ORIE 6300 Mathematical Programming I

November 17, 2016

Problem Set 10

Due Date: December 2, 2016

- 1. Subdifferential Examples. Prove the following
 - (a) ℓ_p norms. $g(x) = ||x||_p$ where $p \in [1, \infty]$. Let q satisfy 1/p + 1/q = 1. Show that

$$\partial g(0) = \{ v \mid ||v||_q \le 1 \}.$$

(b) Least Absolute Deviation (LAD). $g(x) = \sum_{i=1}^{m} |\langle a_i, x \rangle - b_i|$ where $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$. Show that

$$\partial g(x) = \sum_{i \in I_+(x)} a_i - \sum_{i \in I_-(x)} a_i + \sum_{i \in I_0(x)} a_i * [-1, 1],$$

where $a_i * [-1, 1] = \{a_i \lambda \mid \lambda \in [-1, 1]\}$ and

$$I_{+}(x) = \{i \mid \langle a_{i}, x \rangle - b_{i} > 0\}, \quad I_{-}(x) = \{i \mid \langle a_{i}, x \rangle - b_{i} < 0\}, \quad I_{0}(x) = \{i \mid \langle a_{i}, x \rangle - b_{i} = 0\}$$

Using this decomposition, compute $[\partial \| \cdot \|_1](x)$.

(c) **Distance Functions.** Let $C \subseteq \mathbb{R}^n$ be a closed, convex set. Let

$$(\forall x \in \mathbb{R}^n)$$
 $d_C(x) := \inf_{y \in C} \|y - x\|.$

Prove that d_C is closed, convex and 1-Lipschitz continuous. Suppose that $x \notin C$. Show that

$$\frac{1}{d_C(x)}(x - P_C(x)) \in \partial d_C(x).$$

2. Support Function/Normal Cone Duality. Suppose that $C \subseteq \mathbb{R}^n$ is a closed convex set. Let $\sigma_C : \mathbb{R}^n \to \overline{\mathbb{R}}$ be the support function of C:

$$(\forall v \in \mathbb{R}^n)$$
 $\sigma_C(v) := \sup_{y \in C} \langle y, v \rangle.$

- (a) Show that σ_C is closed and convex.
- (b) Show that $y \in \partial \sigma_C(v) \iff (y \in C \text{ and } \langle v, y \rangle = \sigma_C(v)) \iff v \in N_C(y).$
- 3. Lipschitz Continuity and Subdifferentials. Prove that a closed convex function $g : \mathbb{R}^n \to \overline{\mathbb{R}}$ is *L*-Lipschitz continuous if, and only if, dom $(g) = \mathbb{R}^n$ and

$$(\forall x \in \mathbb{R}^n)$$
 $v \in \partial g(x) \implies ||v|| \le L.$

Use this fact to conclude that the value function

$$v(u) := \max\{c^T x \mid Ax \le b + u\}$$

is L-Lipschitz continuous if, and only if, the dual polytope $P(A^T, c) = \{y \mid A^T y = c, y \ge 0\}$ is nonempty and bounded.

- 4. Subgradient Method. Let $g : \mathbb{R}^n \to \mathbb{R}$ be an *L*-Lipschitz continuous convex function, let $C \subseteq \mathbb{R}^n$ be a closed, convex set, and suppose that $x^* \in \operatorname{argmin}_{x \in C} g(x)$.
 - (a) Let $\gamma > 0$, let $x \in \mathbb{R}^n$, let $v \in \partial g(x)$, and define

$$x_{\gamma,v} = P_C(x - \gamma v)$$

Prove that

$$||x_{\gamma,v} - x^*||^2 + 2\gamma(g(x) - g(x^*)) \le ||x - x^*||^2 + \gamma^2 L^2.$$

(**Hint:** First assume that $C = \mathbb{R}^n$, then use nonexpansiveness of P_C .)

(b) Consider the subgradient descent method

A 1 • 1	-1	D	• • 1	C 1	1	N/C / 1 1	C	•	/ ``	<u>،</u>
Algorithm		Pro	lected	Subor	adient	Method	tor	aromin $\sim a$	r	۱
AIguituiiii	<u>ь</u>	1 10	locuou.	Dubgi	autone	mounou	TOT	argmm _m ('9)	, a	1
0			,	()					• /	e

Input	$: x^0 \in C, \{\gamma_k\}_{k \in \mathbb{N}} \subseteq \mathbb{R}_{>0}$
1: lo	op
2:	Choose $v^k \in \partial q(x^k)$

2: Choose $v^{\kappa} \in og(x^{\kappa})$ 3: $x^{k+1} = P_C(x^k - \gamma_k v^k)$

Prove that

$$(\forall k \in \mathbb{N}) \qquad \min_{i=0,\dots,k} \left\{ g(x^i) - g(x^*) \right\} \le \frac{\|x^0 - x^*\|^2 + L^2 \sum_{i=0}^k \gamma_i^2}{2 \sum_{i=0}^k \gamma_i}$$

Give a choice of $\{\gamma_k\}_{k\in\mathbb{N}}$ that guarantees $\min_{i=0,\dots,k} \{g(x^i) - g(x^*)\} \to 0$ as $k \to \infty$.