ORIE 6300 Mathematical Programming I

September 1, 2016

Problem Set 2

Due Date: September 8, 2016

- 1. Give an example of a primal-dual pair for which both the primal and dual are infeasible, and demonstrate that they are infeasible. Use a matrix $A \in \Re^{1 \times 1}$.
- 2. Let $\mathbf{1} \in \mathbb{R}^n$ be the vector of all ones. Consider the set of doubly stochastic matrices

 $X = \{A \in \mathbb{R}^{n \times n} \mid A \ge 0 \text{ (entrywise)}, \mathbf{1}^T A = \mathbf{1}^T \text{ and } A\mathbf{1} = \mathbf{1}\}.$

Prove that X is convex and a polytope. Show that the set of extreme points of X is exactly the set of permutation matrices \mathcal{P} , i.e., those binary matrices $P \in \mathbb{R}^{n \times n}$ that have exactly one entry equal to 1 in each row and each column and 0s elsewhere.

(Hint: You can assume the following Lemma: Consider the polyhedron $Q := \{x \mid x \ge 0, Cx = d\}$. Then

• $\overline{x} \in Q$ is an extreme point if

$$\operatorname{rank}\left(\begin{bmatrix}c_{i_1} & c_{i_2} & \dots & c_{i_k}\end{bmatrix}\right) = k$$

where c_j is column j of C and $\{i_1, i_2, \ldots, i_k\} = \{i \mid \overline{x}_i > 0\}.$

• any extreme point of Q has at most rank(C) nonzero elements.

Bonus points: prove the lemma.)

- 3. Let $C \subseteq \mathbb{R}^n$ be a closed convex set and let $y \in \mathbb{R}^n$ be a vector.
 - (a) Show that $f: C \to \mathbb{R}^n$, defined by

$$(\forall x \in C) \quad f(x) = \frac{1}{2} ||x - y||^2$$

has a unique minimizer $x^* \in C$. (Hint: recall that in lecture 4 we showed f has at least one minimizer in C.)

(b) Show that

$$(\forall z \in C)$$
 $||x^* - z||^2 + ||x^* - y||^2 \le ||y - z||^2.$

(Hint: if $y \in C$, the result is trivial; if $y \notin C$, recall from the proof of the separating hyperplane theorem, we had, for some $b \in \mathbb{R}$, that $(\forall z \in C) \ (y-x)^T z < b < (y-x)^T y$.)

(c) Conclude that the projection mapping $P_C : \mathbb{R}^n \to \mathbb{R}^n$, defined by

$$(\forall y \in \mathbb{R}^n)$$
 $P_C(y) =$ the unique minimizer $x^* \in C$ of $f(x) = \frac{1}{2} ||x - y||^2$,

is well-defined and

$$(\forall z \in C), (\forall y \in \mathbb{R}^n)$$
 $||P_C(y) - z||^2 + ||P_C(y) - y||^2 \le ||y - z||^2.$

4. Suppose that you are given a feasible solution \bar{x} of value $\bar{\gamma}$ to the problem $\max(c^T x : Ax \leq b)$. Give a method that either demonstrates that the feasible region is unbounded (i.e., there is a point x and direction y such that $x + \lambda y$ is feasible for all $\lambda > 0$) or that finds a vertex \tilde{x} of the feasible region with objective value $c\tilde{x} \geq \bar{\gamma}$. Your method should not use general purpose linear programming algorithms (like the simplex method). (Hint: some of the discussion of the equivalence of bounded polyhedra and polytopes, as well as the equivalence of extreme points, vertices, and basic feasible solutions, might prove useful.)