Here σW is the tail weight in (1.1) and Cα is the stable tail

constant given by

(7.3) Cα =
(∫ ∞

0

x−α sinx dx

)−1

.

Proof. By extending the probability space on which random object are de-

fined, if necessary, we can construct a sequence of iid standard Brownian mo-

tions (B(i)(t), t ≥ 0), i = 1, 2, . . . with jointly continuous local time processes

(l(i)(x, t), t ≥ 0, t ∈ IR), i = 1, 2, . . ., such that for every T > 0

(7.4) sup
x∈IR, 0≤t≤nT

∣∣∣∣ϕ([x], t; i)− n1/2l(i)
(

x√
n

,
t

n

)∣∣∣∣→ 0
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in probability as n →∞, i = 1, 2, . . .; see Theorem 1 in [5]. Define for n ≥ 1

(7.5) Xn(t) =
1(

n b
1/2
n

)1/α

n∑
i=1

∞∑
k=−∞

W
(i)
k l(i)

(
k√
bn

, t

)
, t ≥ 0 .

Notice that for t ≥ 0

(7.6) En(t) :=
1(

n b
(α+1)/2
n

)1/α

n∑
i=1

R(i)(bnt)−Xn(t)

=
1(

n b
(α+1)/2
n

)1/α

n∑
i=1

∞∑
k=−∞

W
(i)
k

(
ϕ(k, bnt; i)− b1/2

n l(i)
(

k√
bn

, t

))
.

We first prove that for every t > 0

(7.7) En(t) → 0 in probability .

For notational simplicity we prove (7.7) for t = 1.

First of, it follows from the tail behavior (1.1) that there is a constant b > 0 such

that

(7.8) |W (i)
k |

st
≤ b(1 + |R(i)

k |)

(in the sense of stochastic comparison), where (R(i)
k , k ∈ Z, i ≥ 1) be an array of

iid standard SαS random variables. Therefore, by the contraction inequality (see

Section 1.2 in [18]) we conclude that

(7.9) P (|En(1)| > ε)

≤ 2 P

 1(
n b

(α+1)/2
n

)1/α

n∑
i=1

∞∑
k=−∞

ε
(i)
k

(
1 + |R(i)

k |
)(

ϕ(k, bn; i)− b1/2
n l(i)

(
k√
bn

, 1
))

> ε/b

)

≤ 2 P

 1(
n b

(α+1)/2
n

)1/α

n∑
i=1

∞∑
k=−∞

ε
(i)
k

(
ϕ(k, bn; i)− b1/2

n l(i)
(

k√
bn

, 1
))

> ε/(2b)


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+2P

 1(
n b

(α+1)/2
n

)1/α

n∑
i=1

∞∑
k=−∞

R
(i)
k

(
ϕ(k, bn; i)− b1/2

n l(i)
(

k√
bn

, 1
))

> ε/(2b)


:= p1(n) + p2(n) ,

where (ε(i)
k , k ∈ Z, i ≥ 1) is an array of iid standard symmetric Rademacher random

variables. We need to show that

(7.10) pj(n) → 0 as n →∞ for j = 1, 2.

We estimate p2(n). Note that

p2(n)/2 =

P

( 1

n b
(α+1)/2
n

n∑
i=1

∞∑
k=−∞

∣∣∣∣ϕ(k, bn; i)− b1/2
n l(i)

(
k√
bn

, 1
)∣∣∣∣α

)1/α

R
(1)
1 > ε/(2b)

 ,

and so the statement (7.10) with j = 2 will follow once we show that

(7.11)
1

n b
(α+1)/2
n

n∑
i=1

∞∑
k=−∞

∣∣∣∣ϕ(k, bn; i)− b1/2
n l(i)

(
k√
bn

, 1
)∣∣∣∣α → 0

in probability as n →∞. The expectation of the expression in the left hand side of

