Problem Set 10

1. Subdifferential Examples. Prove the following
(a) ℓ_{p} norms. $g(x)=\|x\|_{p}$ where $p \in[1, \infty]$. Let q satisfy $1 / p+1 / q=1$. Show that

$$
\partial g(0)=\left\{v \mid\|v\|_{q} \leq 1\right\} .
$$

(b) Least Absolute Deviation (LAD). $g(x)=\sum_{i=1}^{m}\left|\left\langle a_{i}, x\right\rangle-b_{i}\right|$ where $a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$. Show that

$$
\partial g(x)=\sum_{i \in I_{+}(x)} a_{i}-\sum_{i \in I_{-}(x)} a_{i}+\sum_{i \in I_{0}(x)} a_{i} *[-1,1],
$$

where $a_{i} *[-1,1]=\left\{a_{i} \lambda \mid \lambda \in[-1,1]\right\}$ and

$$
I_{+}(x)=\left\{i \mid\left\langle a_{i}, x\right\rangle-b_{i}>0\right\}, \quad I_{-}(x)=\left\{i \mid\left\langle a_{i}, x\right\rangle-b_{i}<0\right\}, \quad I_{0}(x)=\left\{i \mid\left\langle a_{i}, x\right\rangle-b_{i}=0\right\} .
$$

Using this decomposition, compute $\left[\partial\|\cdot\|_{1}\right](x)$.
(c) Distance Functions. Let $C \subseteq \mathbb{R}^{n}$ be a closed, convex set. Let

$$
\left(\forall x \in \mathbb{R}^{n}\right) \quad d_{C}(x):=\inf _{y \in C}\|y-x\| .
$$

Prove that d_{C} is closed, convex and 1-Lipschitz continuous. Suppose that $x \notin C$. Show that

$$
\frac{1}{d_{C}(x)}\left(x-P_{C}(x)\right) \in \partial d_{C}(x) .
$$

2. Support Function/Normal Cone Duality. Suppose that $C \subseteq \mathbb{R}^{n}$ is a closed convex set. Let $\sigma_{C}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the support function of C :

$$
\left(\forall v \in \mathbb{R}^{n}\right) \quad \sigma_{C}(v):=\sup _{y \in C}\langle y, v\rangle .
$$

(a) Show that σ_{C} is closed and convex.
(b) Show that $y \in \partial \sigma_{C}(v) \Longleftrightarrow\left(y \in C\right.$ and $\left.\langle v, y\rangle=\sigma_{C}(v)\right) \Longleftrightarrow v \in N_{C}(y)$.
3. Lipschitz Continuity and Subdifferentials. Prove that a closed convex function $g: \mathbb{R}^{n} \rightarrow$ $\overline{\mathbb{R}}$ is L-Lipschitz continuous if, and only if, $\operatorname{dom}(g)=\mathbb{R}^{n}$ and

$$
\left(\forall x \in \mathbb{R}^{n}\right) \quad v \in \partial g(x) \Longrightarrow\|v\| \leq L
$$

Use this fact to conclude that the value function

$$
v(u):=\max \left\{c^{T} x \mid A x \leq b+u\right\}
$$

is L-Lipschitz continuous if, and only if, the dual polytope $P\left(A^{T}, c\right)=\left\{y \mid A^{T} y=c, y \geq 0\right\}$ is nonempty and bounded.
4. Subgradient Method. Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be an L-Lipschitz continuous convex function, let $C \subseteq \mathbb{R}^{n}$ be a closed, convex set, and suppose that $x^{*} \in \operatorname{argmin}_{x \in C} g(x)$.
(a) Let $\gamma>0$, let $x \in \mathbb{R}^{n}$, let $v \in \partial g(x)$, and define

$$
x_{\gamma, v}=P_{C}(x-\gamma v)
$$

Prove that

$$
\left\|x_{\gamma, v}-x^{*}\right\|^{2}+2 \gamma\left(g(x)-g\left(x^{*}\right)\right) \leq\left\|x-x^{*}\right\|^{2}+\gamma^{2} L^{2} .
$$

(Hint: First assume that $C=\mathbb{R}^{n}$, then use nonexpansiveness of P_{C}.)
(b) Consider the subgradient descent method

```
Algorithm 1 Projected Subgradient Method for \(\operatorname{argmin}_{x \in C} g(x)\)
Input: \(x^{0} \in C,\left\{\gamma_{k}\right\}_{k \in \mathbb{N}} \subseteq \mathbb{R}_{>0}\)
    : loop
        Choose \(v^{k} \in \partial g\left(x^{k}\right)\)
        \(x^{k+1}=P_{C}\left(x^{k}-\gamma_{k} v^{k}\right)\)
```

Prove that

$$
(\forall k \in \mathbb{N}) \quad \min _{i=0, \ldots, k}\left\{g\left(x^{i}\right)-g\left(x^{*}\right)\right\} \leq \frac{\left\|x^{0}-x^{*}\right\|^{2}+L^{2} \sum_{i=0}^{k} \gamma_{i}^{2}}{2 \sum_{i=0}^{k} \gamma_{i}}
$$

Give a choice of $\left\{\gamma_{k}\right\}_{k \in \mathbb{N}}$ that guarantees $\min _{i=0, \ldots, k}\left\{g\left(x^{i}\right)-g\left(x^{*}\right)\right\} \rightarrow 0$ as $k \rightarrow \infty$.

