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Abstract

The notion of long range dependence is discussed from a variety of
points of view, and a new approach is suggested. A number of related
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1
Introduction

Long range dependence and long memory are synonymous notions, that
are arguably very important. This importance can be judged, for exam-
ple, by the very large number of publications having one of these notions
in the title, in areas such as finance [84], econometrics [115], internet
modeling [70], hydrology [109], climate studies [142], linguistics [3] or
DNA sequencing [71]. These publications address a great variety of
issues: detection of long memory in the data, statistical estimation of
parameters of long range dependence, limit theorems under long range
dependence, simulation of long memory processes, and many others.
Surprisingly, very few of these publications address what long range
dependence is. When definitions are given, they vary from author to
author (the econometric survey [58] mentions 11 different definitions).
The notion of long range dependence can also be applied to differ-
ent aspects of a given stochastic process [63]. More diverse definitions
become possible if, instead of looking at the “usual” stationary pro-
cesses, one studies stationary point processes, as in [37], or random
fields, as in [4].

It is the purpose of this survey to discuss what is meant (often
implicitly) by long range dependence, clarify why this notion is
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important, mention different point of views on the topic and, hope-
fully, remove some of the mystery that surrounds it.

The notion of long range dependence has, clearly, something to do
with memory in a stochastic process. Memory is, by definition, some-
thing that lasts. It is the requirement that the memory has to be “long”
that is special. Why is it important that in one model the memory is “a
bit longer” than in another model? The first serious argument that this
can be important is in a series of papers of B. Mandelbrot and his co-
authors, e.g. [89] and [93]. It is also due to the influence of these early
papers and subsequent publications of Mandelbrot (especially [90]) that
long range dependence has also become associated with scaling and
fractal behavior. We survey some of the early history in Section 2.

The “specialness” of long memory indicates that most stationary
stochastic processes do not have it. This also makes it intuitive that
non-stationary processes can provide an alternative explanation to the
empirical phenomena that the notion of long range dependence is
designed to address. This connection between long memory and lack of
stationarity is very important. It is related to such well known phenom-
ena as unit root problem [111] and regime switching [42]. We discuss
the connections with non-stationary processes in Section 3.

A very attractive point of view on long range dependence is based
on ergodic-theoretical properties of the dynamical system on which a
stationary stochastic process is constructed. Many features that are
intuitively associated with long memory are automatically found in
such an approach. For several reasons this approach has not become
widely accepted. We discuss this in Section 4.

Most of the definitions of long range dependence appearing in liter-
ature are based on the second-order properties of a stochastic process.
Such properties include asymptotic behavior of covariances, spectral
density, and variances of partial sums. The reasons for popularity of the
second-order properties in this context are both historical and practi-
cal: second-order properties are relatively simple conceptually and easy
to estimate from the data. This approach to the notion of long memory
is discussed in Section 5.

The term “fractional” appears very frequently in the context of long
range dependence. This usually refers to a model constructed using a
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generalized operation of a non-integer order, whereas the “usual” order
of the operation has to be integer. The examples include differencing or
differentiation “non-integral number of times.” Certain features often
associated with long memory can sometimes be obtained by doing so.
Models obtained in this way are discussed in Section 6.

It is, once again, largely due to the early history that the notion of
long range dependence has become closely associated with self-similar
processes. Self-similar processes are stochastic models with the property
that a scaling in time is equivalent to an appropriate scaling in space.
The connection between the two types of scaling is determined by a
constant often called the Hurst exponent, and it has been argued that
the value of this exponent determines whether or not the increments
of a self-similar process with stationary increments possess long range
dependence. We discuss self-similar processes in Section 7.

The final part of this survey, Section 8, introduces a different
approach to understanding long memory, a one that is related to the
notion of phase transitions. We argue that this approach makes the
notion of long range dependence both intuitive and practical. One
should hope for major future research effort in this direction.



2
Some History: The Hurst Phenomenon

The history of long range dependence as a concrete phenomenon
believed to be important in its own right should be regarded as begin-
ning in the 1960s with a series of papers of Benoit Mandelbrot and his
co-workers, even though even earlier empirical findings had occurred.
The cause was a need to explain an empirical phenomenon observed
by Hurst [67, 68] who studied the flow of water in the Nile river.
A particular data set Hurst looked at appears on Figure 2.1. There
are many things that are interesting about this data set (one of which
is how far back in time the data go). Harold Hurst, who was inter-
ested in dam design, looked at this data through a particular statistic.
Given a sequence of n observations X1,X2, . . . ,Xn, define the partial
sum sequence Sm = X1 + · · · + Xm for m = 0,1, . . . (with S0 = 0). The
statistics Hurst looked at is

R

S
(X1, . . . ,Xn) =

max0≤i≤n(Si − i
nSn) − min0≤i≤n(Si − i

nSn)
( 1

n

∑n
i=1(Xi − 1

nSn)2)1/2
. (2.1)

Note that Sn/n is the sample mean of the data. Therefore,
max0≤i≤n(Si − i

nSn), for example, measures how far the partial sums
get above the straight line they would follow if all observations were

167



168 Some History: The Hurst Phenomenon

0 200 400 600

10
00

11
00

12
00

13
00

14
00

Fig. 2.1 Annual minima of the water level in the Nile river for the years 622–1281, measured
at the Roda gauge near Cairo.

equal (to the sample mean), and the difference between the maximum
and the minimum of the numerator in (2.1) is the difference between
the highest and lowest positions of the partial sums with respect to the
straight line of uniform growth. It is referred to as the range of the
observations. The denominator of (2.1) is, of course, the sample stan-
dard deviation. The entire statistic in (2.1) has, then, been called the
rescaled range or the R/S statistic.

Suppose now that X1,X2, . . . is a sequence of random variables. One
can apply the R/S statistic to the first n observationsX1,X2, . . . ,Xn for
increasing values of n. What would one expect the resulting sequence
of values of the R/S statistic to be like? Let us do some simple
calculations.

Consider the space D[0,1] of right continuous and having left limits
functions on [0,1] equipped with the Skorohod J1 topology [18]. The
function f : D[0,1] → R defined by

f(x) = sup
0≤t≤1

(x(t) − tx(1)) − inf
0≤t≤1

(x(t) − tx(1)) ,
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x = (x(t), 0 ≤ t ≤ 1) ∈ D[0,1], is easily seen to be continuous. We would
like to apply this function to the D[0,1]-valued version of the partial
sum sequence, the so-called partial sum process.

Suppose that X1,X2, . . . is, in fact, a stationary sequence of random
variables with a finite variance, and a common mean µ. The partial
sum process is defined by

S(n)(t) = S[nt] − [nt]µ, 0 ≤ t ≤ 1 . (2.2)

The classical Functional Central Limit Theorem (Donsker’s Theorem,
invariance principle) says that, if X1,X2, . . . are i.i.d., then

1√
n
S(n) ⇒ σ∗B weakly in D[0,1], (2.3)

where σ2∗ is equal to the common variance σ2 of the observations, and
B is the standard Brownian motion on [0,1] (Theorem 14.1 in [18]).
In fact, the Functional Central Limit Theorem is known to hold for
stationary processes with a finite variance that are much more general
than an i.i.d. sequence (with the limiting standard deviation σ∗ not
equal, in general, to the standard deviation of the Xis); see a recent
survey in [96].

It is straightforward to check that the range of the first n observa-
tions (the numerator in theR/S statistic) is equal to f(S(n)). Therefore,
if the invariance principle (2.3) holds, then by the continuous mapping
theorem,

1√
n

(the range of the first n observations) = f

(
1√
n
S(n)

)

⇒ f(σ∗B) = σ∗
[

sup
0≤t≤1

(B(t) − tB(1)) − inf
0≤t≤1

(B(t) − tB(1))
]

:= σ∗
[

sup
0≤t≤1

B0(t) − inf
0≤t≤1

B0(t)
]
,

where B0 is a Brownian bridge on [0,1]. Furthermore, if the stationary
sequence X1,X2, . . . is ergodic, then the sample standard deviation is a
consistent estimator of the population standard deviation, and so(

1
n

n∑
i=1

(
Xi − 1

n
Sn

)2
)1/2

→ σ with probability 1.
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Under these circumstances we see that

1√
n

R

S
(X1, . . . ,Xn) ⇒ σ∗

σ

[
sup

0≤t≤1
B0(t) − inf

0≤t≤1
B0(t)

]
. (2.4)

That is, the R/S statistic grows as the square root of the sample size.
When Harold Hurst calculated the R/S statistic on the Nile river

data on Figure 2.1 he found, however, the empirical rate of growth
closer to n.74 (with n being the number of observations). This phe-
nomenon became known as the Hurst phenomenon, and finding a
stochastic model that would explain it proved to be tricky. The assump-
tions made above to guarantee the convergence in (2.4) are reasonably
mild, and one would expect that even if exact convergence in (2.4) was
difficult to establish, the square root of the sample size was still the
order of magnitude of the R/S statistic. A drastic departure from the
assumptions was needed.

One such departure was suggested by Moran in [103], and it con-
sisted of dropping the assumption of a finite variance of the observa-
tions X1,X2, . . . and assuming, instead, that the observations are in
the domain of attraction of an infinite variance α-stable distribution
with 0 < α < 2 (Moran, actually, assumed the observations to have a
symmetric α-stable law). It was pointed out in [91], however, that the
self-normalizing feature of the R/S statistic prevents infinite variance
alone from explaining the Hurst phenomenon. Let us sketch why.

We will assume, for simplicity, that the observations (in addition to
being i.i.d.) have balanced power tails:

P (|X1| > x) ∼ cx−α as x → ∞, and

lim
x→∞

P (X1 > x)
P (|X1| > x)

= p, lim
x→∞

P (X1 < −x)
P (|X1| > x)

= q
(2.5)

for some 0 < α < 2, c > 0 and 0 ≤ p,q ≤ 1, p + q = 1. The general
domain of attraction assumption allows a slowly varying function in
the tail of |X1| [53]. The greater generality may introduce a slowly
varying (in the sample size) function in the order of magnitude of the
R/S statistic, but it cannot change the crucial exponent of n in that
order of magnitude.
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Assuming (2.5), one can use a very important point process con-
vergence result (from which a large number of other heavy tailed limit
theorems follow). For n ≥ 1 we define

Nn =
n∑

j=1

δ(j/n,Xj/n1/α)

and view Nn as a point process on [0,1] × ([−∞,∞]\{0}). Here δ(t,x)
is the point mass at a point (t,x). Then

Nn ⇒ N :=
∞∑

j=1

δ(Uj ,Jj) (2.6)

weakly in the space of Radon discrete random measures on the space
[0,1] × ([−∞,∞] \ {0}), where the Radon property means that a mea-
sure assigns finite values to sets bounded away from the origin. In the
right-hand side of (2.6), (Jj) are the points of a Poisson process on R

with mean measure µ given by

m
(
(x,∞)

)
= cpx−α, m

(
(−∞,−x)

)
= cqx−α

for x > 0, while (Uj) are i.i.d. standard uniform random variables inde-
pendent of the Poisson process. The space of Radon discrete random
measures is endowed with the topology of vague convergence. The result
is (4.70) in [113], which can also be consulted for technical details.

It is possible to apply (2.6) to understand the “size” of the R/S
statistic, starting with a typical “truncation” step, needed because var-
ious sums of points are not continuous functionals of point processes
in the topology of vague convergence (but see [38] for recent progress
toward topologies that may make certain sums of the points continuous
functionals). Using Theorem 3.2 in [18] and verifying certain technical
conditions, one obtains

1√
n

R

S
(X1, . . . ,Xn) ⇒ g(N) , (2.7)

where

g(N) =
sup

0≤t≤1

∑∞
j=1

(
1(Uj ≤ t) − t

)
Jj − inf

0≤t≤1

∑∞
j=1

(
1(Uj ≤ t) − t

)
Jj

(
∑∞

j=1J
2
j )1/2 ;
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we omit the details. Note that (2.7) means that even in the heavy tailed
case the R/S statistic grows as the square root of the sample size.

We conclude, therefore, as did Mandelbort and Taqqu [91], that
infinite variance alone cannot explain the Hurst phenomenon. A differ-
ent drastic departure from the assumptions leading to the square root
of the sample size rate of growth of the R/S statistic was suggested
in [89] (see also [93]), and it had nothing to do with heavy tails. The
idea was, instead, to take as a model a stationary process with a finite
variance, but with correlations decaying so slowly as to invalidate the
Functional Central Limit Theorem (2.3). The simplest model of that
sort is the Fractional Gaussian Noise.

Let us start with a zero mean Gaussian process (BH(t), t ≥ 0) satis-
fying BH(0) = 0 and E(BH(t) − BH(s))2 = σ2|t − s|2H for some σ > 0
and 0 < H ≤ 1. We will see below that such a process does exist, and it
has stationary increments (that is, the law of (BH(t + h) − BH(h), t ≥
0) does not depend on h ≥ 0). It is called a Fractional Brownian motion,
or FBM, and it becomes the usual Brownian motion when H = 1/2.
Clearly, this process has the self-similarity property (BH(ct), t ≥ 0) d=
(cHBH(t), t ≥ 0) for any c > 0.

The power-like behavior of the incremental variance immediately
allows one to check the metric entropy condition [47] or the Kol-
mogorov criterion [48] to conclude that a Fractional Brownian motion
has a continuous version, and we always assume that we are work-
ing with such a version. Furthermore, an easy computation of the
covariance function shows that for H = 1, B1(t) = tB1(1) with prob-
ability 1 for each t ≥ 0, and so to avoid trivialities we always take
0 < H < 1.

A Fractional Gaussian Noise, or FGN, is a discrete step increment
process of a Fractional Brownian motion defined by Xj = BH(j) −
BH(j − 1) for j = 1,2, . . . . The stationarity of the increments of the
FBM implies that this is a stationary Gaussian process. Using the fact
ab = (a2 + b2 − (a − b)2)/2 and the incremental variance of the FBM,
we easily see that

Cov(Xj+n,Xj) =
σ2

2
[
(n + 1)2H + |n − 1|2H − 2n2H

]
(2.8)
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for j ≥ 1, n ≥ 0. That is,

ρn := Corr(Xj+n,Xj) ∼ H(2H − 1)n−2(1−H) as n → ∞. (2.9)

In particular, ρn → 0 as n → ∞. This implies that the FGN is a mixing,
hence ergodic process; see [34]. Furthermore, by the self-similarity of
the FBM, for every n

Var(X1 + · · · + Xn) = VarBH(n) = σ2n2H . (2.10)

Suppose now that a set of observationsX1,X2, . . . forms a Fractional
Gaussian Noise as defined above, and let us consider the behavior of the
R/S statistic on these observations. The ergodicity of the FGN implies
that the denominator of the statistic converges a.s. to the standard
deviation of the observations, σ. For the numerator of the R/S statistic
we recall that Si = BH(i) for every i, and the self-similarity of the FBM
gives us

max
0≤i≤n

(
Si − i

n
Sn

)
− min

0≤i≤n

(
Si − i

n
Sn

)

= max
0≤i≤n

(
BH(i) − i

n
BH(n)

)
− min

0≤i≤n

(
BH(i) − i

n
BH(n)

)
d= nH

[
max
0≤i≤n

(
BH

(
i

n

)
− i

n
BH(1)

)

− min
0≤i≤n

(
BH

(
i

n

)
− i

n
BH(1)

)]
.

By the continuity of the sample paths of the FBM we have

max
0≤i≤n

(
BH

(
i

n

)
− i

n
BH(1)

)
− min

0≤i≤n

(
BH

(
i

n

)
− i

n
BH(1)

)
→ sup

0≤t≤1
(BH(t) − tBH(1)) − inf

0≤t≤1
(BH(t) − tBH(1))

with probability 1. That is, for the FGN,

n−HR

S
(X1, . . . ,Xn) ⇒ 1

σ

[
sup

0≤t≤1
(BH(t) − tBH(1))

− inf
0≤t≤1

(BH(t) − tBH(1))
]
,
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and so the R/S statistic grows at the rate nH as a function of the
sample size. Therefore, selecting an appropriate H in the model will,
finally, explain the Hurst phenomenon. In particular, the parame-
ter H of Fractional Brownian motion is often referred to as Hurst
parameter.

This success of the Fractional Gaussian Noise model was, and still
is, striking. Of course, self-similarity of the FBM was used in the above
computation, but it was quickly realized that the really important fact
was the unusually slow decay of correlations in (2.9), especially for high
values of H (i.e., close to 1). For these values of H the variance of the
partial sums in (2.10) also increases unusually fast. Unlike the previous
unsuccessful attempt to explain the Hurst phenomenon by introduc-
ing in the model unusually heavy tails (infinite variance in this case),
the FGN model succeeds here by introducing unusually long memory.
Particularly vivid terminology was introduced in [93], in the context
of weather and precipitation: unusually heavy tails were designated as
Noah effect, referring to the biblical story of Noah and extreme inci-
dents of precipitation, while unusually long memory was designated as
Joseph effect, referring to the biblical story of Joseph and long stretches
(seven years) of time higher than average and lower than average pre-
cipitation. One can visually see the domination of extreme observa-
tions in the left plot of Figure 2.2, where the observations are Pareto
random variables with parameter 1 (and so even fail to have a finite
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Fig. 2.2 i.i.d. Pareto random variables with parameter 1 (left plot) and i.i.d. exponential
random variables with parameter 1 (right plot).
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Fig. 2.3 Fractional Gaussian noise with H = 0.8 (left plot) and i.i.d. standard Gaussian
random variables (right plot).

mean), as opposed to a much less pronounced domination of extreme
observations in the right plot of Figure 2.2, where the observations are
standard exponential random variables.

Joseph effect, on the other hand, is clearly visible on Figure 2.3: in
the left plot, where the observations form FGN with Hurst parameter
H = 0.8, there are long stretches of time (hundreds of observations)
where the observations tend to be on one side of the true mean 0. This
is, clearly, not the case on the right plot of i.i.d. normal observations.
Returning momentarily to the Nile river data on Figure 2.1 we see
evidence of Joseph effect there as well.

