Problem Set 3

Due Date: September 15, 2016

1. Alternatives. The Theorem of Alternatives (proved in lecture 6) states that for a given matrix $A \in \mathbb{R}^{m \times n}$ and a given vector $b \in \mathbb{R}^{m}$, exactly one of the following two statements holds:
(a) $\exists x \in \mathbb{R}^{n}$ such that $A x \leq b$.
(b) $\exists y \in \mathbb{R}^{m}$ such that $y \geq 0, A^{T} y=0$, and $b^{T} y<0$.

Use the Theorem of Alternatives to prove

- Farkas' Lemma: Given a matrix $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$, exactly one of the following hold:
$-\exists x \in \mathbb{R}^{n}$ such that $A x=b$ and $x \geq 0$.
$-\exists y \in \mathbb{R}^{m}$ such that $A^{T} y \geq 0$ and $b^{T} y<0$.
- Mixed Theorem of Alternatives. Given $A \in \mathbb{R}^{m_{1} \times n}, C \in \mathbb{R}^{m_{2} \times n}$, and $b \in \mathbb{R}^{m_{1}}, d \in$ $\mathbb{R}^{m_{2}}$, exactly one of the following hold:
$-\exists x \in \mathbb{R}^{n}$ such that $A x \leq b$ and $C x=d$.
$-\exists z \in \mathbb{R}^{m_{1}}, y \in \mathbb{R}^{m_{2}}$ such that $z \geq 0, A^{T} z+C^{T} y=0$, and $b^{T} z+d^{T} y<0$.

2. Normal Cones and Strong Duality. Given $A, \bar{A}, \hat{A}, \widetilde{A}, b, \bar{b}, c, \bar{c}$:
(a) for all $z=\left[\begin{array}{ll}x & \bar{x}\end{array}\right]^{T}$, compute $N_{P}(z)$, where

$$
P=\left\{\left.\left[\begin{array}{l}
x \\
\bar{x}
\end{array}\right] \right\rvert\, A x+\bar{A} \bar{x} \leq b, \hat{A} x+\widetilde{A} \bar{x}=\bar{b}, x \geq 0\right\}
$$

(b) for all $w=\left[\begin{array}{ll}y & \bar{y}\end{array}\right]^{T}$, compute $N_{D}(w)$, where

$$
D=\left\{\left.\left[\begin{array}{l}
y \\
\bar{y}
\end{array}\right] \right\rvert\, A^{T} y+\hat{A}^{T} \bar{y} \geq c, \bar{A}^{T} y+\widetilde{A}^{T} \bar{y}=\bar{c}, y \geq 0\right\}
$$

(c) Using the descriptions of the above normal cones, and without using the strong duality theorem we proved in class, prove the following variant of the strong duality theorem: suppose that both of the linear programs

$$
\begin{array}{lc}
\max ^{T} c^{T} x+\bar{c}^{T} \bar{x} & \min ^{x} b^{T} y+\bar{b}^{T} \bar{y} \\
{\left[\begin{array}{l}
x \\
\bar{x}
\end{array}\right] \in P} & {\left[\begin{array}{l}
y \\
\bar{y}
\end{array}\right] \in D}
\end{array}
$$

have finite optimal values, which we denote by p^{*} and d^{*}, respectively. Then $p^{*}=d^{*}$.
3. Subgradients. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous, convex function, i.e., f satisfies

$$
(\forall \lambda \in[0,1])\left(\forall x, y \in \mathbb{R}^{n}\right) \quad f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) .
$$

Define the epigraph of f :

$$
\operatorname{epi}(f):=\left\{(x, t) \in \mathbb{R}^{n+1} \mid f(x) \leq t\right\} .
$$

- Prove that epi (f) is closed and convex.
- Prove that $\left[\begin{array}{ll}v & -1\end{array}\right]^{T} \in N_{\mathbf{e p i}(f)}(x, f(x))$ if, and only if,

$$
\left(\forall z \in \mathbb{R}^{n}\right) \quad f(z) \geq f(x)+(z-x)^{T} v .
$$

Such vectors $v \in \mathbb{R}^{n}$ are called subgradients f at x, and the set of all such v is denoted by $\partial f(x)$.

- Prove Fermat's rule: x minimizes f if, and only if, $0 \in \partial f(x)$.
- Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the absolute value function $f(x)=|x|$. Draw the following normal cones: $N_{\mathbf{e p i}(f)}(-1,1), N_{\mathbf{e p i}(f)}(0,0)$, and $N_{\mathbf{e p i}(f)}(1,1)$.

4. Vertices of Dual Problems.

- Prove the following lemma: consider the polyhedron $Q:=\{x \mid x \geq 0, C x=d\}$. Then
$-\bar{x} \in Q$ is an extreme point if

$$
\operatorname{rank}\left(\left[\begin{array}{llll}
c_{i_{1}} & c_{i_{2}} & \ldots & c_{i_{k}}
\end{array}\right]\right)=k
$$

where c_{j} is column j of C and $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}=\left\{i \mid \bar{x}_{i}>0\right\}$.

- any extreme point of Q has at most $\operatorname{rank}(C)$ nonzero elements.
- Suppose that the following linear program has a solution:

$$
\begin{gathered}
\operatorname{minimize} b^{T} y \\
\text { subject to: } A^{T} y=c \\
y \geq 0
\end{gathered}
$$

Using Problem 4 from homework 2, conclude that at least one solution to this problem is a vertex. Use the first part of this exercise to show that there exists a solution y^{*} with at most $\operatorname{rank}\left(A^{T}\right)$ nonzero elements.

- Using part 2, prove Carathéodory's Theorem: if $x \in \mathbb{R}^{n}$ is the convex combination of k vectors, v_{1}, \ldots, v_{k}, then x is also the convex combination of at most $n+1$ of the vectors v_{1}, \ldots, v_{k}.