(7.11) is
1

b
(α+1)/2
n

E
∞∑

k=−∞

∣∣∣∣ϕ(k, bn; 1)− b1/2
n l(1)

(
k√
bn

, 1
)∣∣∣∣α

≤ 1

b
(α+1)/2
n

E
∞∑

k=−∞

∣∣∣∣ϕ(k, bn; 1)− b1/2
n l(1)

(
k√
bn

, 1
)∣∣∣∣α

1
(∣∣∣∣ϕ(k, bn; 1)− b1/2

n l(1)
(

k√
bn

, 1
)∣∣∣∣ ≤ 1

)

+
1

b
(α+1)/2
n

E

( ∞∑
k=−∞

∣∣∣∣ϕ(k, bn; 1)− b1/2
n l(1)

(
k√
bn

, 1
)∣∣∣∣2
)α/2

( ∞∑
k=−∞

1
(∣∣∣∣ϕ(k, bn; 1)− b1/2

n l(1)
(

k√
bn

, 1
)∣∣∣∣ > 1

))1−α/2


≤ 1

b
(α+1)/2
n

E
∞∑

k=−∞

∣∣∣∣ϕ(k, bn; 1)− b1/2
n l(1)

(
k√
bn

, 1
)∣∣∣∣α

1
(∣∣∣∣ϕ(k, bn; 1)− b1/2

n l(1)
(

k√
bn

, 1
)∣∣∣∣ ≤ 1

)
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+
1

b
(α+1)/2
n

E

( ∞∑
k=−∞

∣∣∣∣ϕ(k, bn; 1)− b1/2
n l(1)

(
k√
bn

, 1
)∣∣∣∣2
)α/2

(
2M (1)(bn) + 1

)1−α/2

1
(

sup
k∈Z

∣∣∣∣ϕ(k, bn; 1)− b1/2
n l(1)

(
k√
bn

, 1
)∣∣∣∣ > 1

)]
:= p21(n) + p22(n) ,

where

M (i)(m) = max
(

sup
0≤k≤m

|S(i)
k |,

√
m sup

0≤t≤1
|B(i)(t)|

)
.

For the second inequality above we have bounded a sum from above by the number

of non-vanishing terms times the largest non-vanishing term. A similar argument

will be used in the sequel without further comments. We have

p21(n) ≤ 1

b
(α+1)/2
n

E
(
2M (1)(bn) + 1

)
≤ c

1

b
(α+1)/2
n

b1/2
n = cb−α/2

n → 0 as n →∞.

Furthermore,

p22(n) ≤ 1

b
(α+1)/2
n

(
E

∞∑
k=−∞

∣∣∣∣ϕ(k, bn; 1)− b1/2
n l(1)

(
k√
bn

, 1
)∣∣∣∣2
)α/2

(
E
(
2M (1)(bn) + 1

)
1 (∆1(bn) > 1)

)1−α/2

,

where

∆i(n) = sup
k∈Z

∣∣∣∣ϕ(k, bn; i)− b1/2
n l(i)

(
k√
bn

, 1
)∣∣∣∣ .

Using Lemma 1 in [15] and the fact that the largest value of a Brownian local time

at time 1 has all moments finite, the first expectation in the right hand side is

bounded above by cb
3/2
n . Therefore,

p22(n) ≤ c
1

b
(α+1)/2
n

b3α/4
n

(
E M (1)(bn)3/2

)(2−α)/3

(P (∆1(bn) > 1))(1−α/2)/3

≤ c
1

b
(α+1)/2
n

b3α/4
n

(
b3/4
n

)(2−α)/3

(P (∆1(bn) > 1))(1−α/2)/3

≤ c (P (∆1(bn) > 1))(1−α/2)/3 → 0 as n →∞

by (7.4) (as always, c is a finite positive constant that may change from appearance

to appearance). Therefore, (7.11) holds, and so we have established (7.10) for j = 2.