This brought the fact that memory of a certain length can make a
big difference to the attention of many. The terms “long range depen-
dent process” and “long memory” came into being; they can already
be found in the early papers by Mandelbrot and co-authors. A num-
ber of surveys throughout the years helped to maintain clarity in this
otherwise mysterious subject; we mention Cox [35], Rosenblatt [118], a
bibliographic guide of Taqqu [139], and the monograph of Beran [14].



3
Long Memory and Non-Stationarity

It is standard in theory of stochastic processes to apply the notion of
long range dependence only to stationary processes. This is not nec-
essarily the case in certain areas of application (such as, for example,
physics, or self-organizing criticality), where closely related terms (long-
term correlations, 1/f noise, often in the context of power laws) are
sometimes applied to non-stationary models, such as Brownian motion.
See e.g., [15]. Because of that, it has also been suggested, e.g., in [64],
to modify certain (second-order) definitions of long range dependence
to apply to non-stationary processes as well.

In general, the relationship between long range dependence and non-
stationarity is delicate in a number of ways. We have seen that the
Joseph effect involves long stretches of time when the process tends to
be above the mean, and long stretches of time when the process tends
to be below the mean. This and related phenomena can, of course,
be taken to indicate non-stationarity. Quoting a description in [90,
p. 251], of a Fractional Gaussian noise with H > 1/2: “Nearly every
sample looks like a “random noise” superimposed upon a background
that performs several cycles, whichever the sample’s duration. However,
these cycles are not periodic, that is, cannot be extrapolated as the
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sample lengthens.” In application to real data, either stationary long
memory models or appropriate non-stationary models can and have
been used. There is, obviously, no “right” or “wrong” way to go here,
beyond the principle of parsimony.

Among the first to demonstrate the difficulty of distinguishing
between stationary long memory models and certain non-stationary
models was Bhattacharya et al. [17] who suggested that, instead of
Fractional Gaussian noise or another model with long memory, the
Hurst phenomenon can be explained by a simple non-stationary model
as follows. Let Y1,Y2, . . . be a sequence of independent identically dis-
tributed random variables with a finite variance σ2. Let 0 < β < 1/2,
choose a ≥ 0 and consider the model

Xi = Yi + (a + i)−β, i = 1,2, . . . . (3.1)

Clearly, the stochastic process X1,X2, . . . is non-stationary, for it con-
tains a non-trivial drift. However, it is asymptotically stationary (as
the time increases), and the drift can be taken to be very small to start
with (by taking a to be large). This process has no memory at all, as
the sequence Y1,Y2, . . . is i.i.d. It does, however, cause the R/S statistic
to behave in the same way as if the sequence X1,X2, . . . were an FGN,
or another long range dependent process. To see why, assume for sim-
plicity that a = 0 above, and note that for this model, the numerator
of the R/S statistic is bounded between

rn − RY
n ≤ max

0≤i≤n

(
Si − i

n
Sn

)
− min

0≤i≤n

(
Si − i

n
Sn

)
≤ rn + RY

n ,

where

rn = max
0≤i≤n

(
si − i

n
sn

)
− min

0≤i≤n

(
si − i

n
sn

)
,

RY
n = max

0≤i≤n

(
SY

i − i

n
SY

n

)
− min

0≤i≤n

(
SY

i − i

n
SY

n

)
,

and SY
m = Y1 + · · · + Ym, sm =

∑m
j=1 j

−β for m = 0,1,2, . . .. Since sm is
a sum of a decreasing sequence of numbers, we see that min0≤i≤n(si −
i
nsn) = 0. On the other hand, the extremum in the max part of rn
is achieved at i = 	( 1

n

∑n
j=1 j

−β)−1/β
, and elementary computations



178 Long Memory and Non-Stationarity

show that max0≤i≤n(si − i
nsn) ∼ Cβn

1−β with Cβ = β(1 − β)1/β−2.
Since RY

n grows as n1/2, we immediately conclude that

1
n1−β

[
max
0≤i≤n

(
Si − i

n
Sn

)
− min

0≤i≤n

(
Si − i

n
Sn

)]
→ Cβ

in probability as n → ∞. Similarly, in the denominator of the R/S

statistic we have a bound

DY
n − dn ≤

(
n∑

i=1

(
Xi − 1

n
Sn

)2
)1/2

≤ DY
n + dn ,

where

DY
n =

(
n∑

i=1

(
Yi − 1

n
SY

n

)2
)1/2

, dn =

(
n∑

i=1

(
i−β − 1

n
sn

)2
)1/2

.

We know that DY
n /n

1/2 → σ a.s. as n → ∞, while an elementary com-
putation leads to dn/n

1/2−1/β → C ′β with C ′β = β2(1 − β)−2(1 − 2β).
Therefore,

n−1/2

(
n∑

i=1

(
Xi − 1

n
Sn

)2
)1/2

→ σ

a.s. and we conclude that

1
n1−β

R

S
(X1, . . . ,Xn) → Cβ

σ

in probability as n → ∞. Therefore, for the model (3.1) the R/S statis-
tic grows as n1−β, same rate as for the FGN with H = 1 − β, and so
the R/S statistic cannot distinguish between these two models. Apart
from fooling the R/S statistic, however, the model (3.1) is not difficult
to tell apart from a stationary process with correlations decaying as in
(2.9). That this can be done using the periodogram was quickly shown
in [79].

A very important class of non-stationary models that empirically
resemble long memory stationary models is that of regime switching
models. The name is descriptive, and makes it clear where the lack of
stationarity comes from. The Fractional Gaussian noise also appears to
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exhibit different “regimes” (the Joseph effect), but the non-stationary
regime switching models are usually those with break points, whose
location changes with the sample size, in either random or non-random
manner.

One class of regime switching models obtains by taking a parametric
model that would be stationary if its parameters were kept constant
and then changing the parameters along a sequence of non-random
time points, again chosen relatively to the sample size. In [99] and
[100] such a procedure was applied to the GARCH(p,q) model. Such
a change can affect the mean and the variance (among many other
things) of the process after break points, and to many sample statistics
this will look like long memory.

To see what might happen here consider a sample X1, . . . ,Xn, where
the observations come from r subsamples of lengths proportional to
the overall sample size. That is, given fixed proportions 0 < pi < 1,
i = 1, . . . , r with p1 + · · · + pr = 1, the sample has the form:

X
(1)
1 , . . . ,X

(1)
[np1],X

(2)
[np1]+1, . . . ,X

(2)
[n(p1+p2)], . . . ,X

(r)
[n(1−pr)], . . . ,X

(r)
n , (3.2)

where the ith subsample forms a stationary ergodic process with a finite
variance, i = 1, . . . , r. Since one of the common ways to try to detect
long range dependence is by looking for a slow decay of covariances and
correlations, let us check the behavior of the sample covariance on the
sample (3.2). Note that for a fixed time lag m

R̂m(n) =
1
n

n−m∑
j=1

(Xj − X̄)(Xj+m − X̄) = Am(n) + Bm(n) ,

where X̄ is the overall sample mean,

Am(n) =
1
n

n−m∑
j=1

XjXj+m − (X̄)2 ,

and

Bm(n) =
1
n
X̄


 m∑

j=1

Xj +
n∑

j=n−m+1

Xj


 − m

n
(X̄)2 .
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Obviously Bm(n) → 0 in probability as n → ∞. By ergodicity, also
X̄ →∑r

i=1 piµi, where µi is the mean of the ith subsample. Finally,
if Ii denotes the set of indices corresponding to the ith subsample,
i = 1, . . . , r, then by the same ergodicity,

1
n

n−m∑
j=1

XjXj+m =
r∑

i=1

Card(Ii ∩ (Ii − m))
n

1
Card(Ii ∩ (Ii − m))

×
∑

j∈Ii∩(Ii−m)

X
(i)
j X

(i)
j+m +

1
n

r∑
i=1

∑
j∈{1,...,n−m}

j∈Ii,j+m∈Ii+1

XjXj+m

→
r∑

i=1

pi(R(i)
m + µ2

i ) ,

where R(i)
m is the covariance at lag m of the ith subsample. We conclude

that

R̂m(n) →
r∑

i=1

pi

(
R(i)

m + µ2
i

) −
(

r∑
i=1

piµi

)2

(3.3)

=
r∑

i=1

piR
(i)
m +

r∑
i1=1

r∑
i2=i1+1

pi1pi2 (µi1 − µi2)
2

in probability as n → ∞. What (3.3) indicates is that, if there is regime
switching as we have described, and (some of) the mean values in
different regimes are different, then the estimated from the sample
covariance function will tend to stabilize, at large lags, at a positive
value. This is what often observed in practice and long memory is
suspected. Of course, this regime switching model is simply a deter-
ministic way of mimicking Joseph effect (recall Figure 2.3). Various
other regime switching models mimicking long range dependence are
suggested in [42].

Overall, stationary long memory models have become more pop-
ular than regime switching models. An important reason for this is,
undoubtedly, parsimony. Statistical goodness of fit should be and has
been taken into account as well. For example, the stationary Fractional
Gaussian noise fits the Nile river data very well (see [14, Chapter 10]).
On the other hand, certain workload data in computer networks, often
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modeled as long memory processes, can be well fit by nonstationary
ARMA(p,1, q) models [131].

More generally, ARMA models (otherwise known as linear models in
time series) provide further connections between stationary long mem-
ory processes and non-stationary models. A linear model is described
by two functions applied to the backshift operator, the autoregressive
function and moving average functions (both often polynomials); we
refer the reader to [26] for details. Stationarity of the model is easier
to achieve if the autoregressive function does not vanish on the unit
circle in the complex plane; if the order of a root there is at least 1,
stationarity is impossible — this is the so called unit root situation.
On the other hand, roots of certain fractional orders allow for station-
ary, long memory models. These fractional models will be considered
in Section 6 below. Distinguishing between non-stationary unit root
models and stationary fractional models is an important problem in
econometrics; see [13].

It is possible to summarize the discussion of long memory and non-
stationarity by saying that the stationary long memory processes form
a layer among the stationary processes that is “near the boundary”
with non-stationary processes, or, alternatively, as the layer separat-
ing the non-stationary processes from the “usual” stationary processes
[125]. The processes in the “layer” resemble non-stationary models (the
Joseph effect), and they are unusual stationary processes to such an
extent that one can talk about a phase transition. This is discussed in
detail in Section 8.



4
Long Memory, Ergodic Theory,

and Strong Mixing

The notion of memory in a stationary stochastic process is by def-
inition, related to the connections between certain observations and
those occurring after an amount of time has passed. If X1,X2, . . . is
the process then the passage of time corresponds to a shifted process:
Xk+1,Xk+2, . . . , for a time shift k. In other words, the notion of memory
is related to the connections between the process and its shifts. Since
the process is stationary, the shifts do not change the distribution of
the process. This makes various notions from ergodic theory (of mea-
sure preserving transformations on measure spaces) a very attractive
language in describing memory of a stationary process. We refer the
reader to [1] and [78] for the ergodic theoretical notions used in this
survey.

It is convenient (but not necessary) to assume that the sample space
associated with a stationary process is a space of sequences, on which
shifts are naturally defined. It is even more convenient (even though,
once again, not necessary) to take the sample space to be the space
of two-sided sequences x = (. . . ,x−1,x0,x1,x2, . . .) since the shifts are
invertible on such spaces. Let us, therefore, assume in this section
that a stationary process X = (. . . ,X−1,X0,X1,X2, . . .) is defined as
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the identity map on a probability space (Ω,F ,P ) corresponding to
such a sequence sample space (and equipped with the usual cylindrical
σ-field). Let T be the left shift on Ω defined by

T (. . . ,x−1,x0,x1,x2, . . .) = (. . . ,x0,x1,x2,x3, . . .) .

The basic notion in ergodic theory is that of ergodicity of a transforma-
tion. A transformation T is ergodic if there is no shift invariant measur-
able set A (i.e., a set satisfying P (A∆(T−1A)) = 0) with 0 < P (A) < 1.
Equivalently, the shift transformation T is ergodic if for every measur-
able function f ∈ L1(Ω,F ,P )

lim
n→∞

1
n

n−1∑
j=0

f(T jX) = Ef(X) a.s.. (4.1)

Here T jX is the jth shift of the process X: T j(. . . ,X−1,X0,

X1,X2, . . .) = (. . . ,Xj−1,Xj ,Xj+1,Xj+2, . . .) .
The usual terminology is to call a stationary stochastic process

ergodic if the corresponding shift transformation T defined on some
(equivalently, any) sequence sample space supporting the process is
ergodic. It is easy to see that a stationary stochastic process is not
ergodic if and only if it can be represented a non-trivial mixture of two
different stationary stochastic processes:

X =

{
Y with probability p

Z with probability 1 − p
, (4.2)

where 0 < p < 1 and Y and Z are stationary stochastic processes with
different finite-dimensional distributions. Indeed, suppose that X is not
ergodic, and take a shift invariant measurable subset A of the sequence
space with p = P (A) ∈ (0,1). Then (4.2) holds with both Y and Z being
the canonical processes on the sequence space equipped with probabil-
ity measures P1 = p−1P |A and P2 = (1 − p)−1P |Ac , accordingly. Since
A is shift invariant, P1 and P2 are not affected by the shift, and so
the two processes are stationary. Since A and Ac are disjoint, the two
probability measures are different, and so Y and Z have different finite-
dimensional distributions. Conversely, suppose that (4.2) holds. Then
there is a bounded measurable function f such that Ef(Y) �= Ef(Z),
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and then by the ergodic theorem

lim
n→∞

1
n

n−1∑
j=0

f(T jX) =

{
L1 with probability p

L2 with probability 1 − p
,

where L1 and L2 are random variables satisfying EL1 = Ef(Y) and
EL2 = Ef(Z), implying that (4.1) fails, and so X is not ergodic.

Note that it is very natural to say that a non-ergodic stationary
process X has infinite memory. Indeed, a non-ergodic process has the
structure given in (4.2), and so the result of a single “coin toss” (with
probabilities p and 1 − p) will be “remembered forever.” Therefore, it
certainly makes sense to call stationary ergodic processes “processes
with finite memory,” and stationary non-ergodic processes “processes
with infinite memory.”

It is, then, very tempting to try to find another ergodic theo-
retical notion, stronger than ergodicity, corresponding to stationary
processes with finite and short memory. Then ergodic stationary pro-
cesses that lack this stronger property will be naturally called processes
with long memory. A very natural notion to try is mixing. Recall
that a transformation T of a probability space is mixing if for every
two measurable sets A and B we have P

(
A ∩ T−nB

)→ P (A)P (B) as
n → ∞, and a stationary process is called mixing if the correspond-
ing shift transformation T is mixing. The shift transformation can,
once again, be defined on any sequence sample space supporting the
process.

It is obvious that a mixing stationary process is ergodic, and it
is easy to construct examples of ergodic but non-mixing stationary
processes. A candidate definition of a long range dependent process
would then refer to an ergodic but non-mixing process.

Such a definition has not become standard, for the reasons that
will be discussed below. Note, however, that the approaches to mem-
ory of a stationary process via the ergodic theoretical properties of the
corresponding shift transformation are very attractive from the follow-
ing point of view. Let X be a stationary process, and let the process
Y be derived from the process X by means of a point transformation
Yn = g(Xn) for all n, where g : R → R is a measurable function. Clearly,
Y is also a stationary process. It is intuitively clear that the process
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X “remembers at least as much” as the process Y does. If, in par-
ticular, g is a one-to-one map, and g−1 is also measurable, then this
intuition says that the processes X and Y should have “the same length
of memory”: if one of them has long memory, then so should do the
other one.

This, apparently very natural, requirement has proved to be dif-
ficult to satisfy by many of the proposed definitions of long range
dependence. It is, however, automatic with ergodic theoretical-based
definitions. Indeed, it follows from the definition of the ergodicity
and mixing that X is ergodic (mixing) if and only if Y has this
property.

It is instructive to record what the ergodic theoretical-based notions
of memory discussed above mean for stationary Gaussian processes.
Let X be a (real-valued) stationary Gaussian process with covariance
function Rk, k ≥ 0 and spectral measure F on (−π,π]. That is, Rk =∫
(−π,π] cos(kx)F (dx) for k ≥ 0. Then

• the process X is ergodic if and only if the spectral measure
F is atomless;

• the process X is mixing if and only if Rk → 0 as k → ∞;

see [34]. The requirement that the covariance function vanishes at the
high lag limit has, however, proved to be insufficient when dealing with
long memory for Gaussian processes. Indeed, many “unusual” phenom-
ena have been observed for Gaussian processes whose covariance func-
tion does vanish in the limit, but sufficiently slowly, as we have already
seen on the example of the Fractional Gaussian noise. Therefore, the
mixing property is not believed to be sufficiently strong to say that
a stationary process with this property has short memory. A stronger
requirement is needed.

Several such stronger requirements have been introduced; they are
collectively known under the name “strong mixing conditions” (even
though one of them carries that same name separately). We refer
the reader to the recent survey [24] for a detailed discussion of the
notions we introduce here and their relation to the other possible
conditions.
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Let, once again, X = (. . . ,X−1,X0,X1,X2, . . .) be a stationary pro-
cess. Define for n ≥ 1

αX(n) = sup
{|P (A ∩ B) − P (A)P (B)|,
A ∈ σ

(
Xk, k ≤ 0

)
, B ∈ σ

(
Xk, k ≥ n

)}
. (4.3)

The process X is called strongly mixing if αX(n) → 0 as n → ∞. A pos-
sible connection between the strong mixing property and lack of long
memory (i.e., short memory) has been observed beginning with [116].
Specifically, it turns out that strong mixing is related to the fact
whether or not the partial sums of the process X satisfy the Functional
Central Limit Theorem (2.3).

Let, as before, Sm = X1 + · · · + Xm, m = 0,1, . . . , and define the
partial sum process by (2.2).

Theorem 4.1. Assume that X is a zero mean strongly mixing process
such that for some δ > 0, |X0|2+δ < ∞. Assume that Var(Sm) → ∞ as
m → ∞, and for some K < ∞

E
∣∣Sm

∣∣2+δ ≤ K (Var(Sm))1+δ/2 for all m.

