
ORIE 6300 Mathematical Programming I November 10, 2016

Problem Set 9

Due Date: November 17, 2016

Handwritten assignments will not be accepted
1. We saw in class that Lipschitz continuity of the gradient is key for ensuring convergence of the

projected gradient method. In this exercise, you will learn more examples of functions with
Lipschitz continuous gradients. Prove that the following functions have Lipschitz continuous
gradients and provide a Lipschitz constant:

(a) Composition with linear. Suppose that f : Rm → R is a function with an L-Lipschitz
continuous gradient and let A ∈ Rm×n be a matrix, and let b be a vector. Show that
the function f(Ax − b) has a Lipschitz continuous gradient. What is the its Lipschitz
constant? (Hint: use the chain rule to compute the gradient.)

(b) Sums. Suppose that f1, f2 : Rm → R are functions with L1 and L2-Lipschitz continuous
gradients, respectively. Prove that the gradient of f1 + f2 is Lipschitz continuous, and
determine its Lipschitz constant.

(c) Squared norm: f(x) = 1
2‖x‖

2.

(d) Logistic loss: f(x) =
∑n

i=1 log(1 + exp(xi)).

(e) Student’s-t: f(x) =
∑n

i=1
ν
2 log

(
1 +

x2i
ν

)
(where ν > 0 is fixed).

(f) sin: f(x) = sin(x).

(g) Hybrid norm: f(x) =
∑n

i=1

√
1 + x2i .

2. Local Optimality. Let C ⊆ Rn be a nonempty closed convex set. Let f : Rn → R be a
function. Let x be a local minimizer of f in C, i.e., there exists an δ > 0 such

(∀y ∈ C ∩B(x; δ)) f(y) ≥ f(x).

Suppose further that f is differentiable at x. Prove that −∇f(x) ∈ NC(x).

3. Robust Regression with Student’s-t. Consider the matlab script

%% Generate Data

clear all; close all; clc

step = .01;

grid = 0:step:1;

nb_samples = length(grid);

nb_corrupt = ceil(.5*nb_samples);

y_clean = sin(4*pi*grid)’;

p = randperm(nb_samples);

9-1



y = y_clean;

y(p(1:nb_corrupt)) = y(p(1:nb_corrupt)) + 5*rand(nb_corrupt, 1);

y(1) = y_clean(1); y(end) = y_clean(end);% Make sure endpoints are clean

%% Set up model

rate = 9; % rate of sin

X = ones(nb_samples, 1);

for ii = 1:rate

X = [X, sin(ii*pi*grid’)];

end

%% Fit Least Squares

x_LS = X\y;

%% Solvers

params.max_iter = 500000;

params.tol = 1e-10;

params.init_x = x_LS; %% Initialize at the Least Squares Solution

params.X = X;

params.y = y;

nu = .01;

params.loss = @(r) f_ST(r, nu); %% Student’s t

params.P_C = @(x) x; % unconstrained

[x_ST, history_ST] = projected_gradient( params );

D = pinv(X([1, nb_samples], :));

params.P_C = @(x) x - D*(X([1, nb_samples], :)*x - y([1, nb_samples])); % Constrained

[x_ST_constrained, history_ST_constrained] = projected_gradient( params );

%% Plot polynomial fit

figure;

scatter(grid, y);

hold on

plot(grid, y_clean);

plot(grid, X*x_LS);

plot(grid, X*x_ST);

plot(grid, X*x_ST_constrained);

legend(’Noisy Signal’, ’True signal’, ’LS Fit’, ’ST fit’, ’x_ST_constrained’);

%% Plot coefficients

figure;

9-2



plot(0:length(x_ST)-1, x_ST’);

hold on

plot(0:length(x_ST)-1, x_ST_constrained’);

legend(’Unconstrained’, ’Constrained’);

and auxiliary function

function [f, g, Lip] = f_ST(r, nu)

f = sum(0.5*(nu).*log(1 + r.^2/nu));

if(nargout> 1)

g = r.*nu./(nu + r.^2);

end

if(nargout > 2)

Lip = 1;

end

end

(a) Fill in the projected gradient function so that it solves the minimization problem:

minimizex∈C loss(Xx− y),

where Xi is the ith row of X.

function [ x ] = projected_gradient( params )

max_iter = params.max_iter;

X = params.X;

y = params.y;

loss = params.loss;

P_C = params.P_C;

tol = params.tol;

x = params.init_x;

normX2 = norm(X)^2;

for ii = 1:max_iter

Fill in here

end

end

Expect loss(X*x - y) to return three arguments [f, g, Lip] where f is the numerical
value of loss(X*x - y), g is the gradient of loss at X*x - y, and Lip is the Lipschitz
constant of ∇loss—in particular, you should expect loss to behave exactly like f ST.
Write your function so that it exits when ‖xk+1 − xk‖/γ ≤ tol. Include your code.
(Hint: you should use your result from problem 1(a) to compute the gradient of the
total function loss ◦ (X(·)− y) in terms of X, XT , y, g, and x.)

(b) Explain, mathematically, the matrix X, the outputs y, the solution x, the constraint set
C, and the outcome of the code.

9-3



(c) Run the code multiple times (it’s random so the outcome should be different each time).
Which model consistently obtains the best fit (judge visually)? Include a plot in which
this model obtains the best fit.

9-4