The proof for j = 1 is similar. We have, thus, obtained (7.7).
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The next step is to show that the finite dimension distributions of the process

(Xn(t), t ≥ 0) in (7.5) converge to those of (Y (t), t ≥ 0). For this it is enough to

show that for every k ≥ 1, 0 < t1 < . . . < tk and θ1, . . . , θk ∈ IR,

k∑
j=1

θjXn(tj) ⇒
k∑

j=1

θjY (tj) as n →∞.

We will see that this is true for k = 1 and t1 = 1; the general case is only notationally

different. That is, we will show that

(7.12)
1(

n b
1/2
n

)1/α

n∑
i=1

∞∑
k=−∞

W
(i)
k l(i)

(
k√
bn

, 1
)
⇒ Y (1) as n →∞.

By Theorem 8 in Chapter 6 of [24] it is enough to prove that for every λ > 0

(7.13)

lim
n→∞

n P

( ∞∑
k=−∞

W
(1)
k l(1)

(
k√
bn

, 1
)

> λ
(
n b1/2

n

)1/α
)
→ σα

W E

∫
IR

l(x, t)α dx λ−α

and

(7.14) lim
ε→0

lim sup
n→∞

n(
n b

1/2
n

)2/α
E

( ∞∑
k=−∞

W
(1)
k l(1)

(
k√
bn

, 1
))2

1

(∣∣∣∣∣
∞∑

k=−∞

W
(1)
k l(1)

(
k√
bn

, 1
)∣∣∣∣∣ ≤ ε

(
n b1/2

n

)1/α
)]

= 0

(we have used the symmetry of W s to simplify the conditions).

We start with checking (7.13). The first step is to prove that for every λ > 0

that

(7.15) lim
K→∞

lim sup
n→∞

n P

 ∑
|k|>K

√
bn

W
(1)
k l(1)

(
k√
bn

, 1
)

> λ
(
n b1/2

n

)1/α

 = 0 .

By using the contraction inequality, the stochastic comparison (7.8) and the no-

tation following it, it is enough to prove that for every λ > 0 (7.15) holds with

each W
(1)
k being replaced with R

(1)
k and with each W

(1)
k being replaced with ε

(1)
k .

The two statements are similar; we only present the argument in the case of stable

weights. In that case the expression corresponding to that in the left hand side of
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(7.15) is equal to

n P


 ∑
|k|>K

√
bn

l(1)
(

k√
bn

, 1
)α
1/α

R
(1)
1 > λ

(
n b1/2

n

)1/α


and, for some positive constant c, this bounded from above by

n

c λ−α
(
n b1/2

n

)−1

E

 ∑
|k|>K

√
bn

l(1)
(

k√
bn

, 1
)α


= c λ−αb−1/2
n E

 ∑
|k|>K

√
bn

l(1)
(

k√
bn

, 1
)α
 .

≤ c λ−αE

(
sup
x∈IR

l(1) (x, 1)
)α ∑

|k|>K
√

bn

P

(
sup

0≤s≤1

∣∣∣B(1)(s)
∣∣∣ ≥ k√

bn

)

→ 2c λ−α

∫ ∞

K

P

(
sup

0≤s≤1

∣∣∣B(1)(s)
∣∣∣ > x

)
dx .

Since the final expression converges to 0 as K →∞, we have (7.15).

Fix now K and λ > 0. The usual “largest jump” large deviations approach (see

e.g. [22]) and the continuity of the local time give us that, as n →∞,

(7.16) n P

 ∑
|k|≤K

√
bn

W
(1)
k l(1)

(
k√
bn

, 1
)

> λ
(
n b1/2

n

)1/α


∼ n P

(
max

|k|≤K
√

bn

W
(1)
k l(1)

(
k√
bn

, 1
)

> λ
(
n b1/2

n

)1/α
)

∼ n
∑

|k|≤K
√

bn

P

(
W

(1)
k l(1)

(
k√
bn

, 1
)

> λ
(
n b1/2

n

)1/α
)

∼ n

∫ K
√

bn

−K
√

bn

P

(
W

(1)
k l(1)

(
x√
bn

, 1
)

> λ
(
n b1/2

n

)1/α
)

dx

=
∫ K

−K

(
n b1/2

n

)
P

(
W

(1)
k l(1) (y, 1) > λ

(
n b1/2

n

)1/α
)

dy

→
∫ K

−K

σα
W λ−αE

(
l(1) (y, 1)

)α

dy

(see e.g. (2.7) in [31]).