Then the properly normalized partial sum process converges weakly to
the Brownian motion, i.e.,

1
(Var(Sn))1/2 S

(n) ⇒ B weakly in D[0,1],

where B is the standard Brownian motion. Moreover, assume, in
addition, that the covariances Rn = Cov(X0,Xn), n = 0,1, . . . are
summable:

∞∑
n=0

|Rn| < ∞ ,

Then the limit σ2∗ = limn→∞Var(Sn)/n exists, is finite and positive,
and (2.3) holds.

See [96, 116], Proposition 34, and [23] for the last comment.
Theorem 4.1 indicates that a strongly mixing process behaves, as far

as the central limit theorem is concerned, similarly to an i.i.d. sequence
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and, hence, can be viewed as having short memory. Extra moment
conditions involved are somewhat disappointing, and turns out that
imposing “a stronger strong mixing condition” allows one to get rid of
these extra conditions. For a stationary process X define

α∗X(n) = sup
S,T

sup
{|P (A ∩ B) − P (A)P (B)|,

A ∈ σ
(
Xk, k ∈ S

)
, B ∈ σ

(
Xk, k ∈ T

)}
, (4.4)

where the first supremum in (4.4) is taken over all subsets S and T of
integers satisfying

dist(S,T ) := min
k1∈S,k2∈T

|k1 − k2| ≥ n.

Clearly, αX(n) ≤ α∗X(n). The process X is interlaced strongly mixing if
α∗X(n) → 0 as n → ∞. The following is a central limit theorem under
this stronger mixing assumption.

Theorem 4.2. Assume that X is a zero mean finite variance interlaced
strongly mixing process, and Var(Sm) → ∞ as m → ∞. Then the prop-
erly normalized partial sum process converges weakly to the Brownian
motion, i.e.,

1
(Var(Sn))1/2 S

(n) ⇒ B weakly in D[0,1],

where B is the standard Brownian motion. Furthermore, the limit σ2∗ =
limn→∞Var(Sn)/n exists, is finite and positive, and (2.3) holds.

See [110] for a proof under the so-called “interlaced ρ-mixing condi-
tion, and [22] for the equivalence of the two “interlaced conditions.” In
fact, Theorem 4.2 holds for a strongly mixing stationary process that
satisfies α∗X(n) < 1 for some n ≥ 1.

For a stationary Gaussian process to be strongly mixing, it is nec-
essary that its spectral measure be absolutely continuous with respect
to the Lebesgue measure on (−π,π]. If the spectral density (i.e., the
derivative of the spectral measure with respect to the Lebesgue measure
on (−π,π]) is continuous and positive, then the process is interlaced
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strong mixing (see [76] and [119]). Necessary and sufficient conditions
for strong mixing of a stationary Gaussian process were later estab-
lished in [62]. Explicit necessary and sufficient conditions for interlaced
strong mixing of stationary Gaussian process do not appear to have
been stated.

The above results explain why absence of one or another strong mix-
ing condition (as opposed to the ergodic-theoretical mixing) is some-
times taken as the definition of long range dependence. The strong
mixing properties share with the ergodic-theoretical notions of ergod-
icity and mixing the very desirable feature discussed above: if a process
Y is derived from a process X by means of a one-to-one point transfor-
mation Yn = g(Xn) for all n, then the process X has long memory in
the sense of lacking of one of the strong mixing properties if and only
if the process Y does.

In spite of these attractive features of the strong mixing conditions
they have not become standard as definitions of long range dependence.
To some extent this is due to the fact that if one is interested not in the
partial sums of a stationary process but in, say, partial maxima, then
strong mixing conditions, while relevant, allow clustering and, hence,
limits different from the ones seen for i.i.d. sequences; see [81]. More
importantly, the strong mixing conditions are not easily related to the
natural building blocks of many stochastic models, and are difficult to
verify, with the possible exception of Gaussian processes and Markov
chains. Even in the latter cases necessary and sufficient conditions are
not always available, and the picture is not completely clear.



5
Second-Order Theory

By far the most popular point of view on long range dependence is
through a slow decay of correlations. This is related to the original
explanation of the Hurst phenomenon by Mandelbrot, discusses in Sec-
tion 2, and to the simple fact that correlations are one of the easiest
to understand and estimate features of a stochastic model. Clearly,
such approaches to the notion of long memory are restricted to second-
order stationary processes, and this is the assumption that will made
throughout this section. A related, if not entirely equivalent, second-
order approach is through the behavior of the spectral density of the
process (assuming its existence) at the origin. These issues are discussed
in this section.

The discussion in this section makes heavy use of the notions of
regular and slow varying functions. We start with a brief summary of
regular variation, and refer the reader to [19] for encyclopedic treatment
of the subject. A measurable function f : (0,∞) → R is said to be reg-
ularly varying at infinity with exponent α ∈ R if f does not vanish for
large enough values of the argument and f(ax)/f(x) → aα as x → ∞
for every a > 0. A function regularly varying at infinity with exponent
α = 0 is called slowly varying at infinity. A function f as above is said

189
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to be regularly varying at zero with exponent α ∈ R if f(1/·) is regu-
larly varying at infinity with exponent −α. Clearly, a regularly varying
at infinity with exponent α function f can be represented in the form
f(x) = xαL(x), x > 0, where L is slowly varying at infinity. A proper
subclass of slowly varying at infinity eventually positive functions is
defined as follows: an eventually positive function L : (0,∞) → R is
said to belong to the Zygmund class if

for every δ > 0 the function g1 = xδL(x) is eventually increasing

and the function g2 = x−δL(x) is eventually decreasing. (5.1)

By Theorem 1.5.5 of [19], the Zygmund class coincides with the class
of normalized slowly varying functions.

We will also apply the notion of regular variation to sequences of real
numbers. A sequence

(
an, n = 1,2, . . .

)
is called regular varying with

exponent α if there is a regularly varying at infinity with exponent α
function f such that an = f(n) for every n.

With the above in mind, we are ready to discuss the second-order
notions of memory. Let X = (X1,X2, . . .) be a zero mean stationary
stochastic process with a finite variance, EX2

1 = σ2 ∈ (0,∞), covari-
ances Rn = Cov(X1,Xn+1) and correlations ρn = Rn/σ

2, n = 0,1, . . . .
We start with an obvious computation of the variance of the partial
sum Sn = X1 + · · · + Xn. We have

VarSn =
n∑

i=1

n∑
j=1

Cov(Xi,Xj) = σ2
n∑

i=1

n∑
j=1

ρ|i−j|

= σ2

(
n + 2

n−1∑
i=1

(n − i)ρi

)
, (5.2)

and the behavior of the last sum is closely related to how fast the
correlations of the process decay. Assume that they are summable:

∞∑
n=0

|ρn| < ∞ . (5.3)

Then by the dominated convergence theorem the limit

lim
n→∞

VarSn

n
= σ2

(
1 + 2

∞∑
i=1

ρi

)
:= σ2

∗ (5.4)
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exists, and is finite. However, it is possible that the limit σ2∗ is equal
to zero. Assuming that it is not equal to zero, we conclude that the
variance of the partial sums of the process X grows linearly fast with
the number of terms. On the other hand, suppose that the correlations
of the process are, in fact, regularly varying:

ρn = n−dL(n) (5.5)

for n ≥ 1, where 0 ≤ d < 1, and L is a slowly varying at infinity function.
Then by Karamata’s theorem (see e.g., Theorem 0.6 in [113]),

VarSn ∼ 2σ2

(1 − d)(2 − d)
L(n)n2−d as n → ∞. (5.6)

That is, regular variation of correlations as in (5.5) implies that the
variance of the partial sums grows much faster than in the case of
summable correlations. This is, of course, the case for the Fractional
Gaussian Noise (withH > 1/2) of Section 2, whose asymptotic behavior
is given by (2.9).

When the variance of the partial sums of a stationary process grows
linearly fast with the number of terms, at least from that point of view,
the process “is not far” from an i.i.d. sequence. Furthermore, we have
seen in Section 4 that this, under certain strong mixing and moment
assumptions, means that the classical invariance principle holds (mod-
ulo a different variance of the limiting Brownian motion). This is also
true, for example, under the assumption of association — see [106]. On
the other hand, when the variance of the partial sums grows as a regu-
larly varying function with the exponent larger than 1 — as in (5.6) — it
follows immediately from Lamperti’s Theorem (see e.g., Theorem 2.1.1
in [50]) that convergence to the Brownian motion is impossible, no mat-
ter what normalization one uses, and so the invariance principle does
not hold.

This is the main reason why the summability of correlations in (5.3)
is often taken as the indication of short memory, and its opposite, the
divergence of the series in the left-hand side of (5.3), as the definition
of the long range dependence. On the other hand, it is also possible
to take the rate of increase of the variance of the partial sums itself
to draw the boundary. From this point of view, one could say that a
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second-order stationary process has short memory if

lim
n→∞

VarSn

n
< ∞ , (5.7)

and the infinite limit in (5.7) would then be taken as an indication of
long range dependence. This is sometimes referred to as Allen variance
short and long memory; see [64].

Of course, the summability of correlations (5.3) is not necessary
for an at most linear rate of increase of the variance in (5.7). In fact,
rewrite (5.2) as

VarSn

n
= σ2


1 + 2

1
n

n−1∑
j=1

j∑
i=1

ρi


 . (5.8)

In particular, if

the sum
K∑

n=0

ρn converges as K → ∞ , (5.9)

then, since the usual convergence implies the Cesaro convergence,
we will still obtain (5.4), regardless of the summability of the cor-
relations. Such situations are, clearly, possible. A simple example is
ρn = sinna/na, n = 1,2, . . . for 0 < a < π. However, even the conver-
gence in (5.9) is not necessary for (5.7), as another simple example
ρn = (−1)n/2, n = 1,2, . . . shows.

To get better understanding of the condition (5.7) we need to con-
centrate on the spectrum of the covariance function of the process.
Recall that the spectral measure F is a measure on (−π,π], satisfying
Rk =

∫
(−π,π] cos(kx)F (dx) for k ≥ 0. Recall, further, that if the correla-

tions are absolutely summable as in (5.3), then the spectral measure has
a continuous density with respect to the Lebesgue measure on (−π,π],
the spectral density, given by

f(x) =
σ2

2π

(
1 + 2

∞∑
n=1

ρn cosnx

)
, −π < x < π . (5.10)

A simple computation will allow us to relate the right-hand side of (5.8)
to the spectral measure. Assuming that the spectral measure does not
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have atoms at zero and at π, we have for every j ≥ 1
j∑

i=1

ρi =
1
σ2

∫
(−π,π]

j∑
i=1

ρi cos(ix)F (dx)

=
1

2σ2

∫
(−π,π]

1
sinx

(
sin(j + 1)x + sinjx − sinx

)
F (dx)

=
1

2σ2

∫
(−π,π]

sin(j + 1)x
sinx

F (dx) +
1

2σ2

∫
(−π,π]

sinjx
sinx

F (dx) − 1
2
.

Furthermore, for n ≥ 1,
n−1∑
j=1

1
2σ2

∫
(−π,π]

sin(j + 1)x
sinx

F (dx)

=
1

2σ2

∫
(−π,π]

1
sinx

n−1∑
j=1

sin(j + 1)xF (dx)

=
1

4σ2

∫
(−π,π]

1
sin2x

(
cosx + cos2x − cosnx − cos(n + 1)x

)
F (dx) .

Similarly,
n−1∑
j=1

1
2σ2

∫
(−π,π]

sinjx
sinx

F (dx)

=
1

4σ2

∫
(−π,π]

1
sin2x

(
1 + cosx − cos(n − 1)x − cosnx

)
F (dx) ,

and so
VarSn

n
= an−1 + 2an + an+1 + o(1), (5.11)

where

an =
1
2n

∫
(−π,π]

1 − cosnx
x2 F (dx), n = 1,2, . . . . (5.12)

One immediate conclusion is as follows.

Proposition 5.1. Suppose that for some ε > 0 the spectral measure
F has a density in the interval (−ε,ε), and

the density has a continuous at the origin version f . (5.13)
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Then

lim
n→∞

VarSn

n
= 2πf(0) .

Proof. Suppose first that the spectral measure has no atom at π. Then,
clearly,

an =
1
2n

∫ ε

−ε

1 − cosnx
x2 f(x)dx + o(1)

=
f(0)
n

∫ ε

0

1 − cosnx
x2 dx + o(1)

= f(0)
∫ nε

0

1 − cosy
y2 dy + o(1)

→ f(0)
∫ ∞

0

1 − cosy
y2 dy =

π

2
f(0) ,

and our statement follows from (5.11). Observing that adding an atom
at the point π does not change the rate of growth of the variance of
the partial sums, we see that the proof is complete.

In particular, the condition

the process has a continuous at the origin spectral density (5.14)

is sometimes taken as another definition of a process with short mem-
ory. This condition is also known to be sufficient for the Central Limit
Theorem for linear processes; see e.g., Corollary 5.2 in [59]. Of course,
Proposition 5.1 shows that this condition is not necessary for an at most
linear rate of increase of the variance as in (5.7), since it allows arbitrar-
ily “bad” spectral measure outside of a neighborhood of zero. In fact,
(5.7) can happen even if there is no neighborhood of zero where the
process has a continuous at the origin spectral density as the example of
the process with the spectral density f(x) = 1 + cos(1/x),−π < x < π,
shows.

Summarizing, the assumptions (5.3), (5.7), (5.9), and (5.14) have
all been used to define a short memory process in the sense of the
variance of the partial sums of the process increasing at most linearly
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fast. These assumptions are, of course, not equivalent. Moreover, it is
also possible to have a process with a bounded from zero and infinity
spectral density for which

0 < liminf
n→∞

VarSn

n
< limsup

n→∞
VarSn

n
< ∞ ;

an example is constructed in [23].
Let us now see what can cause the variance of the partial sums grow

faster that linearly fast. Here is a counterpart to Proposition 5.1.

Proposition 5.2. Suppose that for some ε > 0 the spectral measure
F has a density in the interval (−ε,ε), with a version f such that

f(x) = x−(1−d)L1(x), 0 < x < ε,

for some 0 < d < 1, where L1 is a slowly varying at zero function. Then

VarSn ∼ 4Γ(d) cos(πd/2)
(1 − d)(2 − d)

L1(1/n)n2−d as n → ∞.

Proof. As in the proof of Proposition 5.1 we may assume that the
spectral measure of the process has no atom at the point π. For an

defined in (5.12) we have

an ∼ 1
n

∫ ε

0

1 − cosnx
x2 f(x)dx =

1
n

∫ ε

0

1 − cosnx
x3−d

L1(x)dx

= n1−d

∫ nε

0

1 − cosy
y3−d

L1(y/n)dy .

By Potter’s bounds (see e.g., Proposition 0.8 in [114]) there is a finite
positive constant C such that L1(y/n)/L1(1/n) ≤ C y−d/2 for all n ≥ 1
and 0 < y < nε. By the dominated convergence theorem we obtain

an ∼ n1−dL1(1/n)
∫ ∞

0

1 − cosy
y3−d

dy

=
Γ(d) cos(πd/2)
(1 − d)(2 − d)

L1(1/n)n1−d as n → ∞.

Now an appeal to (5.11) completes the proof.
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A related statement about the largest eigenvalue of the
n-dimensional covariance matrix of the process is in [21].

Comparing the statement of Proposition 5.2 with the consequence
(5.6) of the regular variation of the correlations in (5.5) we see that,
for 0 < d < 1, the assumptions

ρn ∼ n−dL(n) as n → ∞ (5.15)

and existence in the neighborhood of the origin of a spectral density
satisfying

f(x) ∼ x−(1−d)L(1/x)
σ2

2Γ(d) cos(πd/2)
as x ↓ 0 (5.16)

lead to the same asymptotic behavior of the variance of the partial
sums.

Example 5.1. The Fractional Gaussian Noise with covariance func-
tion given by (2.8) has a spectral density given by the formula

f(x) =
σ2

2
C(H)(1 − cosx)

∞∑
j=−∞

|2πj + x|−(1+2H) , (5.17)

where

C(H) =
2H(1 − 2H)
Γ(2 − 2H)

1
cosπH

, H �= 1/2 .

Indeed, with f as above,∫
(−π,π]

cos(nx)f(x)dx =
σ2

2
C(H)

∫ ∞
−∞

|x|−(1+2H)(1 − cosx)cos(nx)dx

=
σ2

2
C(H)

[∫ ∞
0

x−(1+2H)(1 − cos(n + 1)x)dx

+
∫ ∞

0
x−(1+2H)(1 − cos(n − 1)x)dx

−2
∫ ∞

0
x−(1+2H)(1 − cosnx)dx

]
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=
σ2

2
C(H)

∫ ∞
0

x−(1+2H)(1 − cosx)dx

×[(n + 1)2H + |n − 1|2H − 2n2H
]

=
σ2

2
[
(n + 1)2H + |n − 1|2H − 2n2H

]
,

as in (2.8). Clearly, for 1/2 < H < 1 the spectral density in (5.17)
satisfies

f(x) ∼ σ2

4
C(H)x−(2H−1) as x ↓ 0,

and it is easily verified that for FGN the asymptotic behavior of cor-
relations in (2.9) and of the spectral density at zero are related as in
(5.15) and (5.16).

In fact, all three statements (5.6), (5.15), and (5.16) have been taken
as definitions of long range dependence. The behavior of the partial
sum variance in (5.6) is, clearly, the least demanding of these three
statements. For example, a process with a spectral density equal in a
neighborhood of the origin to

f(x) =
(
1 + cos(1/x)

)
x−(1−d)L(1/x)

σ2

2Γ(d) cos(πd/2)
,

which is not regularly varying, will still satisfy (5.6). However, the
relationship between (5.15) and (5.16) has been somewhat of a mys-
tery, and in the literature one can sometimes read that these latter
statements are equivalent. In fact, these statement are not equivalent;
we will present examples shortly. The claims of equivalence appear
to stem from several sources, one being a casual treatment of similar
conditions in an influential paper of Cox [35], and the second a def-
inition of a slowly varying function in [150], as a function satisfying
(5.1), that is more restrictive than what is understood by this notion
today.

