ORIE 6300 Mathematical Programming I

Problem Set 6

1. (Bertsimas and Tsitsiklis 3.6) Let x be a basic feasible solution with associated basis B. Prove the following:
(a) (4 points) If the reduced cost of every nonbasic variable is positive, then x is the unique optimal solution.
(b) (4 points) If x is the unique optimal solution and is nondegenerate, then the reduced cost of every nonbasic variable is positive.
2. Consider the linear program $\min \left(c^{T} x: x \geq 0, A x=b\right)$. Let B denote an optimal basis. Assume that the problem is generic in that each vertex has a unique basis for which it is the corresponding basic solution.
Assume now that you want to solve a parametric problem, i.e., a set of problems of the form $\min \left((c+\lambda d)^{T} x: x \geq 0, A x=b\right)$, for each possible value of $\lambda \geq 0$. Assume that for any $\lambda \geq 0$ the problem has an optimal solution and that the basis B is a solution for the problem when $\lambda=0$.
(a) Prove that the set of values of λ for which basis B is optimal forms an interval $\left[0, a_{1}\right]$. Explain how to compute a_{1}.
(b) Show that there is a finite set $a_{0}=0 \leq a_{1} \leq \ldots \leq a_{k}$ and corresponding bases B_{i} for $i=0, \ldots, k$ such that $B_{0}=B$ and B_{i} (for $i=0, \ldots, k$) is the optimal basis if and only if $\lambda \in\left[a_{i}, a_{i+1}\right]$, and B_{k} is optimal if $\lambda \geq a_{k}$.
3. Let γ and τ be positive real numbers. Consider the nonlinear operator

$$
\begin{aligned}
T: \mathbb{R}^{m} \times \mathbb{R}^{n} & \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{n} \\
T\left[\begin{array}{c}
y \\
x
\end{array}\right] & :=\left[\begin{array}{c}
y-\gamma(A x-b) \\
\max \left\{x+\tau\left(A^{T} y-c\right), 0\right\}
\end{array}\right],
\end{aligned}
$$

where $\max \left\{x+\tau\left(A^{T} y-c\right), 0\right\} \in \mathbb{R}^{n}$. In addition, consider the primal-dual pair of linear programs:

$$
\min \left\{c^{T} x \mid A x=b, x \geq 0\right\} \quad \text { and } \quad \max \left\{b^{T} y \mid A^{T} y \leq c\right\}
$$

Prove that a pair $x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}$ is primal-dual optimal, if, and only if,

$$
T\left[\begin{array}{c}
y \\
x
\end{array}\right]=\left[\begin{array}{c}
y \\
x
\end{array}\right] .
$$