Now (7.13) follows from (7.15) and (7.16).



30 S. COHEN AND G. SAMORODNITSKY

To show (7.14), note that

n(
n b

1/2
n

)2/α
E

( ∞∑
k=−∞

W
(1)
k l(1)

(
k√
bn

, 1
))2

1

(∣∣∣∣∣
∞∑

k=−∞

W
(1)
k l(1)

(
k√
bn

, 1
)∣∣∣∣∣ ≤ ε

(
n b1/2

n

)1/α
)]

≤ n

∫ ε2

0

P

[∣∣∣∣∣
∞∑

k=−∞

W
(1)
k l(1)

(
k√
bn

, 1
)∣∣∣∣∣ > x1/2b1/2α

n n1/α

]
dx .

Using stochastic domination and contraction principle as above allows us to replace

in the above expression the random variables (W (i)
k by SαS random variables and by

Rademacher random variables, and, as before, we only consider the former (because

they have heavier tails). In that case we have

n

∫ ε2

0

P

[∣∣∣∣∣
∞∑

k=−∞

R
(1)
k l(1)

(
k√
bn

, 1
)∣∣∣∣∣ > x1/2b1/2α

n n1/α

]
dx

= n

∫ ε2

0

P

|R(1)
1 |

( ∞∑
k=−∞

(
l(1)
(

k√
bn

, 1
))α

)1/α

> x1/2b1/2α
n n1/α

 dx

≤ c b−1/2
n E

∞∑
k=−∞

(
l(1)
(

k√
bn

, 1
))α

∫ ε2

0

x−α/2 dx

from which (7.14) would follow once we check uniform boundedness of the n-

dependent coefficient above. However, this follows from

b−1/2
n E

∞∑
k=−∞

(
l(1)
(

k√
bn

, 1
))α

≤ E

[
sup
x∈IR

(l(x, 1))α
(
2 sup

0≤t≤1
|B(1)(t)|+ 1

)]
< ∞ .

Therefore, we have (7.14) and, thus, convergence of the finite dimensional distribu-

tions in (7.2).

It remains to prove tightness. Write for M > 0

(7.17)
1(

n b
(α+1)/2
n

)1/α

n∑
i=1

R(i)(bnt)

=
1(

n b
(α+1)/2
n

)1/α

n∑
i=1

∞∑
k=−∞

W
(i)
k 1

(
|W (i)

k | > M n1/αb1/2α
n

)
ϕ(k, bnt; i)
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+
1(

n b
(α+1)/2
n

)1/α

n∑
i=1

∞∑
k=−∞

W
(i)
k 1

(
|W (i)

k | ≤ M n1/αb1/2α
n

)
ϕ(k, bnt; i)

:= Yn(t) + Zn(t), t ≥ 0 .

Notice that

P

(
sup

0≤t≤1
|Yn(t)| > 0

)
≤ 1−

[
P
(

for all |k| ≤ M (1)(bn), |W (1)
k | ≤ M n1/αb1/2α

n

)]n
.

Since for large n, with a changing constant c,

P
(

for all |k| ≤ M (1)(bn), |W (1)
k | ≤ M n1/αb1/2α

n

)
= E

[
P
(
|W (1)

1 | ≤ M n1/αb1/2α
n

)]2M(1)(bn)+1

≥ E
[
1− cM−αn−1b−1/2

n

]2M(1)(bn)+1

≥ E exp
{
−cM−αn−1b−1/2

n

(
2M (1)(bn) + 1

)}
,

we obtain, using the inequality e−x ≥ 1 − x for x ≥ 0 and maximal inequality for

martingales

P

(
sup

0≤t≤1
|Yn(t)| > 0

)
≤ 1−

[
1− cM−αn−1b−1/2

n E
(
2M (1)(bn) + 1

)]n
≤ 1−

[
1− cM−αn−1

]n → 1− exp{−cM−α}

as n →∞.