We start with a positive result, that gives sufficient conditions under
which the statements (5.15) and (5.16) imply each other.
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Theorem 5.3. (i) Assume that the correlations are regularly vary-
ing in the sense of (5.15), and the function L belongs to the Zyg-
mund class (i.e., satisfies (5.1)). Then the process has a spectral
density that is regularly varying at zero, in the sense that (5.16)
holds.

(ii) Conversely, assume that the process has a spectral density that
is regularly varying at zero, in the sense that (5.16) holds, and the
function L belongs to the Zygmund class. Then the correlations are
regularly varying in the sense of (5.15).

Part (i) of Theorem 5.3 is in Theorem (2–6) in Chapter V of [150].
The proof of part (ii) will appear separately.

The following is an example of a situation where a spectral density
is regularly varying at the origin as in (5.16), but correlations are not
regularly varying as in (5.15).

Example 5.2. Let 0 < ε < π/2, and g a positive integrable function
on (0, ε) satisfying (5.16). Let

f(x) = g(|x|)1(0 < |x| < ε) + g(|π − x|)1(π − ε < |x| < π)

for −π < x < π. Then f is a spectral density satisfying (5.16). Notice
that

Rn =
∫ π

−π
cos nxf(x)dx =

∫ ε

−ε
cos nxg(x)dx +

∫ ε

−ε
cosn(π − x)g(x)dx

= (1 + (−1)n)R̂n ,

where R̂n =
∫

cosnxg(x)dx. Since Rn vanishes for all odd lags n, the
correlations are not regularly varying, and (5.15) fails. Examples of this
sort can also be constructed by letting the spectral density “blow up”
around points other than x = π.

Next is an example of a situation where the correlations are regu-
larly varying as in (5.15), but there is no version of a spectral density
that is regularly varying at the origin as in (5.16).
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Example 5.3. Let us start with a spectral density g that does satisfy
(5.16), and such that the correlations are also regularly varying as in
(5.15) (for example, one can take the spectral density of an FGN as
in Example 5.1, or any spectral density satisfying part (ii) of Theorem
5.3.) We will construct a continuous nonnegative integrable function g1
on (0,π) such that

lim sup
x↓0

x2g1(x) > 0 (5.18)

and ∫ π

0
cosnxg1(x)dx = o

(∫ π

−π
cosnxg(x)dx

)
(5.19)

as n → ∞. Then we will set f(x) = g(x) + g1(|x|) for −π < x < π. It
will follow from (5.18) that some pieces of f are too large near the origin
to permit f to be regularly varying as in (5.16), but (5.19) and regular
variation of the correlations corresponding to the density g mean that
the correlations corresponding to the density f will also satisfy (5.15).

We proceed with a construction of a function g1. Define

g1(x) = 22j if 2−j ≤ x ≤ 2−j + 2−2j
for j = 0,1, . . . . (5.20)

Clearly for x = 2−j , g1(x) = x−2, so (5.18) holds. Further,

∣∣∣∣
∫ π

0
cosnxg1(x)dx

∣∣∣∣ ≤
∞∑

j=0

22j

∣∣∣∣∣∣
∫ 2−j+2−2j

2−j

cosnxdx

∣∣∣∣∣∣
=

2
n

∞∑
j=0

22j
∣∣∣sin(n

2
2−2j

)
cos(n(2−j + 2−2j−1))

∣∣∣
≤ 2
n

∞∑
j=0

22j
∣∣∣sin(n

2
2−2j

)∣∣∣
=

2
n

∑
j≤log2 log2 n

22j
∣∣∣sin(n

2
2−2j

)∣∣∣
+

2
n

∑
j>log2 log2 n

22j
∣∣∣sin(n

2
2−2j

)∣∣∣ .
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Clearly,
2
n

∑
j≤log2 log2 n

22j
∣∣∣sin(n

2
2−2j

)∣∣∣ ≤ 2
n

∑
j≤log2 log2 n

22j

≤ cn−1 (log2n
)2 for some 0 < c < ∞

and
2
n

∑
j>log2 log2 n

22j
∣∣∣sin(n

2
2−2j

)∣∣∣ ≤ 2
n

∑
j>log2 log2 n

22j
(n

2
2−2j

)

=
∑

j>log2 log2 n

22j2−2j ≤ cn−1 (log2n
)2 for some 0 < c < ∞

as well. This clearly implies (5.19).
Of course, the function g1 in (5.20) is not continuous, but it can be

easily made such by appropriately “connecting the dots” at the jump
points of the function in (5.20).

If one uses the second-order approach to long range dependence
in one of related, but not equivalent, ways discussed above, it would
be nice to know that there is stability under point transformations
discusses in Section 4. Namely, if X is a stationary process with a
finite variance with, say, regularly varying correlations as in (5.15), and
g : R → R is a one-to-one measurable function such that Eg(Xi)2 < ∞,
then the process Yn = g(Xn) for n = 0,1, . . . will also have a similar
second-order behavior. Unfortunately, this turns out not to be the
case, and the correlations of the process Y may turn out to decay
much slower or much faster than those of the process X. To construct
examples of this type we need the notion of Hermite polynomials.

For n ≥ 0 define a function of a real variable x by

Hn(x) = (−1)nex
2/2 d

n

dxn
e−x2/2

(some authors include an extra factor of 1/n! in the definition ofHn; see
[108], which can also be consulted for more details). Then H0(x) = 1,
H1(x) = x, Hx(x) = x2 − 1 and, in general,

Hn(x) =
[n/2]∑
m=0

n!
m!(n − 2m)!

(−2)−mxn−2m
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for real x. That is, each Hn is a polynomial of degree n, and is called
the nth Hermite polynomial. If X is standard normal, then

EHn(X) = 0 for all n ≥ 1, and VarHn(X) = n!.

More generally, if X and Y are jointly normal, with zero mean, unit
variance, and correlation ρ, then

EHn(X)Hm(Y ) =
{

0 if n �= m

ρnn! if n = m
. (5.21)

Furthermore, the family (Hn)n≥0 forms an orthogonal basis in the space
L2(R,µG), where µG is the law of the standard normal random variable.
That is, if X is standard normal, and Eg(X)2 < ∞, then

g(X) =
∞∑

n=0

an

n!
Hn(X) , (5.22)

where for n ≥ 0, an = E
(
Hn(X)g(X)

)
, and the sum converges in L2.

This is the so-called Hermite expansion of the function g, and the small-
est n ≥ 1 such that an �= 0 is called the Hermite rank of the function g.

Suppose now that X is a stationary Gaussian process, with
zero mean and unit variance, and correlations satisfying (5.15). Let
g : R → R be a measurable function such that Eg(Xi)2 < ∞, and define
a new stationary process Y by Yn = g(Xn) for n = 0,1, . . .. As above,
we tend to think that the process X “remembers at least as much” as
the process Y does and, if the function g is, additionally, one-to-one,
then we expect the two processes to have the same “length of mem-
ory.” On the other hand, let k be the Hermite rank of the function g. It
turns out that it is possible to have a one-to-one measurable function
g such that kd > 1 (where 0 < d < 1 is the exponent in (5.15)), as the
following example indicates.

Example 5.4. Take a > 0 such that

ae−a

∫ ∞
a

xexe−x2/2 dx =
∫ a

0
x2e−x2/2 dx,

and define

g(x) =
{− 1

ax if 0 ≤ x < a

ex−a if x ≥ a
.
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Set g(x) = −g(−x) for x < 0. Clearly, the function g is odd, measur-
able, one-to-one, and Eg(X)2 < ∞. Furthermore, by the choice of the
number a, E

(
Hn(X)g(X)

)
= 0 for n = 1, and, by the fact that g is odd,

the same is true for n = 2. Therefore, the Hermite rank of the function
g is at least 3 (in fact, it is not difficult to check that in this case the
rank k of g is exactly equal to 3, but one can modify the construction
and obtain one-to-one functions of arbitrarily high rank). Therefore, if
the exponent d in (5.15) satisfies d > 1/3, then we have kd > 1.

For a process Yn = g(Xn) for n = 0,1,2, . . ., it follows from (5.22),
(5.21) and L2 convergence that the covariance function R(Y ) of the
process Y satisfies

R
(Y )
j =

∞∑
n=k

a2
nρ

n
j ∼ a2

kρ
k
j

as j → ∞, where k is the Hermite rank of g. If g is a one-to-one function
g satisfying kd > 1, then the two processes, X and Y, have correlation
functions decaying at vastly different rates. In particular, the process
Y will have summable correlations, while the process X does not; recall
that we expected X and Y to have the same lengthy of memory as the
function g is one-to-one! In fact, depending on the Hermite rank of the
function g, the process Y satisfies the Central Limit Theorem only if
kd ≥ 1, whereas in the case kd < 1 it satisfies a so-called Non-Central
Limit Theorem, see [25] and [45].

Therefore, using the behavior of the correlations as a definition
of long memory has the weakness that such behavior can drastically
change when applying a one-to-one point map. This, unfortunately, is
a problem with many alternative definitions, other than ergodic and
strong mixing notions of Section 4. Still, this is a warning sign against
relying too much on correlations. Incidentally, in the example we have
just considered, it definitely makes sense to view the process X as long
range dependent, since it is a centered Gaussian process, and the covari-
ances carry full information about such processes. The same cannot be
said about the transformed process Y. In general, the covariances may
carry very little information about a process unless it is similar to a
Gaussian one.



6
Fractional Processes and Related Models

with Long Memory

One often encounters the adjective “fractional” in the names of pro-
cesses purportedly having long range dependence (the Fractional Gaus-
sian Noise we encountered early on is an example). Partly this is due to
the connotation “unusual” the adjective ”fractional” carries. A deeper
connection exists, however, and it goes back to the issues of stationarity
and non-stationarity.

If X = (. . . ,X−1,X0,X1, . . .) is a stationary process (note that we
have switched, once again, to two-sided processes, as in Section 4), then
the differenced process Y with Yn = Xn − Xn−1 for n ∈ Z is, clearly,
also stationary. The typical notation is Y = (I − B)X, where I is the
identity operator on the space of sequences x = (. . . ,x−1,x0,x1,x2, . . .),
and B is the backward shift operator on that space:

B(. . . ,x−1,x0,x1,x2, . . .) = (. . . ,x−2,x−1,x0,x1, . . .)

(B is the inverse of the shift operator T of Section 4). On the other
hand, not every stationary process Y is of the form Y = (I − B)X for
some stationary process X; e.g., a sequence of i.i.d. not identically zero
random variables is not of this form. If, however, Y is of this form, one
can write X = (I − B)−1Y and call the process X an integrated process
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(specifically, an integrated process Y). Obviously, if an integrated pro-
cess exists, it is not uniquely determined: one can add the same random
variable to each Xn, as long as doing so preserves stationarity.

It is intuitive that the differencing operator on stationary processes,
∆ = I − B, makes the memory in the process “less positive, more neg-
ative”; this is simply a consequence of alternating plus and minus signs
attached to the same random variables. A simple illustration is obtained
by considering what happens to a sequence of i.i.d. random variables
under differencing. Similarly, if it is possible “to integrate” a station-
ary process (i.e., to apply the inverse operator ∆−1 = (I − B)−1) and
obtain a stationary process, the integrated process will tend to have
“more positive” memory than the original process. Long memory, when
present, is usually “of the positive kind,” so one can try to obtain a
process with long range dependence by integrating some stationary
process, and as many times as possible.

The problem is that, as we know, many “natural” stationary pro-
cesses cannot be integrated even once, while preserving stationarity. It
turns out, however, that sometimes one can integrate a process a frac-
tional number of times, while preserving stationarity. This leads to a
class of models known as fractionally integrated processes. The success
of the construction depends on a definition of a fractional power of
the differencing operator ∆, and the starting point is the generalized
Binomial formula (or the Taylor expansion): for all real d

(1 − x)d =
∞∑

j=0

(−1)j

(
d

j

)
xj , (6.1)

where (
d

j

)
=
d(d − 1) · · ·(d − j + 1)

j!
.

If d is a nonnegative integer, (6.1) is just the classical Binomial formula,
and a sum with finitely many terms; otherwise it is an infinite sum, and
then it can be rewritten in the form:

(1 − x)d =
∞∑

j=0

Γ(j − d)
Γ(j + 1)Γ(−d)x

j . (6.2)
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Using the Stirling formula for the Gamma function it is easy to check
that

Γ(j − d)
Γ(j + 1)Γ(−d) ∼ j−(d+1)

Γ(−d) (6.3)

as j → ∞, and so the infinite series in (6.2) converges absolutely for all
complex x with |x| < 1 (inside the unit circle), and also on the boundary
of that circle if d > 0.

Given a stationary process Y we can formally define the process
X = ∆−dY by expanding ∆−d = (I − B)−d for d that are not non-
positive integers into powers of the backward shift operator B as in
(6.2) by formally identifying the identity operator with the unity and
the backshift operator B with x to obtain

Xn =
∞∑

j=0

Γ(j + d)
Γ(j + 1)Γ(d)

Yn−j , (6.4)

n = . . . ,−1,0,1,2, . . . . If d > 0, we view the process X is an integrated
process, while if d < 0, we view it as a differenced process Y. We are
interested in the “integrated” case, with 0 < d < 1; if one needs to get
beyond this range, one can first perform the usual “non-fractional”
integration.

It is clear that, if the series in (6.4) converges in probabil-
ity, then the resulting process X is automatically stationary. There-
fore, first of all we need to make sure that the infinite series in
(6.4) converges. This requires imposing restrictions on the initial
process Y.

We start with assuming that the process Y is a stationary zero
mean finite variance process with variance σ2 and correlation func-
tion ρ, satisfying (5.3), that is, a process with absolutely summable
correlations. Denoting the jth coefficient in (6.4) by aj we note that
for m,k ≥ 1

E


 m+k∑

j=m+1

ajYn−j




2

= σ2
m+k∑

j=m+1

a2
j + 2σ2

m+k∑
j=m+1

aj

m+k∑
i=j+1

aiρi−j .
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Since the sequence (aj) (with 0 < d < 1) is easily seen to be decreasing,
we conclude that

E


 m+k∑

j=m+1

ajYn−j




2

≤
(

1 + 2
∞∑

n=1

|ρn|
)
σ2

m+k∑
j=m+1

a2
j .

If 0 < d < 1/2, then the sum
∑

j a
2
j converges by (6.3), and so the series

(6.4) converges in L2 to a stationary process.
Under somewhat stronger assumptions than the absolute summa-

bility of the correlations of the initial process Y, the rate of decay of the
correlation function of the partially integrated process is determined by
the order of partial integration, as the following proposition shows.

Proposition 6.1. Let Y be a stationary zero mean finite variance
process with variance σ2 and absolutely summable correlation function
ρ. Let 0 < d < 1/2 and assume that

Ψn :=
∞∑

m=n

ρm = o
(
n−(1−2d)

)
as n → ∞. (6.5)

Then the process X defined by (6.4) is a well defined zero mean sta-
tionary process whose covariance function R∗ satisfies

R∗n ∼
(
σ2 Γ(1 − 2d)

Γ(d)Γ(1 − d)

∞∑
m=−∞

ρm

)
n−(1−2d) (6.6)

as n → ∞.

Proof. We have already established that X is a well defined zero
mean stationary process with finite variance. Its covariance function
is given by

R∗n = σ2 lim
M→∞

M∑
i=0

M∑
j=0

aiajρn+i−j = σ2 lim
M→∞

M∑
m=n−M

b
(M)
n−mρm ,

where

b
(M)
k =

(M−k)∧M∑
i=−k∨0

aiai+k .
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Since the numbers b(M)
k are uniformly bounded (by

∑∞
−∞a

2
i ) and the

correlations of the process X are absolutely summable, we can use the
dominated convergence theorem to obtain

R∗n = σ2
∞∑

m=−∞
bn−mρm ,

with

bk =
∞∑

i=−k∨0

aiai+k = b−k .

It follows from (6.3) that

bk ∼ Γ(1 − 2d)
Γ(d)Γ(1 − d)

k−(1−2d) as k → ∞. (6.7)

Similarly, since

ak − ak+1 =
1 − d

k + 1
ak ∼ 1 − d

Γ(d)
k−(2−d) , (6.8)

we obtain also that

gk := bk − bk+1 ∼ ck−2(1−d) as k → ∞ (6.9)

for some c > 0. Clearly, the statement (6.6) will follow from (6.7) once
we check that

lim
M→∞

limsup
n→∞

n1−2d

∣∣∣∣∣
−M∑

m=−∞
bn−mρm

∣∣∣∣∣ = 0 (6.10)

and

lim
M→∞

limsup
n→∞

n1−2d

∣∣∣∣∣
∞∑

m=M

bn−mρm

∣∣∣∣∣ = 0 . (6.11)

First of all, observe that by monotonicity, for M > 0∣∣∣∣∣
−M∑

m=−∞
bn−mρm

∣∣∣∣∣ ≤ bn

−M∑
m=−∞

|ρm| ,
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and so (6.10) follows from (6.7) and summability of the correlations of
the process Y. Next, using summation by parts we see that

∞∑
m=M

bn−mρm = bn−M+1ΨM +
∞∑

m=M

gn−mΨm .

By (6.7), for a c > 0,

lim
M→∞

limsup
n→∞

n1−2dbn−M+1ΨM = lim
M→∞

cΨM = 0 .

Furthermore, write

∞∑
m=M

gn−mΨm =
∑

m≤n/2

+
∑

m>n/2

:= S(1)
n (M) + S(2)

n (M) .

By (6.9) and the assumption (6.5) wee see that for some constant c and
large n

∣∣S(1)
n (M)

∣∣ ≤ cn−2(1−d)
[n/2]∑
m=M

|Ψm|

≤ cn−2(1−d)
[n/2]∑
m=M

m−(1−2d) ≤ cn−2(1−2d) ,

and so for all M > 0

lim
n→∞n

1−2dS(1)
n (M) = 0 .

Finally, by the assumption (6.5) we have

∣∣S(2)
n (M)

∣∣ ≤ o(1)n−(1−2d)
∞∑

m=−∞
|gm| .

