ORIE 6300 Mathematical Programming I

August 25, 2016

Problem Set 1

Due Date: September 1, 2016

- 1. Let $A \in \mathbb{R}^{m \times n}$ be a matrix. Suppose there exists $d \in \mathbb{R}^n$ such that
 - (a) Ad = 0; and
 - (b) d > 0.

Show that the system of **strict** inequalities $A^T x < 0$ has no solution.

- 2. Show that the following two statements are equivalent
 - (a) Let $A \in \mathbb{R}^{m \times n}$ and let $b \in \mathbb{R}^m$ be a vector. The system Ax = b has a nonnegative solution if, and only if, every $y \in \mathbb{R}^m$ with $y^T A \ge 0$ also satisfies $y^T b \ge 0$.
 - (b) Let $\hat{A} \in \mathbb{R}^{\hat{m} \times \hat{n}}$ and let $\hat{b} \in \mathbb{R}^{\hat{m}}$ be a vector. The system $\hat{A}\hat{x} \leq \hat{b}$ has a nonnegative solution if, and only if, every nonnegative $\hat{y} \in \mathbb{R}^{\hat{m}}$ with $\hat{y}^T \hat{A} \geq 0$ also satisfies $\hat{y}^T \hat{b} \geq 0$.
- 3. Let $A \in \mathbb{R}^{m \times n}$ and let $b \in \mathbb{R}^m$ be a vector. Consider the following compressive sensing problem:

minimize
$$||x||_1$$

subject to: $Ax = b$.

- (a) Reformulate this problem as an equivalent LP and
- (b) take its dual. Simplify the dual LP until the decision variable is a vector $z \in \mathbb{R}^m$.
- 4. What is the dual of the linear program with variables $x \ge 0$ and an additional single variable λ with constraints $Ax \le \lambda b$, where the objective is to minimize λ ?
- 5. Consider the following LP:

$$\operatorname{Max} \sum_{i=1}^{n} v_{i} x_{i}$$

$$\sum_{i=1}^{n} s_{i} x_{i} \leq B$$

$$x_{i} \leq 1 \qquad i = 1, \dots, n$$

$$x_{i} \geq 0 \qquad i = 1, \dots, n$$

(a) Show the dual of the LP above. Use the variable y_0 for the constraint with right-hand side B, and the variables y_i for the $x_i \leq 1$ constraints.

(b) Assume that the numbers v_i and s_i are positive and that

$$\frac{v_1}{s_1} \ge \frac{v_2}{s_2} \ge \dots \ge \frac{v_n}{s_n}.$$

Let k be the largest index such that $s_1 + s_2 + \cdots + s_{k-1} \leq B$. Show that the following primal and dual LP solutions must be optimal:

$$x_{i} = \begin{cases} 1 & i < k \\ \frac{B - (s_{1} + s_{2} + \dots + s_{k-1})}{s_{k}} & i = k \\ 0 & i > k \end{cases}$$
$$y_{i} = \begin{cases} \frac{v_{k}}{s_{k}} & i = 0 \\ s_{i} \left(\frac{v_{i}}{s_{i}} - \frac{v_{k}}{s_{k}}\right) & 0 < i < k \\ 0 & i \ge k \end{cases}$$