ORIE 6300 Mathematical Programming I

Problem Set 1

1. Let $A \in \mathbb{R}^{m \times n}$ be a matrix. Suppose there exists $d \in \mathbb{R}^{n}$ such that
(a) $A d=0$; and
(b) $d>0$.

Show that the system of strict inequalities $A^{T} x<0$ has no solution.
2. Show that the following two statements are equivalent
(a) Let $A \in \mathbb{R}^{m \times n}$ and let $b \in \mathbb{R}^{m}$ be a vector. The system $A x=b$ has a nonnegative solution if, and only if, every $y \in \mathbb{R}^{m}$ with $y^{T} A \geq 0$ also satisfies $y^{T} b \geq 0$.
(b) Let $\hat{A} \in \mathbb{R}^{\hat{m} \times \hat{n}}$ and let $\hat{b} \in \mathbb{R}^{\hat{m}}$ be a vector. The system $\hat{A} \hat{x} \leq \hat{b}$ has a nonnegative solution if, and only if, every nonnegative $\hat{y} \in \mathbb{R}^{\hat{m}}$ with $\hat{y}^{T} \hat{A} \geq 0$ also satisfies $\hat{y}^{T} \hat{b} \geq 0$.
3. Let $A \in \mathbb{R}^{m \times n}$ and let $b \in \mathbb{R}^{m}$ be a vector. Consider the following compressive sensing problem:

$$
\text { minimize }\|x\|_{1}
$$

subject to: $A x=b$.
(a) Reformulate this problem as an equivalent LP and
(b) take its dual. Simplify the dual LP until the decision variable is a vector $z \in \mathbb{R}^{m}$.
4. What is the dual of the linear program with variables $x \geq 0$ and an additional single variable λ with constraints $A x \leq \lambda b$, where the objective is to minimize λ ?
5. Consider the following LP:

$$
\begin{array}{rll}
\operatorname{Max} \sum_{i=1}^{n} v_{i} x_{i} & & \\
\sum_{i=1}^{n} s_{i} x_{i} & \leq B & \\
x_{i} & \leq 1 & i=1, \ldots, n \\
x_{i} & \geq 0 & i=1, \ldots, n
\end{array}
$$

(a) Show the dual of the LP above. Use the variable y_{0} for the constraint with right-hand side B, and the variables y_{i} for the $x_{i} \leq 1$ constraints.
(b) Assume that the numbers v_{i} and s_{i} are positive and that

$$
\frac{v_{1}}{s_{1}} \geq \frac{v_{2}}{s_{2}} \geq \cdots \geq \frac{v_{n}}{s_{n}}
$$

Let k be the largest index such that $s_{1}+s_{2}+\cdots+s_{k-1} \leq B$. Show that the following primal and dual LP solutions must be optimal:

$$
\begin{aligned}
& x_{i}= \begin{cases}1 & i<k \\
\frac{B-\left(s_{1}+s_{2}+\cdots+s_{k-1}\right)}{s_{k}} & i=k \\
0 & i>k\end{cases} \\
& y_{i}= \begin{cases}\frac{v_{k}}{s_{k}} & i=0 \\
s_{i}\left(\frac{v_{i}}{s_{i}}-\frac{v_{k}}{s_{k}}\right) & 0<i<k \\
0 & i \geq k\end{cases}
\end{aligned}
$$