The sum in the right-hand side above is finite by (6.9) and the fact
that g−k = −gk−1. Therefore, for all M > 0

lim
n→∞n

1−2dS(2)
n (M) = 0 ,

and we have checked (6.11) .
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In particular, if

∞∑
m=−∞

ρm �= 0 , (6.12)

then the correlations ρ∗n of the fractionally integrated process X satisfy
ρ∗n ∼ cn−(1−2d) as n → ∞ for some 0 < c < ∞.

Note that it is not surprising that we could only perform above a
construction of a fractionally integrated process of the order 0 < d <

1/2. Indeed, our intuition tells us that the higher the degree of “neg-
ative dependence” in a stationary process, the easier it is to integrate
it while preserving stationarity. The assumptions in the discussion pre-
ceding Proposition 6.1 (in this case, absolute summability of correla-
tions), while preventing the process from having “too much of positive
dependence,” do not imply any “negative dependence” either. There-
fore, the dependence in initial process Y can be viewed as only assumed
to be “midway,” between a very negatively dependent process, that can
be integrated completely (of order d = 1), and a very positively depen-
dent process, that cannot be integrated at all. Hence, intuitively at
least, the boundary d < 1/2 is understandable. Processes with certain
negative dependence can be integrated to a higher order, as we will see
in the sequel. Such negative dependence will, in particular, imply that
(6.12) breaks down.

In practice one often starts with Y being an i.i.d. sequence, or a
stationary ARMA model (see [26]). In this case the process Y has expo-
nentially fast decaying correlations, and Proposition 6.1 applies. The
resulting models are typically called ARIMA models or, more explic-
itly, fractional ARIMA (or FARIMA, alternatively ARFIMA) mod-
els, and were originally introduced by Granger and Joyeux [57] and
Hosking [65].

In the spectral domain things are even more transparent. Sup-
pose that the original process Y has absolutely summable correlations,
and so it has a continuous spectral density f given by (5.10). Since
the series (6.4) converges in L2, the fractionally integrated process X
has also a spectral density, f∗, given by f∗(x) =

∣∣∑∞
m=0ame

imx
∣∣2 f(x),

(where (aj) are the coefficients in (6.4)), and the infinite sum in the
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expression for the density converges in L2
(
(−π,π], f(x)dx

)
; see e.g.,

Theorem 4.10.1 in [26]. Note that |∑∞m=0amz
m|2 = |1 − z|−2d for com-

plex numbers z with |z| < 1, and the right-hand side of this relation has
a continuous extension to the part of the unit circle that is bounded
away from the point z = 1. It follows that

∣∣∑∞
m=−∞ame

imx
∣∣2 = |1 −

eix|−2d for almost every x ∈ (−π,π] (with respect to the Lebesgue mea-
sure), and so the integrated process X has a spectral density given by

f∗(x) = |1 − eix|−2df(x), x ∈ (−π,π] . (6.13)

In particular,

f∗(x) ∼ x−2df(0) =

(
σ2

2π

∞∑
m=−∞

ρm

)
x−2d as x ↓ 0. (6.14)

If the correlations of the original process Y do not add up to zero (i.e.
if (6.12) holds), then the asymptotic behavior at infinity of the correla-
tions of the fractionally integrated process and asymptotic behavior of
its spectral density at the origin correspond, once again, to each other
as (5.15) corresponds to (5.16).

To what extent can one integrate a stationary process that does not
have a finite second moment, and what is the effect of existing negative
dependence in the original process Y? Here is one simple situation. Let
S

(Y )
n = Y1 + · · · + Yn, n = 0,1, . . . be the partial sum sequence of the

process Y. The rate of growth of the partial sum sequence depends
both on the memory in the stationary process Y and on the marginal
tails of the process. Assume that for some θ ∈ (0,1) there is c > 0 such
that

E|S(Y )
n | ≤ cnθ, n = 1,2, . . . . (6.15)

Recall that, if Y is a zero mean finite variance stationary process with
absolutely summable correlations (or such that the series in (5.9) con-
verges), then (6.15) holds with θ = 1/2, while certain slow decay of cor-
relations (or a pole of the spectral density at the origin) can guarantee
(6.15), but with θ larger than 1/2; see (5.6) and Proposition 5.2. On
the other hand, for the Fractional Gaussian Noise with 0 < H < 1/2,
the relation (6.15) holds with θ smaller than 1/2; see (2.10).
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Proposition 6.2. Let a stationary process Y be such that (6.15) holds
for some 0 < θ < 1. Then for any 0 < d < 1 − θ the series (6.4) con-
verges in L1 and the resulting process X is a well defined stationary
process.

Proof. We may consider the sum (6.4) for n = 0, and we may also
reverse the time in the process Y noting that, marginally, the partial
sums of the time reversed process have the same law as those of the
original process. Using summation by parts we see that for m,k ≥ 1,

m+k∑
j=m+1

ajYj =
m+k∑

j=m+1

(aj − aj+1)S
(Y )
j + am+kS

(Y )
m+k − am+1S

(Y )
m .

The assumption d < 1 − θ together with (6.15) and (6.3) shows that
anS

(Y )
n → 0 in L1 as n → ∞. Therefore, the last two terms in the above

relation converge to zero in L1 as m → ∞ uniformly in k. Similarly, for
some c > 0 we have by (6.15) and (6.8),

E

∣∣∣∣∣∣
m+k∑

j=m+1

(aj − aj+1)S
(Y )
j

∣∣∣∣∣∣ ≤ c

∞∑
j=m+1

j−(2−d)jθ → 0

as m → ∞ because d < 1 − θ. This shows the L1 convergence, and sta-
tionarity is obvious.

It is interesting to note that, if Y is a sequence of i.i.d. zero mean
random variables in the domain of attraction of an α-stable law with
1 < α < 2, then (6.15) holds with any θ < 1/α (see e.g., [53]), and so
by Proposition 6.2 such sequences can be integrated up to the order
1 − 1/α. I.i.d. sequences with even fatter tails (e.g., in the domain of
attraction of an α-stable law with 0 < α ≤ 1) cannot be fractionally
integrated at all! However, assuming appropriate negative dependence,
even “very fat tailed” stationary processes can be integrated up to some
order (with the series (6.4) also converging in an appropriately weaker
sense).

It is clear that much of the previous discussion depends on little
more than the asymptotic order of the magnitude of the coefficients in
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the infinite series (6.4) and their differences. The specific choice arising
from fractional differencing is attractive both because of its intuitive
meaning and because of parsimony arising from dependence on a single
parameter 0 < d < 1. An example of a different moving average with
regularly varying coefficients is in [11], where the rate of decay of coef-
ficients is shown to affect the rate of growth of the R/S statistic.

Fractionally integrated models, especially FARIMA models, have
found numerous applications in economics and econometrics; two exam-
ples are [36] and [55]. In this area of application one would like to com-
bine fractional integration with the so-called clustering of volatility, or
conditional heteroscedasticity. The standard (but non-fractional) model
with clustering of volatility is the Generalized AutoregRessive Condi-
tionally Heteroscedastic (or GARCH) process, introduced in [51] in
its original (non-generalized) form and generalized by Bollerslev [20].
A possible way of introducing clustering of volatility into a fraction-
ally integrated model is to start with a process Y in (6.4) that has
the clustering of volatility property, for example with a GARCH pro-
cess. This approach is suggested in [61]. Even earlier on, an alternative
model was suggested by Baillie et al. [12]. This model directly combines
fractional differencing/integration with the recursion for computation
of the conditional variance of each subsequent observation, and has
become known as a Fractionally Integrated GARCH (or FIGARCH)
model. This model has proved difficult to analyze; even existence of a
stationary version of the model that has desired properties is an issue.
Recent progress has been made in [46]; see also [149].



7
Self-Similar Processes

Recall that a stochastic process Y = (Y (t), t ≥ 0) is called self-similar
if there is H such that for all c > 0 one has

(Y (ct), t ≥ 0) d= (cHY (t), t ≥ 0) .

The number H is alternatively referred to as the exponent of self-
similarity, the scaling exponent, or the Hurst exponent. If Xi = Y (i) −
Y (i − 1), i = 1,2, . . . is the increment process of Y, then the partial sum
process Sn = X1 + · · · + Xn, n = 1,2, . . . , clearly satisfies for n ≥ 1,

Sn = Y (n) − Y (0) d= nH
(
Y (1) − Y (0)

)
= nHS1 . (7.1)

If the process Y also has stationary increments, then the process
X = (X1,X2, . . .) is stationary, and then (7.1) shows that the scaling
exponent H determines the distributional order of magnitude of the
partial sum process of the stationary model X.

We have seen in Section 2 that the success of the Fractional Gaus-
sian Noise in explaining the Hurst phenomenon is, at least in part,
related to the fact that this stationary process is the increment process
of the Fractional Brownian motion, a self-similar process, with the scal-
ing exponent in the range 0 < H < 1. Recall also that the correlations
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of the Fractional Gaussian Noise are summable when 0 < H ≤ 1/2,
and not summable when 1/2 < H < 1 (cf. (2.9)), while the spectral
density of the Fractional Gaussian Noise, given by (5.17), is contin-
uous at the origin when 0 < H ≤ 1/2, while diverging at the origin
when 1/2 < H < 1. It is, therefore, attractive to consider the class
of stationary models given as increments of general self-similar pro-
cesses with stationary increments, and to call these stationary processes
long range dependent if the scaling exponent is large enough; see e.g.,
[14] and [140].

This program has the advantage of being applicable to stationary
processes with or without finite second moment. The boundary between
short and long memory is, further, given by a single number — a cer-
tain critical value of the scaling exponent. This last feature is also a
drawback of the approach: a single number does not usually represent
well the dependence structure of a stochastic process, despite the exam-
ple of certain Gaussian models. Another drawback of this approach is
that a reasonably limited family of the models is thus considered — the
increments of self-similar stationary increments processes. To overcome
this one can distinguish between exactly self-similar models as above,
and those that are only self-similar in a certain asymptotic sense; see
e.g., [85]. This class of models has become subject of intense research
since it was pointed out in [82] that Ethernet traffic data have fea-
tures strikingly in common with certain models of this type and a
logically attractive explanation of the connection of the network traffic
to self-similarity was offered in [146]. Models arising from self-similar
processes have also been used in risk theory (see e.g., [97]) and finance
(see e.g., [33]).

Attractiveness of using the increment processes of self-similar pro-
cesses with stationary increments as “canonical” models with shorter or
longer types of memory is particularly obvious because such processes
turn out to be the only possible weak limit in a common class of limiting
procedures. Specifically, let (U(t), t ≥ 0) be a stochastic process, and
an ↑ ∞ be a sequence of positive numbers. If

(
1
an
U(nt), t ≥ 0

)
⇒ (

Y (t), t ≥ 0
)

(7.2)
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in terms of finite-dimensional distributions, and the limiting process
Y is non-degenerate in the sense that P (Y (t) �= 0) > 0 for all t > 0,
then Y is H-self-similar for some H > 0 (and the sequence (an) is
automatically regularly varying with exponent H). This was proved
(in a slightly different form) by Lamperti [80], and is often referred to
as the Lamperti theorem. Since great many of the limiting results in
probability theory and its applications can be formulated in the form
(7.2), it is not surprising the self-similar models are ubiquitous. If, in
addition, the process U in (7.2) has stationary increments (as often
happens in applications), the limiting process Y will have stationary
increments as well. Furthermore, the “type” of memory the increments
of the process U have, often translates into the “type” of memory that
the increments of the limiting self-similar process Y possess. For exam-
ple, the strong mixing properties in Theorems 4.1 and 4.2 above is the
sort of short range dependence that guarantees that any memory com-
pletely disappears in the limit, which in both theorems is a Brownian
motion, that has independent increments. On the other hand, there
are examples of processes U whose memory is so strong that it per-
sists in the limit; see e.g., [45] and [136]. Then the limiting self-similar
process Y is not a Brownian motion; some of the possible limiting
processes are discussed below, and their increments can be strongly
dependent. The results of the type (7.2) where the limiting process Y is
different from the Brownian motion are often referred to as non-central
limit theorems.

Many facts on self-similar processes can be found in Chapter 7 of
[128] and in a recent book of Embrechts and Maejima [50].

Let Y = (Y (t), t ≥ 0) be a self-similar process with stationary incre-
ments (commonly abbreviated to an SSSI process). There are restric-
tions on the feasible values of the scaling exponent H. It is immediate
that the only self-similar process with H < 0 is the trivial zero pro-
cess Y (t) = 0 a.s. for each t ≥ 0. The value H = 0 of the scaling expo-
nent does allow some non-trivial SSSI processes (the process for which
Y (tj), j = 1, . . . ,k are i.i.d. for any t1, . . . , tk and k = 1,2, . . . is an exam-
ple), but, assuming that Y has a measurable version, leaves only the
constant process Y (t) = Y (1) a.s. for each t ≥ 0 as a possibility [143].
In modeling one assumes a positive scaling exponent H, as we will
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do from now on. This assumption, clearly, means that Y (0) = 0 a.s.
We will assume in the sequel that we are not dealing with the trivial
zero process.

Further restrictions on the value of the scaling exponent of an
SSSI process Y are related to finiteness of the marginal moments of
the process. For example, suppose that for some 0 < γ < 1 we have
E|Y (1)|γ < ∞. The assumption that Y (1) �= 0 with positive proba-
bility implies that for n large enough, on a set of positive prob-
ability, at least 2 of the variables in a finite stationary sequence
(Y (1),Y (2) − Y (1), . . . ,Y (n) − Y (n − 1)) are different from zero at
the same time. Then by the self-similarity and stationarity of the
increments

nγHE|Y (1)|γ = E|Y (n)|γ = E

∣∣∣∣∣∣
n∑

j=1

(
Y (j) − Y (j − 1)

)∣∣∣∣∣∣
γ

<

n∑
j=1

|Y (j) − Y (j − 1)|γ = nE|Y (1)|γ ,

which implies that H < 1/γ. In particular, the finite mean assumption
E|Y (1)| < ∞ implies that also E|Y (1)|γ < ∞ for all 0 < γ < 1, and so
we must have H < 1/γ for all such γ which is, clearly, equivalent to
H ≤ 1. Summarizing,{

H < 1
γ if E|Y (1)|γ < ∞ for 0 < γ < 1

H ≤ 1 if E|Y (1)| < ∞.
(7.3)

In fact, the only SSSI process with a finite mean for which H = 1
is the straight line process for which Y (t) = tY (1) a.s. for every t >

0, as the following argument (due to [143]) shows. By self-similarity,
Y (n)/n d= Y (1) for all n ≥ 1. By the stationarity of the increments and
ergodic theorem

Y (n)
n

=
1
n

n∑
j=1

(
Y (j) − Y (j − 1)

)→ E(Y (1)|I)

with probability 1, where I is the invariant σ-field for the increment
process X. Therefore, Y (1) d= E

(
Y (1)

∣∣I). As Smit showed in [130],
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this implies that Y (1) is measurable with respect to the completion
of I, and so Y (1) = Y (n) − Y (n − 1) a.s. for all n ≥ 1, implying that
Y (t) = tY (1) a.s. for every t = 1,2, . . . . Now one can use self-similarity
to extend this relation first to t = 1,1/2,1/3, . . . , then to all rational
t > 0 and, finally, by the continuity in probability, which all SSSI pro-
cesses with H > 0, clearly, possess, to all t > 0.

Non-trivial finite mean SSSI models exist, therefore, only for 0 <
H < 1, and we will, correspondingly, restrict ourselves to that range
when the mean is finite. Since self-similarity forces EY (n) = nHEY (1),
while stationarity of the increments implies EY (n) = nEY (1), the non-
trivial finite mean SSSI models must have zero mean.

Suppose that Y is a zero mean finite variance SSSI process with
0 < H < 1. Denoting σ2 = EY (1)2, we immediately see that for all
s, t ≥ 0

Cov
(
Y (s),Y (t)

)
=
σ2

2
[
t2H + s2H − |t − s|2H

]
, (7.4)

so the self-similarity and stationarity of the increments uniquely deter-
mine the correlation function of any such process, which is then also
the correlation function of the Fractional Brownian motion introduced
in Section 2. It turns out that for any 0 < H < 1 the expression in
the right-hand side of (7.4) is, in fact, nonnegative definite and, hence,
a legitimate covariance function. This can be demonstrated by simply
exhibiting a Gaussian process whose covariance function is given by the
right-hand side of (7.4).

Let (B(t), t ∈ R) be the standard Brownian motion. Choose a real
number 1/2 < γ < 1, γ �= 3/2 − H, and define a stochastic process by

BH(t) =
σ

C(H,γ)

∫ ∞

−∞

(∫ ∞

x
(v − x)−γ(|v|H+γ−3/2 − |v − t|H+γ−3/2)dv

)
B(dx) ,

(7.5)

where

C(H,γ) =

(∫ ∞

−∞

(∫ ∞

x
(v − x)−γ(|v|H+γ−3/2 − |v − 1|H+γ−3/2)dv

)2
dx

)1/2

.
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This is a well defined centered Gaussian process, and its covariance
function is easily checked to be given by the right-hand side of (7.4)
(independently of γ). Since that characteristic function has the property
Cov
(
Y (cs),Y (ct)

)
= c2HCov

(
Y (s),Y (t)

)
for all c > 0, we conclude that

a centered Gaussian process with that characteristic function is, in fact,
self-similar with exponent H. Since (7.4) is equivalent to the incremen-
tal variance statement E

(
Y (t) − Y (s)

)2 = σ2|t − s|2H , it implies, for a
Gaussian process, stationarity of the increments as well. Therefore, we
have constructed in (7.5) a Fractional Brownian motion, which is then
the only SSSI Gaussian process. For H = 1/2 and 0 < γ < 1 (7.5) gives
different representations of the standard Brownian motion.