Since the last expression converges to zero as M → ∞, it follows from (7.17)

that it is enough to prove that, for each fixed M , the process (Zn(t), 0 ≤ t ≤ 1) is

tight.

However, for all 0 ≤ s < t ≤ 1 we have

E (Zn(t)− Zn(s))2 =
1

n2/α−1b
(α+1)/α
n

E

[(
W

(1)
1

)2

1
(
|W (1)

1 | ≤ M n1/αb1/2α
n

)]

E
∞∑

k=−∞

(ϕ(k, bnt; 1)− ϕ(k, bns; 1))2 .

Since for large x

E

[(
W

(1)
1

)2

1
(
|W (1)

1 | ≤ x
)]

≤ 4
∫ x2

0

y P
(
W

(1)
1 > y

)
dy ≤ c x2−α
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we see that for large n

E (Zn(t)− Zn(s))2 ≤ c b−3/2
n E

∞∑
k=−∞

(ϕ(k, bnt; 1)− ϕ(k, bns; 1))2 ≤ c(t− s)3/2

as in the proof of Lemma 7 in [15]. Now appeal to Theorem 12.3 in [4] prove

tightness of the family of the processes (Zn(t), 0 ≤ t ≤ 1) and, hence, completes

the proof.

8. Discussion and possible extensions. We mention briefly several issues

related to the model constructed in this paper.

It is clear that self-similar SαS processes with stationary increments could be

constructed using local times of self-similar processes with stationary increments

other than Fractional Brownian motions. Symmetric stable Lévy motions with in-

dex of stability between 1 and 2 are an obvious example. One could also consider

additive functionals other than local times.

For the random reward scheme considered in Section 7, it is clear that in order

to obtain in the limit FBM-H-local time fractional symmetric α-stable motion

with H 6= 1/2, one has to introduce sufficiently long memory in the sequence of

steps of each random walk (V (i)
k , k ≥ 1). One way to do it is to take a stationary

integer valued sequence with slowly decaying correlations; alternatively, a certain

reinforcement mechanism could be used. This is left for a future work.

It is also instructive to note that in Section 7 one obtains the same limit regardless

how fast the number of users grows. However, if one considers instead (as it is

common in the literature) a fluid input system, where the random reward is not

gained instantaneously but, instead, obtained over a stretch of time, it is likely that

the different limits would be obtained depending on the number of users. Possible

limits there would, probably, include Fractional Brownian motions, FBM-H-local

time fractional symmetric α-stable motions and, perhaps, additional limit processes.
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mated by stable Lévy motion or Fractional Brownian motion? Annals of Applied Probability
12:23–68.

[22] T. Mikosch and G. Samorodnitsky (2000): The supremum of a negative drift random walk
with dependent heavy–tailed steps. Annals of Applied Probability 10:1025–1064.

[23] D. Nualart (1995): The Mallavin Calculus and Related Topics. Springer, New York.
[24] V. Petrov (1975): Sums of Independent Random Variables. Springer-Verlag, New York.
[25] V. Pipiras and M. S. Taqqu (2000): The limit of a renewal reward process with heavy-tailed

rewards is not a linear fractional stable motion. Bernoulli 6:607–614.
[26] V. Pipiras and M. S. Taqqu (2002): Decomposition of self-similar stable mixing moving

averages. Probability Theory and Related Fields 123:412–452.
[27] V. Pipiras and M. S. Taqqu (2002): The structure of self-similar stable mixing moving

averages. Annals of Probability 30:898–932.
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