ORIE 6300 Mathematical Programming I

Problem Set 2

1. Give an example of a primal-dual pair for which both the primal and dual are infeasible, and demonstrate that they are infeasible. Use a matrix $A \in \Re^{1 \times 1}$.
2. Let $\mathbf{1} \in \mathbb{R}^{n}$ be the vector of all ones. Consider the set of doubly stochastic matrices

$$
X=\left\{A \in \mathbb{R}^{n \times n} \mid A \geq 0 \text { (entrywise), } \mathbf{1}^{T} A=\mathbf{1}^{T} \text { and } A \mathbf{1}=\mathbf{1}\right\} .
$$

Prove that X is convex and a polytope. Show that the set of extreme points of X is exactly the set of permutation matrices \mathcal{P}, i.e., those binary matrices $P \in \mathbb{R}^{n \times n}$ that have exactly one entry equal to 1 in each row and each column and 0 s elsewhere.
(Hint: You can assume the following Lemma: Consider the polyhedron $Q:=\{x \mid x \geq 0, C x=$ $d\}$. Then

- $\bar{x} \in Q$ is an extreme point if

$$
\operatorname{rank}\left(\left[\begin{array}{llll}
c_{i_{1}} & c_{i_{2}} & \ldots & c_{i_{k}}
\end{array}\right]\right)=k
$$

where c_{j} is column j of C and $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}=\left\{i \mid \bar{x}_{i}>0\right\}$.

- any extreme point of Q has at most $\operatorname{rank}(C)$ nonzero elements.

Bonus points: prove the lemma.)
3. Let $C \subseteq \mathbb{R}^{n}$ be a closed convex set and let $y \in \mathbb{R}^{n}$ be a vector.
(a) Show that $f: C \rightarrow \mathbb{R}^{n}$, defined by

$$
(\forall x \in C) \quad f(x)=\frac{1}{2}\|x-y\|^{2}
$$

has a unique minimizer $x^{*} \in C$. (Hint: recall that in lecture 4 we showed f has at least one minimizer in C.)
(b) Show that

$$
(\forall z \in C) \quad\left\|x^{*}-z\right\|^{2}+\left\|x^{*}-y\right\|^{2} \leq\|y-z\|^{2}
$$

(Hint: if $y \in C$, the result is trivial; if $y \notin C$, recall from the proof of the separating hyperplane theorem, we had, for some $b \in \mathbb{R}$, that $(\forall z \in C)(y-x)^{T} z<b<(y-x)^{T} y$.)
(c) Conclude that the projection mapping $P_{C}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, defined by

$$
\left(\forall y \in \mathbb{R}^{n}\right) \quad P_{C}(y)=\text { the unique minimizer } x^{*} \in C \text { of } f(x)=\frac{1}{2}\|x-y\|^{2}
$$

is well-defined and

$$
(\forall z \in C),\left(\forall y \in \mathbb{R}^{n}\right) \quad\left\|P_{C}(y)-z\right\|^{2}+\left\|P_{C}(y)-y\right\|^{2} \leq\|y-z\|^{2} .
$$

4. Suppose that you are given a feasible solution \bar{x} of value $\bar{\gamma}$ to the problem $\max \left(c^{T} x: A x \leq b\right)$. Give a method that either demonstrates that the feasible region is unbounded (i.e., there is a point x and direction y such that $x+\lambda y$ is feasible for all $\lambda>0$) or that finds a vertex \tilde{x} of the feasible region with objective value $c \tilde{x} \geq \bar{\gamma}$. Your method should not use general purpose linear programming algorithms (like the simplex method). (Hint: some of the discussion of the equivalence of bounded polyhedra and polytopes, as well as the equivalence of extreme points, vertices, and basic feasible solutions, might prove useful.)