Other important finite variance SSSI processes, different from the
Fractional Brownian motion, can be represented as multiple Wiener-
Itô integrals with respect to the Brownian motion; we refer the reader
to [88] or Section 1.1.2 in [108] for basic information on the multiple
integrals. For k = 1,2, . . . and 1/2 < γ < 1/2 + 1/(2k), H + kγ �= 1 +
k/2, define

Y (k)(t) =
∫ ∞
−∞

· · ·
∫ ∞
−∞

Q
(k)
t (x1, . . . ,xk)B(dx1) · · ·B(dxk) (7.6)

for t ≥ 0, where (B(t), t ∈ R) is still the standard Brownian motion,
and the kernel Q(k)

t is defined by

Q
(k)
t (x1, . . . ,xk) =

∫ ∞
max{x1,...,xk}

k∏
j=1

(v − xj)−γ

×(|v|H+kγ−1−k/2 − |v − t|H+kγ−1−k/2)dv . (7.7)

This process is mentioned in [104], following a similar process intro-
duced in [117] (for k = 2). It is, obviously, a generalization of the Frac-
tional Brownian motion in (7.5). If the latter can be viewed as a linear
functional of the sample paths of the Brownian motion, the process in
(7.6) can be viewed as a polynomial functional of order k of these sam-
ple paths. The fact that the process Y in (7.6) is well defined follows
from the fact that∫ ∞

−∞
· · ·
∫ ∞
−∞

Q
(k)
t (x1, . . . ,xk)2 dx1 · · ·dxk < ∞ for all t ≥ 0; (7.8)
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the verification is standard, if somewhat tedious. It can be easily
checked that, in addition, the kernel Q(k)

t has also the following prop-
erties. For all 0 ≤ s < t and c > 0

Q
(k)
t (x1, . . . ,xk) − Q(k)

s (x1, . . . ,xk) = Q
(k)
t−s(x1 − s, . . . ,xk − s) , (7.9)

and

Q
(k)
ct (cx1, . . . , cxk) = cH−k/2Q

(k)
t (x1, . . . ,xk) (7.10)

for almost all (x1, . . . ,xk). Every stochastic process given in the form
(7.6) with the functions (Q(k)

t , t ≥ 0) satisfying (7.9), has stationary
increments, and every stochastic process given in the form (7.6) with
the functions (Q(k)

t , t ≥ 0) satisfying (7.10) is self-similar with exponent
of self-similarity H. Both statements are heuristically obvious when one
makes the appropriate change of variable in the defining multiple inte-
gral in (7.6), and uses the stationary of the increments of the Brownian
motion, and its self-similarity with exponent 1/2. This argument can
be made precise by approximating the kernel Q(k)

t by simple symmetric
kernels.

Therefore, the stochastic process defined in (7.6) with the kernel
given by (7.7) is SSSI, with the scaling exponent H. As all other mul-
tiple Wiener-Itô integrals with respect to the Brownian motion, it has
finite moments of all orders. It shares with the Fractional Brownian
motion its correlation function, but is not a Gaussian process if k ≥ 2.

It is not difficult to check that the properties (7.9) and (7.10) (with
k = 1) of the kernel Q(1)

t (x) in the representation (7.5) of the Fractional
Brownian motion imply that for 0 < H < 1, H �= 1/2,

Q
(1)
t (x) = gt(c1, c2;H;x) := c1

[(
(t − x)+

)H−1/2 − ((−x)+)H−1/2
]

+c2
[(

(t − x)−
)H−1/2 − ((−x)−)H−1/2

]
, (7.11)

where a+ := max(a,0) is the positive part of a real number a, and a− :=
max(−a,0) is its negative part, and 0a is interpreted as 0 for all a ∈ R.
Here ci = ci(H,γ), i = 1,2, are real numbers; in fact, one can start with
choosing c1 and c2 in such a way that Q(1)

1 (−1) = g1(c1, c2;H;−1) and
Q

(1)
1 (2) = g1(c1, c2;H;2), and then show that the equality extends to
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all t ≥ 0 and x �= 0, t. For H = 1/2 a similar argument shows that

Q
(1)
t (x) = gt(c1, c2;1/2;x) := c11[0,t](x) + c2

(
log |t − x| − log |x|) ,

(7.12)
once again for some real ci = ci(γ), i = 1,2.

In fact, alternative representations of the Fractional Brownian
motion (up to a multiplicative constant) are obtained via

BH(t) =
∫ ∞
−∞

gt(c1, c2;H;x)B(dx), t ≥ 0

for arbitrary real c1, c2. These are the so called moving average repre-
sentations of the Fractional Brownian motion, originating with [92]; see
Section 7.2.1 in [128].

Moving average representations of the Fractional Brownian motion
different from the representation (7.5) can themselves be extended to
SSSI processes represented by multiple Wiener-Itô integrals. For exam-
ple, take c2 = 0 in (7.11). In the case 1/2 < H < 1 one can rewrite the
resulting expression in an equivalent form, and extend it, leading to a
family of processes

Y (k)(t) =
∫ t

−∞
· · ·
∫ t

−∞


∫ t

0

k∏
j=1

(
(v − xj)+

)−(1/2+(1−H)/k)
dv




B(dx1) · · ·B(dxk), t ≥ 0 , (7.13)

introduced in [137]; it appeared as a limit in a “non-central limit the-
orem” in [138] and, in a more general situation, in [133] (see also
[9]). In the case 0 < H < 1/2 a similar procedure leads to a family of
processes

Y (k)(t) =
∫ t

−∞
· · ·
∫ t

−∞


∫ ∞

t

k∏
j=1

(v − xj)−(1/2+(1−H)/k)dv

−1
(
max(x1, . . . ,xk) < 0

) ∫ ∞
0

k∏
j=1

(v − xj)−(1/2+(1−H)/k)dv




B(dx1) · · ·B(dxk), t ≥ 0 . (7.14)
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One can check that in both cases the kernels in the multiple integrals
satisfy (7.8), (7.9), and (7.10) and, hence, the processes defined in (7.13)
and (7.14) are SSSI processes, with the corresponding scaling exponent
H. In fact, for k ≥ 2 the process given in (7.14) is well defined for all
0 < H < 1.

The SSSI processes with representations as in (7.6), (7.13), and
(7.14) are examples of such processes in the kth Gaussian chaos, in the
terminology of [144]. If, for k ≥ 1, Y(k) has the representation (7.6),
with the kernels Q(k)

t satisfying, for each k, (7.8), (7.9), and (7.10),
then for any sequence of constants (ak) such that

∞∑
k=1

a2
k k!
∫ ∞
−∞

· · ·
∫ ∞
−∞

Q
(k)
t (x1, . . . ,xk)2 dx1 · · ·dxk < ∞ ,

the new process

Y (t) =
∞∑

k=1

akYk(t)

=
∞∑

k=1

ak

∫ ∞
−∞

· · ·
∫ ∞
−∞

Q
(k)
t (x1, . . . ,xk)B(dx1) · · ·B(dxk) (7.15)

is a well defined second-order stochastic process (see [108]), and the
previous argument using stationarity of the increments of the Brownian
motion and its self-similarity implies that this process is SSSI, with
exponent H of self-similarity. Of course, this process is no longer, in
general, a polynomial-like functional of the Brownian motion.

Yet more representations of the Fractional Brownian motion exist;
see e.g., [39] and [107]. We mention only one more, as it has an impact
on our discussion of long range dependence. Let (B(j)(t), t ≥ 0) for j =
1,2 be independent standard Brownian motions, and extend B(1) to the
entire real line as an even function, and B(2) as an odd function. For 0 <
H < 1 the following is, up to a multiplicative constant, a representation
of the Fractional Brownian motion:

BH(t) =
∫ ∞
−∞

eitx − 1
ix

|x|−(H−1/2) B̃(dx), t ≥ 0 , (7.16)

where B̃(t) = B(1)(t) + iB(2)(t), t ∈ R. This is the so called harmoniz-
able representation of the Fractional Brownian motion; its origins go
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back to [75] and [148]. The harmonizable representation also has a
natural extension to a SSSI process in the kth Gaussian chaos for
k = 2,3, . . . , appearing (as a limit) in [45], who used the techniques
introduced in [44]. The obtained processes have been showed by Taqqu
[138] to coincide, in the case 1/2 < H < 1, with those defined in (7.13)
via a moving average representation.

The above discussion presented a large number of SSSI processes
with a finite variance and exponent of self-similarity H ∈ (0,1); even
more can be obtained by replacing some of the repeated Brownian
motion in the multiple integrals by independent copies of a Brownian
motion, or by more generally correlated Brownian motions. The incre-
ments of each one of them form a stationary process, whose covariance
function coincides with that of the Fractional Gaussian Noise given in
(2.8). One often says that these stationary processes have long range
dependence if 1/2 < H < 1 (and short memory if 0 < H ≤ 1/2); see e.g.,
[14], [50] and [145]. This is, of course, entirely understandable from the
point of view of the rate of decay of correlations, as in (5.15), or from
the point of view of the behavior of the spectral density at the origin, as
in (5.16), or from the point of view of the rate of increase of the variance
of the partial sums, as in (5.6). While no further justification seems to
be necessary for the Fractional Gaussian noise, the increment process of
the Fractional Brownian motion; for the other models the second-order
measures provides, of course, only partial information. A further impor-
tant point is the distributional rate of growth of the partial sums of the
increment processes: for 1/2 < H < 1 this rate of growth is above what
is allowed for a central limit theorem and convergence to a Brownian
motion.

Notice that, if Y is an SSSI process with an exponent H of self-
similarity, and A is a random variable independent of Y, then the
process

Z(t) = AY (t), t ≥ 0 (7.17)

is also an SSSI process with the same scaling exponent H is Y. If Y
is a finite variance process, and A also has a finite variance, then the
resulting SSSI process in (7.17) will have a finite variance as well. In par-
ticular, its increment process will have exactly the same second-order
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properties as the Fractional Gaussian noise, and it will have the same
distributional rate of growth of the partial sums as the latter. However,
apart from a small number of degenerate situations, the increments of
Z will be non-ergodic and, hence, will arguably have infinite memory,
regardless of the value of the scaling exponent H.

This is, of course, not the situation with the SSSI processes with
a chaos representation as in (7.15). The increment processes of the
latter are always ergodic because of the property (7.9) and ergodicity
of Bernoulli shifts applied to the increments of the Brownian motion
(see Section 1.4 in [78]). However the example of the process (7.17)
emphasizes the limited amount information provided by the scaling
exponent alone.

The most common infinite variance SSSI processes are α-stable pro-
cesses, 0 < α < 2; we refer the reader to [128] for information on such
models. For an α-stable random variable X one has power-like tails:
P (|X| > x) ∼ cx−α as x → ∞ for some c > 0; this implies that the
mean is finite in the case 1 < α < 2, and infinite if 0 < α ≤ 1. We will
consider here symmetric α-stable (SαS) SSSI processes.

There are many similarities between finite variance Gaussian
SSSI models and processes related to them, and SαS and related
SSSI processes, the most important of which is the fact that both
arise in a number of natural limit theorems. In the finite mean case
1 < α < 2 the exponent of self-similarity of any SαS SSSI process is
still restricted (to avoid trivialities) to the range 0 < H < 1, while in
the infinite mean case 0 < α ≤ 1, the tail behavior of the marginal
distributions restricts the scaling exponent of a SαS SSSI process to
the range 0 < H ≤ 1/α. In a significant departure from the Gaussian
case, where the exponent of self-similarity determines the correlation
function and, hence, the law of the SSSI process (up to a multiplicative
constant), for every feasible pair (α,H) of the index of stability and
scaling exponent, there are generally many different SαS SSSI models;
some of them will be discussed below. The only exception is the case
0 < α < 1, H = 1/α, which corresponds to a single process, the SαS
Lévy motion; see [127]. It is common to use the increments of certain
SαS SSSI processes as canonical heavy tailed models with long range
dependence.
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A SαS Lévy process (motion) (Y (t), t ≥ 0) is the heavy tailed equiv-
alent of the Brownian motion, a process with stationary and indepen-
dent increments. It is self-similar, and its scaling exponent is H = 1/α.
No other (symmetric) Lévy processes are self-similar; see [129]. When
deciding which SαS SSSI processes should be said to have long range
dependent increments, the Gaussian case has been often taken as guid-
ance. This means using the SαS Lévy motion as the benchmark, and
viewing the processes with H > 1/α as long range dependent, see e.g.,
[2], [77] and [132]. Unfortunately, this range of the exponent of self-
similarity is only possible when α > 1. A number of limit theorems in
which α-stable SSSI processes appear have been established, most of
them apply to partial sums of linear infinite order moving average pro-
cesses; in situations where long memory is believed to be present the
exponent of self-similarity of the resulting SSSI process turned out to
be in the range H > 1/α. See [7], [73], [87] or [83]. A continuous-time
version for a shot noise model is in [56].

Let Y be an SαS SSSI process, and Xn = Y (n) − Y (n − 1) for
n = 1,2, . . . be its stationary increment process. Since α-stable processes
with 0 < α < 2 have infinite variance, it is impossible to relate the case
H > 1/α to a slow decay of correlations of X. However, when H > 1/α,
the partial sums Sn = X1 + · · · + Xn = Y (n), n = 1,2, . . . , grow distri-
butionally at the rate nH , larger that the “usual” rate of n1/α (times a
slowly varying function) associated with the heavy tailed version of the
Functional Central Limit Theorem, where the limit is the α-stable Lévy
motion; see e.g., [49] (for interesting topological difficulties that may
arise see [10]). While for 1 < α < 2 the benchmark H = 1/α is in the
middle of the feasible range 0 < H < 1 of the exponent of self-similarity,
in the case 0 < α ≤ 1 it is its right endpoint. This, of course, means that
the rate of n1/α is the fastest possible rate at which the partial sums
of the increment process of an SαS SSSI process with such an index of
stability α can grow; in fact, the partial sums of any stationary SαS
process with 0 < α ≤ 1 can grow at most at the rate of n1/α. However,
it means that, according to the rule H > 1/α, no SαS SSSI process can
have long range dependent increments. This is, clearly, unfortunate.

Most of SαS SSSI processes discussed in the extensive literature
on the subject are constructed with, once again, guidance from the
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Gaussian case. One starts, typically, with a representation of the
Fractional Brownian motion and modifies it appropriately. The best
known SαS self-similar process with stationary increments originates
with the moving average representation (see (7.11)) of the latter. Let
(L(t), t ∈ R) be an SαS Lévy motion. Choose 0 < H < 1 (with H �= 1/α
if 1 < α < 2) and define for real c1, c2

Y (t) =
∫ ∞
−∞

Qt(x)L(dx) , t ≥ 0 , (7.18)

where

Qt(x) = c1

[(
(t − x)+

)H−1/α − ((−x)+)H−1/α
]

+c2
[(

(t − x)−
)H−1/α − ((−x)−)H−1/α

]
. (7.19)

This is a well defined SαS process. The kernel defined by (7.19) satisfies,
for 0 ≤ s < t and c > 0

Qt(x) − Qs(x) = Qt−s(x − s) (7.20)

and

Qct(cx) = cH−1/αQt(x) (7.21)

for almost all x ∈ R. It is clear that the intuition we used in the Gaus-
sian case still works here: the properties (7.20) and (7.21) of the kernel
imply that the process in (7.18) has stationary increments and is self-
similar (and, once again, the argument can be made precise). The SSSI
process defined by (7.18) with the kernel given by (7.19) is called Lin-
ear Fractional Stable Motion. This process originates in [86] and [141].
It is a general phenomenon that the stable integrals are much more
“rigid” than similarly looking Gausssian integrals. Whereas any choice
of the constants c1 and c2 in (7.11) produces, up to a multiplicative
constant, a representation of the same Fractional Brownian motion,
different pairs (c1, c2) in (7.19) will produce different Linear Fractional
Stable Motions, unless these parameters are proportional (see [30] and
[126]).

If 1 < α < 2 and H = 1/α, the process corresponding to the Linear
Fractional Stable Motion is given in the form (7.18) with the kernel

Q
(1)
t (x) = c11[0,t](x) + c2

(
log |t − x| − log |x|) , (7.22)
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for real c1, c2, which is, of course, identical to (7.12). When c2 = 0 this
gives back the SαS Lévy motion, for c1 = 0 we obtain the so called
Log-fractional Stable Motion introduced by Kasahara et al. in [73]; it
is easily seen not to have independent increments.

In the case 1 < α < 2 it is also possible to start with the kernel in
a representation of the Fractional Brownian motion as given in (7.5).
The corresponding kernel in the α-stable case is

Qt(x) =
∫ ∞

x
(v − x)−γ

(|v|H+γ−1−1/α − |v − t|H+γ−1−1/α
)
dv

for 0 < H < 1 and 1/α < γ < 1, γ �= 1 + 1/α − H. This kernel satisfies
(7.20) and (7.21) and, hence, can be shown to coincide with (7.19) when
H �= 1/α, and with (7.22) when H = 1/α, in both cases for some c1 and
c2 depending on γ.

One can also start with the harmonizable representation (7.16) of
the Fractional Brownian motion and extend it to the α-stable case, 0 <
α < 2. This is usually done by starting with a complex-valued isotropic
SαS Lévy motion M̃ (see [128] for details) and defining

Y (t) = Re
∫ ∞
−∞

eitx − 1
ix

|x|−(H−1+1/α) M̃(dx), t ≥ 0 . (7.23)

This process is often referred to as Harmonizable Fractional Stable
Motion, and it was introduced in [30]. The Harmonizable Fractional
Stable Motion is a different process from the Linear Fractional Sta-
ble Motion; in certain cases this follows from [31], more generally for
1 < α < 2 this is in [30], and in full generality with 0 < α < 2 it is
in Chapter 7 of [128]. In fact, the stationary increment process of
the latter is a mixing stationary process (this is implicit in [28] and
explicit in [135]), while the increment process of the former is not even
ergodic (this statement is in [28], and it also follows from the fact
that real stationary harmonizable processes have a representation as
mixtures of stationary Gaussian processes, discovered by Marcus and
Pisier [95]).

