Problem Set 4

1. Compute the projection operator P_{S} for each of the following closed, convex sets S :
(a) $S=\left\{x \in \mathbb{R}^{n} \mid x \geq 0\right\}$.
(b) $S=[-1,1]^{n}$.
(c) $S=\{x \mid A x=b\}$ where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$.
(d) $S=\left\{x \mid a^{T} x \leq b\right\}$ where $a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$.
2. Consider the set $P=\{x: A x \geq 0\}$ and assume that we have $x \geq 0$ for all $x \in P$, i.e., that $x \geq 0$ is implied by $A x \geq 0$.
(a) A set K is a cone if $x, y \in K$ implies that $\lambda x+\mu y \in K$ for all $\mu, \lambda \geq 0$. Prove that P is a cone.
(b) An extreme ray of a cone K is a nonzero vector $x \in K$ such that $x+y \in K$ and $x-y \in K$ implies that $y=\lambda x$ for some λ.
Give another characterization of the extreme rays of the polyhedral cone P, using the rank of a submatrix of A. (Hint: think about the positive orthant as the canonical example of a cone, in order to get some intuition here.)
(c) Two extreme rays x and y of a cone K are said to be the same if $x=\lambda y$ for some $\lambda>0$. Prove that the number of different extreme rays of our polyhedral cone P is finite. Give a finite bound on the maximum number of extreme rays possible assuming that A is has m rows and n columns.
(d) Let r^{1}, \ldots, r^{k} denote the finite set of extreme rays of P. Let

$$
Q=\operatorname{cone}\left(r^{1}, \ldots, r^{k}\right)=\left\{x=\sum_{i} \lambda_{i} r^{i}: \lambda_{i} \geq 0 \text { for all } i\right\} .
$$

Prove that $P=Q$. (Hint: consider $P^{\prime}=\left\{x \in P: \sum x_{i}=1\right\}$.)
It might help to visualize this as moving from the description of P by the faces of the cone that bound it $(A x \geq 0)$ to a description of P by the outside rays $\left(r^{1}, \ldots, r^{k}\right)$ that bound it.
3. (Strict Complementary Slackness) Consider the standard form linear programs, with primal $\mathrm{LP}\left(\min c^{T} x: A x=b, x \geq 0\right)$ and dual LP $\left(\max b^{T} y: A^{T} y \leq c\right)$. Suppose the value of the two LPs is γ.
(a) Show that the set of optimal solutions to the primal is a convex set; argue the same for the dual.
(b) Show that either there exists an optimal solution x to the primal such that $x_{j}>0$ or there exists an optimal solution y to the dual such that the j th inequality is strict; that is, $\sum_{i=1}^{n} a_{i j} y_{i}<c_{j}$. (Hint: Consider the linear program ($\min -e_{j}^{T} x: A x=b,-c^{T} x \geq$ $-\gamma, x \geq 0$), where e^{j} is a vector that has a 1 in the j th component, and 0 everywhere else).
(c) Show that there exist a primal optimal solution x^{*} and a dual optimal solution y^{*} such that for all $j, x_{j}^{*}>0$ if and only if the j th inequality of the dual is met with equality.

