ORIE 6300 Mathematical Programming I

Problem Set 7

1. Let γ and τ be positive real numbers that satisfy $\gamma \tau<\frac{1}{\|A\|^{2}}$. Consider the Chambolle-Pock operator

$$
\begin{aligned}
T_{\mathrm{CP}}: \mathbb{R}^{m} \times \mathbb{R}^{n} & \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{n} \\
T_{\mathrm{CP}}\left[\begin{array}{c}
y \\
x
\end{array}\right]: & :=\left[\begin{array}{c}
y-\gamma(A x-b) \\
\max \left\{x+\tau\left(A^{T}(y-2 \gamma(A x-b))-c\right), 0\right\}
\end{array}\right],
\end{aligned}
$$

In this exercise, we're going to prove that T_{CP} is firmly-nonexpansive in a Mahalanobis norm $\|x\|_{Q}$, i.e.,

$$
\begin{align*}
& \left(\forall z_{1} \in \mathbb{R}^{m+n}\right),\left(\forall z_{2} \in \mathbb{R}^{m+n}\right) \\
& \quad\left\|T_{\mathrm{CP}} z_{1}-T_{\mathrm{CP}} z_{2}\right\|_{Q}^{2} \leq\left\|z_{1}-z_{2}\right\|_{Q}^{2}-\left\|\left(z_{1}-T_{\mathrm{CP}} z_{1}\right)-\left(z_{2}-T_{\mathrm{CP}} z_{2}\right)\right\|_{Q}^{2} \tag{1}
\end{align*}
$$

where

$$
Q=\left[\begin{array}{cc}
\frac{1}{\gamma} I & -A \\
-A^{T} & \frac{1}{\tau} I
\end{array}\right] .
$$

Define the set-valued mapping $M: \mathbb{R}^{m+n} \rightarrow 2^{\mathbb{R}^{m+n}}$: for all $z=(y, x) \in \mathbb{R}^{m+n}$,

$$
M z:=\{-b\} \times\left(c+N_{\mathbb{R}_{\geq 0}^{m}}(x)\right)+\left[\begin{array}{cc}
0 & A \\
-A^{T} & 0
\end{array}\right]\left[\begin{array}{c}
y \\
x
\end{array}\right] .
$$

(a) Let $z=(y, x) \in \mathbb{R}^{m+n}$. Show that

$$
Q\left(z-T_{\mathrm{CP}} z\right) \in M T_{\mathrm{CP}} z
$$

(Hint: use the projection inclusion formula $x-P_{C}(x) \in N_{C}\left(P_{C}(x)\right)$).
(b) Let $z_{1}=\left(y_{1}, x_{1}\right) \in \mathbb{R}^{m+n}$ and $z_{2}=\left(y_{2}, x_{2}\right) \in \mathbb{R}^{m+n}$. Show that

$$
\left(\forall u_{1} \in M z_{1}\right),\left(\forall u_{2} \in M z_{2}\right) \quad\left\langle z_{1}-z_{2}, u_{1}-u_{2}\right\rangle \geq 0
$$

(this condition states that M is a monotone operator). Using Part 1a, conclude that

$$
\left\langle\left(z_{1}-T_{\mathrm{CP}} z_{1}\right)-\left(z_{2}-T_{\mathrm{CP}} z_{2}\right), T_{\mathrm{CP}} z_{1}-T_{\mathrm{CP}} z_{2}\right\rangle_{Q} \geq 0 .
$$

where for all $z, z^{\prime} \in \mathbb{R}^{m+n}$, we have $\left\langle z, z^{\prime}\right\rangle_{Q}=\left\langle Q z, z^{\prime}\right\rangle$.
(c) Prove (1).
2. This exercise shows that solving a system of linear inequalities is essentially as hard as solving an LP.
Let $P(A, b)=\{x \mid A x=b, x \geq 0\}$. Suppose that x^{*} is a minimizer of $\min _{x \in P(A, b)} c^{T} x$. Let $x_{0} \in \mathbb{R}^{n}$ and for all $\gamma>0$, define

$$
x_{\gamma}=P_{P(A, b)}\left(x_{0}-\gamma c\right) .
$$

Prove that

$$
\left\langle c, x_{\gamma}\right\rangle \leq\left\langle c, x^{*}\right\rangle+\frac{1}{2 \gamma}\left\|x_{0}-x^{*}\right\|^{2} .
$$

For which $\gamma>0$ is x_{γ} an ε-accuracy solution of the LP? (Recall that x is an ε-accuracy solution if it is feasible and $\langle c, x\rangle\left\langle\left\langle c, x^{*}\right\rangle+\varepsilon\right.$.)
3. In this exercise, we learn how to parallelize the Douglas-Rachford Splitting (DRS) algorithm and the Method of Alternating Projections (MAP) through the product-space trick.
Consider l closed convex sets $C_{1}, \ldots, C_{l} \subseteq \mathbb{R}^{r}$. Assume that $C_{1} \cap \ldots \cap C_{l} \neq \emptyset$. Define $C=C_{1} \times \cdots \times C_{l}$. Define the diagonal vector subspace $V \subseteq \mathbb{R}^{r l}$:

$$
V:=\left\{\left(x_{1}, \ldots, x_{l}\right) \in \mathbb{R}^{r l} \mid(\forall i) x_{i} \in \mathbb{R}^{r}, x_{1}=x_{2}=\cdots=x_{l}\right\} .
$$

(a) Given $z \in \mathbb{R}^{r l}$, compute $P_{V} z$ and determine $\operatorname{Fix}\left(P_{V}\right)$.
(b) Given $z \in \mathbb{R}^{r l}$, compute $P_{C} z$ and determine $\operatorname{Fix}\left(P_{C}\right)$.
(c) Determine Fix $\left(P_{V} P_{C}\right)$ and Fix $\left(\frac{1}{2}\left(2 P_{V}-I\right) \circ\left(2 P_{C}-I\right)+\frac{1}{2} I\right)$
(d) Consider the primal-dual pair of linear programs

$$
\min \left\{c^{T} x \mid A x=b, x \geq 0\right\} \quad \text { and } \quad \max \left\{b^{T} y \mid A^{T} y \leq c\right\}
$$

and assume that there exists a primal-dual optimal solution, e.g., $\left(x^{*}, y^{*}\right) \in \mathbb{R}^{n+m}$. Define

$$
D:=\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & A^{T} & I \\
c^{T} & -b^{T} & 0
\end{array}\right] \quad \text { and } \quad d:=\left[\begin{array}{l}
b \\
c \\
0
\end{array}\right] .
$$

Note that $D z=d$ has at least one solution because the LPs are solvable. Let $l=n+m+2$ and define

$$
C_{l}:=\left\{\left.\left[\begin{array}{l}
x \\
y \\
s
\end{array}\right] \right\rvert\, x \geq 0, s \geq 0\right\} .
$$

Provide $l-1$ sets $C_{1}, \ldots, C_{l-1} \subseteq \mathbb{R}^{m+2 n}$ such that (1) $\{z \mid D z=d\}=C_{1} \cap \ldots \cap C_{l-1}$ and (2) for each $i=1, \ldots, l-1$, the set C_{i} is defined purely in terms of the i th rows of D and d.
As before, define $V \subseteq \mathbb{R}^{l(m+2 n)}$ and $C:=C_{1} \times \ldots \times C_{l}$. Given $z \in \mathbb{R}^{l(m+2 n)}$ compute $P_{V} P_{C}(z)$. What is the biggest computational drawback of this approach? Are there other ways to split $\{z \mid D z=d\}$ into fewer sets? (There is no single correct answer.)