The above classes of SαS SSSI processes can be viewed as linear
functionals of SαS Lévy motions in their integral representations. Anal-
ogously to the Gaussian case, new SSSI models can be constructed as
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polynomial-type functions of SαS Lévy motions, as multiple stochastic
integrals, i.e., as stochastic processes of the form:

Y (k)(t) =
∫ ∞
−∞

· · ·
∫ ∞
−∞

Q
(k)
t (x1, . . . ,xk)L(dx1) · · ·L(dxk) (7.24)

for t ≥ 0, where (L(t), t ∈ R) is an SαS Lévy motion. The conditions on
the kernel Q(k)

t for the integral in (7.24) to exist are “more complicated”
in the stable case than in the Gaussian case. A sufficient condition for
integrability is

∫ ∞
−∞

· · ·
∫ ∞
−∞

∣∣Q(k)
t (x1, . . . ,xk)

∣∣α(log+
|Q(k)

t (x1, . . . ,xk)|α
ψ(x1) · · ·ψ(xk)

)k−1

dx1 · · ·dxk < ∞, t ≥ 0, (7.25)

for a strictly positive probability density ψ on R, where log+x = logx
for x > 1, and = 0 otherwise. See [121]. Once the process is well defined,
if the kernel Q(k)

t also satisfies the condition (7.9) and the following
analog of (7.10): for all c > 0

Q
(k)
ct (cx1, . . . , cxk) = cH−k/αQ

(k)
t (x1, . . . ,xk) (7.26)

for almost all (x1, . . . ,xk), then the process defined in (7.24) is SSSI,
with exponent H of self-similarity.

A model with these properties was introduced in [134], and it is
an SαS version of the process in (7.13). Assume that 1 < α < 2 and
H ∈ (1/α,1). Then the choice

Q
(k)
t (x1, . . . ,xk) =

∫ t

0

k∏
j=1

(
(v − xj)+

)−(1/α+(1−H)/k)
dv (7.27)

leads to a well defined SSSI process, which is, of course, a direct gen-
eralization of the multiple Wiener-Itô integral process in (7.13). This
process appears as a limit in the “non-central limit theorem” setting
(in the case k = 2), as shown in [6]. Similarly, the multiple Wiener-Itô
integral process in (7.14) can be generalized to the α-stable multiple
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integral situation as well, resulting in another SSSI model with

Q
(k)
t (x1, . . . ,xk)

= 1
(
max(x1, . . . ,xk) < t

)∫ ∞
t

k∏
j=1

(v − xj)−(1/α+(1−H)/k)dv

−1
(
max(x1, . . . ,xk) < 0

)∫ ∞
0

k∏
j=1

(v − xj)−(1/α+(1−H)/k)dv . (7.28)

For single integrals this is well defined only if H < 1/α, but for k ≥ 2
this process is well defined for all 0 < H < 1 (for both (7.27) and (7.28)
the condition (7.25) can be verified with, for example, ψ being the
standard Cauchy density). We are not aware of limit theorems in which
the process with the kernel as in (7.28) appears as the limit.

There is no doubt that other SSSI processes in the form of a finite
order symmetric α-stable chaos can be defined, for example by extend-
ing yet other SαS processes, or by a direct analogy with the Gaussian
case. Using the recipe (7.15) one can construct even more models (even
though necessary and sufficient conditions on the sequence (ak) for the
series in (7.15) to converge when each SSSI process Y(k) is in the kth
SαS chaos do not seem to be known, it is obvious that the series will
converge if the coefficients are “small enough”). Similarly to the Gaus-
sian case, one can also replace some of the repeated SαS Lévy motions
in a k-tiple integrals by the components of a k-dimensional SαS Lévy
motion (see [129]). Unlike the Gaussian case, this last exercise can even
be performed on certain SαS SSSI processes by, for example, integrat-
ing each one of the two parts in (7.19) or (7.22) with respect to different
components of a bivariate SαS Lévy motion.

This provides for an even greater variety of SSSI processes with infi-
nite variance, based on stochastic integrals with respect to SαS Lévy
processes with 0 < α < 2, than of the finite variance models we consid-
ered above. In the case 1 < α < 2 the value H = 1/α is considered to
be “the critical value” for exponent of self-similarity, with the range
(1/α,1) of H corresponding to long memory of the increment process.
This, of course, cannot be justified any longer by looking at the change
in the behavior of the covariance function of the increments, which is
not defined now. Certain substitutes have been used, mostly for SSSI
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processes that are themselves symmetric α-stable. Two such substitutes
have appeared in literature, the covariation and the codifference.

Let X1 and X2 be jointly SαS random variables. Their joint char-
acteristic function can be written in the form:

Ei(θ1X1+θ2X2) = exp
{

−
∫

S2

|θ1s1 + θ2s2|αΓ(ds)
}

(7.29)

for real θ1,θ2, where S2 is the unit circle, and Γ is a uniquely deter-
mined finite symmetric measure on the unit circle, the so called spectral
measure of (X1,X2) see [128]. If 1 < α < 2, one defines the covariation
of X1 and X2 by

[X1,X2]α =
∫

S2

s1s
〈α−1〉
2 Γ(ds) ,

where for real a,b, the notation a〈b〉 stands for the signed power
|a|bsign(a). The covariation can also be defined for α = 1, but it appears
to be less useful in that case; an extension to the case 0 < α < 1 is only
partially possible, and requires restrictions on the spectral measure of
(X1,X2). The covariation is not, generally, symmetric in its arguments.
It reduces to half the covariance in the Gaussian case α = 2, if one
chooses to write the characteristic function as (7.29) in that case (the
spectral measure is not uniquely defined if α = 2.) The notion of covari-
ation was introduced in [101]. If (Xn, n = 1,2, . . .) is a stationary SαS
process, its covariation function can be defined via γ(k) = [Xn+k,Xn]α
for k = 0,1,2, . . . (but changing the order of the arguments will lead, in
general, to a different function).

The codifference can be defined for any random variables and
stochastic processes. For a random vector (X1,X2) we define

τ(X1,X2) = logEei(X1−X2) − logEeiX1 − logEe−iX2 ,

(where we take the continuous branch of the logarithm equal to zero
at point 1). The codifference is equal to the covariance for a Gaussian
vector (X1,X2). The term “codifference” appeared first in [74], but
related notions had been used many times before. For a stationary
process (Xn, n = 1,2, . . .) its codifference function is defined by τ(k) =
τ(Xn+k,Xn) for k = 0,1,2 . . . .
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Both covariation and codifference are equal to zero in the case of
independence, but the converse is not true. On the other hand, zero
covariation does imply a kind of Banach space orthogonality, the so
called James orthogonality; see [29]. Furthermore, it is possible to char-
acterize independence of infinitely divisible random vectors based on
codifference (see [123]), and for a certain class of stationary infinitely
processes (including stable processes) mixing is equivalent to conver-
gence the codifference function to zero at large lags (see [122]).

Suppose Y is an SSSI process, that is SαS with 1 < α < 2. In
order to understand if there is a significant change in the properties
of the increment process Xn = Y (n) − Y (n − 1), n = 1,2, . . . at the
value H = 1/α of the exponent of self-similarity, one can try to see if
the behavior of either the covariation function or codifference function
changes significantly at that point.

The behavior of the codifference function of the increment process
of the Linear Fractional Stable Motions as in (7.18) with (7.19), was
considered in [8]. They discovered that

τ(k) ∼
{
Ct−(1+ 1

α
−H) if 0 < H < 1 − 1

α(α−1)

Ct−α(1−H) if 1 − 1
α(α−1) < H < 1, H �= 1

α

as t → ∞, where C is a constant depending on the parameters in (7.19).
Here a change in the rate of decay of the codifference function does
occur, but at the point 1 − 1(α(α − 1)), and not at the point 1/α.
A similar computation was performed by Kokoszka and Taqqu [74]
for the FARIMA model with SαS noise, and the results for both the
covariation function and the codifference function were similar (in the
case 1 < α < 2) to the above.

It is not easy to evaluate the evidence provided by the behavior of
the covariation and codifference functions. One expects it to be smaller
than that provided by the covariances for the second-order stationary
processes. However, even this available evidence does not necessarily
point to a particular importance of the point H = 1/α when deciding
whether or not the increments of an SαS SSSI processes are long range
dependent or not.

In fact, the ergodic theory seems to provide a better guidance to the
memory of the increment process than the rate of decay the covariation
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and codifference functions. Recall that the increments of the Harmoniz-
able Fractional Stable Motions are not ergodic, while the increments of
the Linear Fractional Stable Motions are mixing. This already says that
the memory of the latter is shorter than that of the former, and this is
regardless of the value of the scaling exponent H. In fact, in studying
the memory of any stationary SαS process the ergodic theory enters
the picture in yet another, even more informative way, as will be seen
in the next section.



8
Long Range Dependence as a Phase Transition

A different point of view on long range dependence was suggested by
Samorodnitsky [124]. Suppose that we are given a family of shift-
invariant probability measures

(
Pθ, θ ∈ Θ

)
on R

Z; that is, each Pθ

describes the finite-dimensional distributions of a two-sided (for con-
venience) stationary stochastic process X = (. . . ,X−1,X0,X1,X2, . . .).
Assume that, as θ varies over the parameter space Θ, the one-
dimensional marginal distributions of the process do not change sig-
nificantly. This requirements allows, for example, a change in scale, or
other changes not relevant for the application of interest. We do not
usually want to allow a serious change in the marginal tails, for instance
loss/gain of a finite variance. For example,

(
Pθ, θ ∈ Θ

)
might describe

a family of correlations functions of unit variance stationary Gaussian
processes, or a family of coefficients of an infinite moving average model.
A subset Θ0 of the parameter space corresponds to the choices of the
parameters under which the process X is a sequence of i.i.d. random
variables; sometimes Θ0 is a singleton.

Let φ = φ(X) be a measurable functional of the process; typical
examples are the sequence of the partial sums, for which φ : R

Z → R
∞,

φn(x) =
∑n

j=1xj , and the sequence of the partial maxima, for which
also φ : R

Z → R
∞, but this time φn(x) = maxn

j=1xj . The behavior of

232
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this functional will, in general, be different under different probability
measures Pθ, θ ∈ Θ.

Suppose that there is a partition Θ = Θ1 ∪ Θ2 of the parameter
space into disjoint parts, with Θ0 ⊂ Θ1, such that the behavior of the
functional φ changes significantly as the parameter crosses the bound-
ary between Θ1 and Θ2. This means that, as long as the parameter stays
within Θ1, the behavior of the functional φ does not change much, and
it remains the same as in the i.i.d. case θ ∈ Θ0, perhaps “up to a mul-
tiplicative constant.” Once the parameter θ crosses the boundary into
Θ2, there is a change “in the order of magnitude” in the behavior of
the functional φ. Moreover, there continue to be significant changes as
the parameter θ moves within Θ2.

Under these conditions we view the part Θ1 of the parameter space
as corresponding to short memory models, and the part Θ2 of the
parameter space as corresponding to long memory models. From this
point of view, the boundary between Θ1 and Θ2 is the boundary
between short and long memory, and it is natural to regard the appear-
ance of long range dependence as a phase transition.

This approach has drawbacks. It is “an approach,” and not a rigor-
ous definition. It ties the notion of long range dependence to a particular
functional and, perhaps, to a particular aspect of the behavior of that
functional.

This, however, appears to be inevitable. One of the reasons it has
been so difficult to define long range dependence is that one has tried
to give a single definition to what is, really, a series of phenomena.
Moreover, studying the change in behavior of a functional relevant in
applications is, arguably, more important than trying to find a single
critical parameter. If one adopts this point of view on long range depen-
dence, the problem reduces to that of finding critical boundaries. It will
undoubtedly turn out that for many models there will be more than
one such boundary.

A functional of major interest, and the one that historically gener-
ated most interest, is the sequence of the partial sums of the process.
When considering stationary processes with a finite second moment,
the second-order approach to long range dependence concentrates on
the behavior of the variances of the partial sums.



234 Long Range Dependence as a Phase Transition

If
(
Pθ, θ ∈ Θ) is the family of laws of all stationary stochastic pro-

cesses with marginal variance equal to (say) 1, then for every θ ∈ Θ0

(corresponding to the law of a sequence of i.i.d. random variables) the
variance of the partial sums grows linearly with the sample size. It is
natural then to define Θ1 to be that subset of Θ such that, under the
law Pθ with θ ∈ Θ1, the variance of the partial sums grows at most lin-
early fast with the sample size. Then Θ2, the complement of Θ1 in Θ,
is the collection of the laws of finite second-order stationary processes
that will be considered as long range dependent, and the notion relies
strictly on the variance of the partial sums growing, at least along a sub-
sequence, faster than linearly fast. From this point of view, the various
alternative notions of a short memory process discussed in Section 5:
(5.3), (5.7), (5.9), or (5.14) are entirely reasonable when viewed as suf-
ficient conditions for the law of the stochastic process to be one of Pθ

with θ ∈ Θ1, hence of short memory, but it is quite a bit less reasonable
to view the failure of one of these conditions as an indication of long
memory.

Similarly, the conditions (5.5), (5.6) or those of Proposition 5.2 can
very reasonably be viewed as sufficient conditions for long memory, but
their absence should not be viewed as an indication of short memory.

It is not by any means obvious that the change from situation where
the variance of the partial sums grows at most linearly fast with the
sample size, to the situation where this is not the case, is, by itself,
important enough to justify calling this change a passage from short
memory to long memory. The exception is, of course, the Gaussian case.
If
(
Pθ, θ ∈ Θ) is the family of laws of all stationary Gaussian processes

with marginal variance 1, then the analogous to the above partition of
the parameter space Θ into Θ1 and Θ2 is a natural basis for distinction
between short and long memory.

Still concentrating on the behavior of the partial sums of a station-
ary second-order process, one can partition the parameter space Θ into
two parts, depending on whether or not the partial sums satisfy the
invariance principle with convergence to the Brownian motion. From
this point of view, the strong mixing conditions in Theorems 4.1 and
4.2 should be viewed as sufficient conditions for short memory, but their
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absence should not be regarded as an indication of long memory. The
Fractional Gaussian noise with any H �= 1/2 (and not only H > 1/2)
will then be considered to be long range dependent.

In principle, basing the decision on whether or not a given stationary
process has long memory on the order of magnitude of the partial sums
of the process is possible also for infinite variance processes. Even more
specifically, suppose

(
Pθ, θ ∈ Θ) is the family of laws of all stationary

stochastic processes whose one-dimensional marginal distributions are
in the domain of attraction of an α-stable law with 0 < α < 2. Then for
every θ ∈ Θ0 (corresponding to the law of a sequence of i.i.d. random
variables in the α-stable domain of attraction), the partial sums satisfy
an invariance principle with convergence to an α-stable Lévy motion,
and one can define a partition of the parameter space Θ into Θ1 and Θ2

depending on whether such an invariance principle still holds (an exam-
ple is in [6] or [72]). From this point of view, the stationary increment
process of any α-stable SSSI process, other than the strictly stable Lévy
motion, has long memory regardless of the value of the Hurst exponent
H, which can even be equal to 1/α if 1 < α < 2; see the example of the
Log-fractional Stable Motion in (7.22).

As the marginal tails of a stationary process become heavier, con-
centrating on the partial sums of the process, particularly on their
rate of growth, to draw the boundary between short and long memory
becomes less useful. The following proposition (whose proof will appear
elsewhere) shows that, when the marginal tails are sufficiently heavy,
the partial sums cannot grow faster than those of an i.i.d. sequence. For
simplicity we state it in the symmetric case, but the statement holds
in a much greater generality.

Proposition 8.1. Let X be a symmetric random variable such that
E|X|β = ∞ for some 0 < β < 1. Let X = (X1,X2, . . .) be a stochastic
process with each Xi

d= X, and let Y = (Y1,Y2, . . .) be a sequence of
independent copies of X. Let an ↑ ∞ be a sequence of positive numbers
such that

limsup
n→∞

an+1

an
< ∞ .
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If

limsup
n→∞

P (|X1 + X2 + · · · + Xn| > an) > 0 (8.1)

then also

limsup
n→∞

P (|Y1 + Y2 + · · · + Yn| > an) > 0 . (8.2)

When the marginal tails of a stationary process are heavy, extreme
values are, often, important. The partial maxima of the process are a
natural functional to use in this case in order to draw the boundary
between short and long memory. In the case of stationary SαS processes
such boundary was found in [124].

A stationary SαS process has an integral representation

Xn =
∫

E
fn(x) M(dx) , n = 1,2, . . . , (8.3)

where M is an SαS random measure on a standard Borel space (E,E)
with a σ-finite control measure m. The functions fn, n = 1,2, . . . can be
chosen to be of the form:

fn(x) = an(x)
(
dm ◦ φn−1

dm
(x)
)1/α

f ◦ φn−1(x), x ∈ E , (8.4)

for n = 1,2, . . ., where φ : E → E is a measurable non-singular map (i.e.,
a one-to-one map with both φ and φ−1 measurable, mapping the control
measure m into an equivalent measure),

an(x) =
n−1∏
j=0

u ◦ φj(x), x ∈ E ,

for n = 0,1,2, . . . , with u : E → {−1,1} a measurable function and f ∈
Lα(m). See [128] and [120] for the details.

A basic fact from ergodic theory is the existence of the Hopf decom-
position of the set E with respect to the flow (φn ,n = 0,1,2, . . .): a
decomposition of E into a disjoint (modulo a null set with respect to
m) union E = C ∪ D, such that C and D are measurable φ-invariant
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sets, and the flow is conservative on C and dissipative on D; we refer
the reader to [78] for the details. This allows us to write

Xn =
∫

C
fn(x) M(dx) +

∫
D
fn(x) M(dx) := XC

n + XD
n , (8.5)

n = 1,2, . . . , a unique in law decomposition of a stationary symmetric
α-stable process into a sum of two independent such processes, one of
which is generated by a conservative flow, and the other is generated by
a dissipative flow. The i.i.d. SαS sequence is generated by a dissipa-
tive flow (i.e., the component XC in the decomposition (8.5) vanishes).
See [120].

Let

Mn = max
j=1,2,...,n

|Xj |, n = 1,2, . . . , (8.6)

be the sequence of the partial maxima. The following result was proved
in [124]: if the component XD generated by a dissipative flow in the
decomposition (8.5) does not vanish, then

n−1/αMn ⇒ CZα , (8.7)

where C is a finite positive constant, and Zα is the standard Frechét
extreme value random variable with the distribution

P
(
Zα ≤ z

)
= e−z−α

, z > 0 . (8.8)

If, on the other hand, the component XD generated by a dissipative
flow vanishes, then

n−1/αMn → 0 (8.9)

in probability as n → ∞.
This is a phase transition that qualifies as a change from short

memory to long memory. Let us call stationary SαS processes with
only one nondegenerate component in the decomposition (8.5) single
component processes. We parametrize the family of laws of single com-
ponent stationary SαS processes (with the scale fixed to, say, 1) by a
space (E,E ,m), a flow (φn ,n = 0,1,2, . . .), a function f ∈ Lα(m), and
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a cocycle (an ,n = 0,1,2, . . .). The collection of these parameters forms
the parameter space Θ. Then the set Θ1 of parameters for which the
flow is dissipative corresponds to short memory processes, while the
set Θ2 of parameters for which the flow is conservative corresponds
to short memory processes, and the boundary between the two is the
phase transition boundary.

It is interesting that the partial maxima grow the fastest in the short
memory case (including the i.i.d. case). In particular, if a stationary
SαS process has both a nondegenerate dissipative component and a
nondegenerate conservative component in (8.5), then the long range
dependent conservative component will be hidden by the faster grow-
ing maximum of the short memory dissipative component. Therefore,
if we use the same parameters as above to parametrize the family of
laws of all stationary SαS processes with the same scale, then the phase
transition becomes less interesting, because in this case the short mem-
ory part Θ1 of the parameter space becomes the set of the parameters
in which the flow has a non-vanishing dissipative component. This will
allow for short memory processes with a nondegenerate long memory
component generated by a conservative flow. This is an indication that
for certain functionals of a stationary process it is important to choose
the parametrization carefully.

In the light of the present discussion let us revisit the question of
short or long memory in the increments of SSSI SαS processes consid-
ered in Section 7. If Y is the Linear Fractional Stable Motion defined in
(7.18) and (7.19), then its increment process is a single component pro-
cess generated by a dissipative flow (see [120]), hence a short memory
process, regardless of the value of index of stability α and Hurst expo-
nent H. Similarly, if Y is the Harmonizable Fractional Stable Motion
defined in (7.23), then its increment process is a single component pro-
cess generated by a conservative flow (see once again [120]), hence a
long memory process, once again regardless of the values of α and H. In
fact, since the increment process of the Harmonizable Fractional Stable
Motion is not ergodic, we can view this process as having infinite mem-
ory. On the other hand, Cohen and Samorodnitsky [32] constructed a
family of SSSI SαS process for which the increment process is also a sin-
gle component process generated by a conservative flow, but this time
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the process is ergodic (even mixing). Thus we can view it as having
finite but long memory.

It is not difficult to see that this classification of the memory of the
increments of SSSI SαS processes is more informative than making
a distinction based on a single critical value of the Hurst exponent
or on decay rates of covariance substitutes such as covariation and
codifference.

It is interesting that for stationary Gaussian processes the change
in the rate of increase of the partial maxima occurs “much later,” from
the point of view of the rate of decay of correlations, than what is
needed to change the rate of increase of the partial sums as discussed
above. For example, if the condition

Rn logn → 0 as n → ∞
is satisfied by the covariance function of a stationary Gaussian process
(i.e., if the the correlations decay faster than logarithmically fast), then
the partial maxima of the process increase at the same rate as in the
i.i.d. case (and even the constants are preserved!); see [16].

More examples of a phase transition of the type discussed above are
given by infinite moving average models. These are models of the form:

Xn =
∞∑

j=−∞
ϕn−j εj , n = 1,2, . . . , (8.10)

where (εn, n = . . . ,−1,0,1,2, . . .) are i.i.d. noise variables, and (ϕn) are
deterministic coefficients; the latter, clearly, have to satisfy certain con-
ditions for the series to converge and the process to be well defined. We
will assume that the noise variables have a finite mean, in which case
the absolute summability of the coefficients

∞∑
j=−∞

|ϕj | < ∞ (8.11)

guarantees that the series in (8.10) converges (absolutely) a.s., but
weaker assumptions (depending on the noise distribution) will suffice
for a.s. convergence as well. Obviously, if the moving average process
(8.10) is well defined, it is automatically a stationary process. It is
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also known as a linear process (as is the ARMA model discussed in
Section 3, which is a special case of the infinite moving average model).

Fixing the distribution of the noise variables, the law of the station-
ary moving average process is determined by its sequence of coefficients,
so in this case the parameter space Θ is the collection of sequences (ϕn)
for which the series (8.10) converges. Unless the noise variables are
Gaussian or α-stable, different choices of the parameter will affect the
one-dimensional marginal distributions of the moving average process
by more than a scale factor. Still, it makes sense to restrict the param-
eter space in an appropriate way to keep the marginal distributions
from varying too much.

The part of the parameter space Θ defined by (8.11) is sometimes
viewed as leading to short memory models, often under the additional
assumption

∞∑
j=−∞

ϕj �= 0 , (8.12)

see e.g., Section 13.2 of [26]. (Intuitively, the case of the zero sum in
(8.12) corresponds to negative memory, not dissimilar with the Frac-
tional Gaussian Noise with 0 < H < 1/2.) Obviously, the laws of i.i.d.
sequences belong to this part of the parameter space. Is there a phase
transition that occurs when (8.11) breaks down?

Assume first that the noise variables have a finite variance σ2 > 0.
Then the necessary and sufficient condition for convergence of the series
in (8.10) is

Sϕ :=
∞∑

j=−∞
ϕ2

j < ∞ . (8.13)

For the purpose of normalization of the marginal distributions one can
define the parameter space Θ to consist of the sequences of the coeffi-
cients satisfying Sϕ = 1.

As before, a reasonable partition of Θ into two parts, correspond-
ing to short and long memory processes, is obtained depending on
whether or not the partial sums of the moving average process sat-
isfy the invariance principle with convergence to the Brownian motion.
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Moving average processes with absolutely summable coefficient have
this property (see [60]). However, also every parameter point satisfy-
ing, for example, condition (5.37) in [59] guarantees such an invariance
principle, hence a short memory process, and this condition may be
satisfied even when (8.11) fails. From this point of view, the summabil-
ity of the coefficients (8.11) is a sufficient condition for a short memory
process, but its failure does not automatically imply a long memory
moving average.

Still concentrating on the partial sums of a stationary process,
important aspects of their behavior are related to large deviations.
Suppose that the noise random variables satisfy

Eeλε0 < ∞ (8.14)

for λ ∈ (−ε,ε), some ε > 0, i.e., have exponentially fast decaying tails.
Let X = (X1,X2, . . .) be a stationary process. We say that the large

deviation principle holds for the sample averages of the process for some
speed sequence bn ↑ ∞ and upper and lower rate function Iu(·) and Il(·),
respectively,

− inf
x∈A◦ Il(x) ≤ liminf

n→∞
1
bn

logP
(
X1 + · · · + Xn

n
∈ A

)

≤ limsup
n→∞

1
bn

logP
(
X1 + · · · + Xn

n
∈ A

)
≤ − inf

x∈Ā
Iu(x) (8.15)

for every Borel set A, where A◦ and Ā denote the interior and closure
of a set A, correspondingly. Detailed accounts of large deviations are
in [40] and [41]. The speed sequence has the single most important
role in the large deviation principle (8.15). For i.i.d. sequences satisfy-
ing (8.14), the classical Cramer theorem says that the large deviation
principle holds with the speed bn = n, n = 1,2, . . . .

Returning to infinite moving averages with the noise variables sat-
isfying the exponential tail condition (8.14), define a partition of the
parameter space Θ (consisting of the sequences of the coefficients satis-
fying Sϕ = 1 in (8.13)) into parts Θ1 and Θ2 by declaring Θ1 to be that
set of parameters θ for which the large deviation principle holds under
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Pθ with the speed bn ≡ n, and Θ2, corresponding to the long memory
moving averages, to be its complement. Similar partitions can be cre-
ated based on the functional version of the large deviation principle,
known to hold in the i.i.d. case with the linear speed by the Mogulskii
theorem ([102] or Theorem 5.1.2 in [40], assuming that (8.14) holds for
all λ ∈ R), or on other versions of the large deviation principle.

The fact that, under the assumptions (8.11) and (8.12), the moving
average process satisfies the large deviation principle with the speed
bn ≡ n is well established, albeit under a variety of tail assumptions on
the noise variables: see [27] and [69]. However, such large deviation prin-
ciple also holds under the weaker assumption (5.14); see [43] or [147].
(All these authors establish their large deviation principles at different
levels of generality, but always covering the simplest one-dimensional
version formulated in (8.15)). From this point of view, the assumptions
(8.11) and (8.12) are sufficient for a short memory linear process, but
not necessary.

Certain situations where the large deviation principle with a linear
rate no longer holds were presented in [54]. Specifically, they assumed
that the coefficients (ϕn) are balanced regularly varying: there is a
regularly varying at infinity with exponent −β, 1/2 < β ≤ 1, function
ψ : [0,∞) → [0,∞) and 0 ≤ p ≤ 1, such that

lim
n→∞

φn

ψ(n)
= p and lim

n→∞
φ−n

ψ(n)
= 1 − p. (8.16)

If β = 1, assume further that (8.11) fails.
Denote Ψn =

∑
1≤i≤nψ(i), n = 1,2, . . . . It turns that, under the bal-

anced regular variation assumption (8.16), the moving average pro-
cess satisfies the large deviation principle with the speed bn = n/Ψ2

n,
n = 1,2, . . . . Observe that (by Karamata’s theorem) this speed sequence
is regular varying with exponent 2β − 1. Even in the case β = 1 the
speed sequence has the form bn = nLn, with a slowly varying func-
tion L converging to zero, and so it grows strictly slower that linearly
fast. More general versions of the large deviation principle also exhibit
similar behavior; see [54].

From this point of view, moving average processes with coefficients
satisfying (8.16) are long range dependent.
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Several other large deviation-related ways to look at short and long
memory exist, the better known ones of which are related to ruin prob-
abilities and long strange segments; a recent extensive account of the
former is in [5], the latter have been analyzed since [52]. We will look
at the behavior of the long strange segments, defined as follows. For a
Borel set A and n = 1,2, . . . let

Rn(A) = sup
{
j − i : 0 ≤ i < j ≤ n,

Xi+1 + · · · + Xj

j − i
∈ A

}
, (8.17)

(defined to be equal to zero if the supremum is taken over the empty
set). If the closure of A does not contain the mean of the stationary
process (which we have assumed to be equal to zero), then the long seg-
ments over which the sample mean belongs to A are “strange” because
the law of large numbers seems to break down there. For the i.i.d.
sequence under the finite exponential moment assumption (8.14),

1
infx∈A◦ Il(x)

≤ liminf
n→∞

Rn(A)
logn

≤ limsup
n→∞

Rn(A)
logn

≤ 1
infx∈Ā Iu(x)

(8.18)

with probability 1, where Il and Iu are the rate functions in the large
deviation principle (8.15); see Theorem 3.2.1 in [40].

Let Θ1 be that part of the parameter space Θ (still consisting of
the sequences of the coefficients satisfying Sϕ = 1 in (8.13)) where
the length of the long strange segments grows at the logarithmic
rate, as in (8.18), and Θ2 to be its complement. Since the state-
ment (8.18) is set-dependent, one can restrict the test set A to the
form A = {x : |x − EX| > θ} for small θ > 0. It was shown in [54]
that, under the assumptions (8.11) and (8.12), the logarithmic rate
of increase still holds for the long strange segments (but with a gener-
ally different rate functions in (8.18)), whereas under the assumption
(8.16) of the balanced regular variation assumption, the long strange
segments grow at a strictly faster rate: the rate is now h(logn), where
the function h : (0,∞) → (0,∞) satisfies

h(s)[
Ψ
(	h(s)�)]2 → 1 as s → ∞ .
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Note that the function h is regularly varying with exponent (2β − 1)−1.
Therefore, also from the point of view of the long strange segments,
the assumptions (8.11) and (8.12) are sufficient for a short memory
of the moving average process, while the balanced regular variation
assumption (8.16) is sufficient for long memory.

In summary, the change from short to long memory in infinite mov-
ing average processes with finite exponential moments as in (8.14) is
of a phase transition nature. Only sufficient conditions for being on
either side of the boundary are known at the moment; future research
will undoubtedly tell us more about the description of the boundary in
terms of the coefficients in the model.

We conclude by briefly looking at related phase transitions for infi-
nite moving averages, where the noise variables do not have finite
exponential moments. Suppose that the noise variables have, in fact,
balanced regularly varying tails; this is a notion slightly more general
than the balanced power tails in (2.5). Specifically, assume that

P (|ε0| > λ) = L(λ) λ−α ,

limλ→∞
P (ε0 > λ)
P (|ε0| > λ)

= pε, limλ→∞
P (ε0 < −λ)
P (|ε0| > λ)

= qε ,
(8.19)

as λ → ∞, for some α > 1 and 0 < pε = 1 − qε ≤ 1. Here L is a slowly
varying function at infinity. Note that, if α ≤ 2, then the assumption of
the finite variance of the noise variables may fail, and it certainly does
fail if α < 2. If α > 2, then the variance of the noise variables is still
finite, and the square summability condition (8.13) is still the necessary
and sufficient condition for the linear process (8.10) to be well defined;
in the case 1 < α ≤ 2 a sufficient condition is

∞∑
j=−∞

|ϕj |α−ε < ∞ for some ε > 0. (8.20)

In both cases the resulting moving average process is a stationary pro-
cess whose one-dimensional marginal tails are proportional to the tails
of the noise variables; see [98].

Once again, let Θ be the parameter space appropriate to the situa-
tion at hand: this will be the space of the coefficients satisfying (8.13)
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is α > 2, or the space of the coefficients satisfying (8.20) if 1 < α ≤ 2.
Keeping the marginal distributions of the process from varying too
much as the parameter changes is desirable; with “power-like” tails it
is often a good idea to control the tails: the normalization

∑
j |ϕj |α = 1

achieves that (see [98]), and it can be taken as a part of the description
of the parameter space.

Full large deviation principles have not been extended for stochas-
tic processes with “power-like” tails far beyond the i.i.d. case (see [66]
and [105] for what happens in that case), so we will only consider the
long strange segments. It turns out that the absolutely summable coef-
ficients satisfying (8.11) still belong to that part Θ1 of the parameter
space such that, under the law Pθ with θ ∈ Θ1 the long strange seg-
ments of the moving average process behave as in the i.i.d. case, while
certain balanced regularly varying coefficients belong to that part Θ2

of the parameter space such that, under the law Pθ with θ ∈ Θ2 the
long strange segments of the moving average process behave in a dras-
tically different way. We need to modify the assumption of the balanced
regularly varying coefficients in (8.16) as follows: assume that (8.16) is
satisfied with 1/2 < β < 1 if α > 2, and with 1/α < β < 1 if 1 < α ≤ 2.

We consider long strange intervals defined in (8.17), with test sets
of the form A = (θ,∞) for θ > 0 (these are “strange” because of the
assumption of zero mean). Let F denote the distribution function of
the noise random variable |ε0|, and for n ≥ 1 define

an =
(

1
1 − F

)←
(n) , (8.21)

where for a nondecreasing function U , U←(y) = inf{s : U(s) ≥ y},
y > 0, is the left continuous inverse of U . Clearly (an) is regularly vary-
ing at infinity with exponent 1/α. It was proved by Mansfield et al. [94]
that under the absolutely summability assumption (8.11),

a−1
n Rn

(
(θ,∞)

)⇒ M(ϕ)
θ

Zα ,

where Zα is the standard Frechét random variable defined in (8.8), and

M(ϕ) = (pεM+(ϕ)α + qεM−(ϕ)α)1/α ,
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with

M+(ϕ) = max


 sup
−∞<k<∞


 k∑

j=−∞
ϕj




+

, sup
−∞<k<∞


 ∞∑

j=k

ϕj




+




and

M−(ϕ) = max


 sup
−∞<k<∞


 k∑

j=−∞
ϕj



−

, sup
−∞<k<∞


 ∞∑

j=k

ϕj



−


 .

Therefore, under the assumption (8.11), the length of the long strange
segments grows at the rate an (which is regularly varying at infinity
with exponent 1/α); this rate is the same as the rate of growth of the
long strange segments for i.i.d. sequences with the same marginal tails.
Note that the assumption (8.12) is not needed here.

On the other hand, under the assumption (8.16) of the balanced
regularly variation of the coefficients (modified to the present case of
the “power-like” tails), it was shown in [112] that

ã−1
n Rn

(
(θ,∞)

)⇒ p
1/(αβ)
ε

(
p1/β + q1/β

)
(1 − β)1/βθ1/β

Zαβ ,

where Zαβ is, once again, the standard Frechét random variable, but
this time with the exponent equal to αβ, and the sequence (ãn) satisfies

ψ(ãn)
an

→ 1 as n → ∞.

Therefore, under the (modified) assumption of the balanced regularly
variation of the coefficients, the length of the long strange segments
grows at the rate ãn, which is regularly varying at infinity with exponent
1/(αβ) and, hence, faster than in the case of absolutely summable
coefficients.

We conclude that the behavior of long strange segments in the infi-
nite moving average processes with noise variables with balanced reg-
ularly varying tails exhibits a phase transition (similar to that in the
case of linear processes with the “light-tailed” noise variables) that may
qualify as a phase transition that separates between short memory and
long memory processes. The assumption of absolute summability of the
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coefficients is sufficient for a short memory process, while the assump-
tion of a certain regular variation of the coefficients is sufficient for a
long memory process.

In summary, it appears that connecting the notion of long range
dependence to certain types of phase transitions is promising. It fits
well with our intuition of the term “long memory” describing a model
that is out of the ordinary. Furthermore, it allows us to concentrate on
the behavior of really important functionals. Much remains to be done
to clarify both possible types of such phase transitions and the relevant
boundaries for concrete families of stochastic processes.
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