ORIE 6300 Mathematical Programming I

November 29, 2016
Lecture 26
Lecturer: Damek Davis
Scribe: Benjamin Grimmer

1 Last Time

Recall that for $\gamma>0$, the Moreau envelope is defined through the minimization problem $e_{\gamma g}(x)=$ $\inf _{y}\left(g(y)+\frac{1}{2 \gamma}\|x-y\|^{2}\right)$. Last time we proved a number of properties showing that $e_{\gamma g}$ is well behaved. We proved the following proposition:

Proposition 1 Let $x \in \mathbb{R}^{n}$. Then there exists a unique point denoted by $\operatorname{prox}_{\gamma g}(x)$ such that

1. $\left\{\operatorname{prox}_{\gamma g}(x)\right\}=\operatorname{argmin}_{y}\left\{g(y)+\frac{1}{2 \gamma}\|x-y\|^{2}\right\}$;
2. $\operatorname{Fix}\left(\operatorname{prox}_{\gamma g}\right)=\operatorname{argmin}_{y}\{g(y)\} ;$
3. $\operatorname{prox}_{\gamma g}$ is firmly non-expansive.

Then a direct application of the KM convergence theorem gives the following result.
Corollary 2 Suppose $\operatorname{argmin}_{y}\{g(y)\} \neq \emptyset$. Then the proximal point algorithm converges to a minimizer of g.

2 Smoothness of Moreau Envelope

Theorem $3 e_{\gamma g}$ is C^{1} and for all $x \in \mathbb{R}^{n}$, $\nabla e_{\gamma g}(x)=\frac{1}{\gamma}\left(x-\operatorname{prox}_{\gamma g}(x)\right)$. Consequently, the Moreau envelope has a $1 / \gamma$ Lipschitz continuous gradient.

Proof: Let $x, y \in \mathbb{R}^{n}$. Then the Theorem will follow if we show the following:

$$
\lim _{y \rightarrow x} \frac{e_{\gamma g}(y)-e_{\gamma g}(x)-\left\langle y-x, \frac{1}{\gamma}\left(x-\operatorname{prox}_{\gamma g}(x)\right)\right\rangle}{\|y-x\|}=0
$$

As a shorthand, we will denote $p_{x}=\operatorname{prox}_{\gamma g}(x)$ and $p_{y}=\operatorname{prox}_{\gamma g}(y)$. From optimality conditions, we know that $(1 / \gamma)\left(x-p_{x}\right) \in \partial g\left(p_{x}\right)$. Then we find the following lower bound.

$$
\begin{aligned}
e_{\gamma g}(y)-e_{\gamma g}(x)= & g\left(p_{y}\right)+\frac{1}{2 \gamma}\left\|p_{y}-y\right\|^{2}-g\left(p_{x}\right)-\frac{1}{2 \gamma}\left\|p_{x}-x\right\|^{2} \\
\geq & \frac{1}{2 \gamma}\left(2\left\langle p_{y}-p_{x}, x-p_{x}\right\rangle+\left\|y-p_{y}\right\|^{2}-\left\|x-p_{x}\right\|^{2}\right) \\
& =\frac{1}{2 \gamma}\left(2\left\langle\left(p_{y}-y\right)-\left(p_{x}-x\right), x-p_{x}\right\rangle+2\left\langle y-x, x-p_{x}\right\rangle+\left\|y-p_{y}\right\|^{2}-\left\|x-p_{x}\right\|^{2}\right) \\
& =\frac{1}{2 \gamma}\left(\left\|\left(p_{y}-y\right)-\left(p_{x}-x\right)\right\|^{2}+\left\|x-p_{x}\right\|^{2}-\left\|y-p_{y}\right\|^{2}\right. \\
& \left.\quad+2\left\langle y-x, x-p_{x}\right\rangle+\left\|y-p_{y}\right\|^{2}-\left\|x-p_{x}\right\|^{2}\right) \\
& =\frac{1}{2 \gamma}\left(\left\|\left(p_{y}-y\right)-\left(p_{x}-x\right)\right\|^{2}+2\left\langle y-x, x-p_{x}\right\rangle\right) \\
\geq & \frac{1}{\gamma}\left\langle y-x, x-p_{x}\right\rangle
\end{aligned}
$$

We can apply the same argument swapping the roles of x and y to find a symmetric bound:

$$
e_{\gamma g}(y)-e_{\gamma g}(x) \leq\left\langle y-x, y-p_{y}\right\rangle
$$

Combining these two bounds, we get the following:

$$
\begin{aligned}
0 \leq e_{\gamma g}(y)-e_{\gamma g}(x)-\frac{1}{\gamma}\left\langle y-x, x-p_{x}\right\rangle & \leq \frac{1}{\gamma}\left\langle y-x,\left(y-p_{y}\right)-\left(x-p_{x}\right)\right\rangle \\
& =\frac{1}{\gamma}\left\langle y-x,(y-x)-\left(p_{y}-p_{x}\right)\right\rangle \\
& =\frac{1}{2 \gamma}\left(\|y-x\|^{2}+\left\|\left(y-p_{y}\right)-\left(x-p_{x}\right)\right\|^{2}-\left\|p_{x}-p_{y}\right\|^{2}\right) \\
& \leq \frac{1}{\gamma}\|y-x\|^{2}
\end{aligned}
$$

Then the Theorem follows from dividing the above equation by $\|y-x\|$ and applying the squeeze theorem as $y \rightarrow x$.

As an immediate consequence of this Theorem, we have the following corollary by recalling the optimality condition for $\operatorname{prox}_{\gamma g}(\cdot)$ (i.e. $\left.(1 / \gamma)\left(x-\operatorname{prox}_{\gamma g}(x)\right) \in \partial g\left(\operatorname{prox}_{\gamma g}(x)\right)\right)$.
Corollary $4 \nabla e_{\gamma g}(x)=\frac{1}{\gamma}\left(x-\operatorname{prox}_{\gamma g}(x)\right) \in \partial g\left(\operatorname{prox}_{\gamma g}(x)\right)$
Example. Let $C \subseteq \mathbb{R}^{n}$ be a closed convex set. Then the function $e_{\iota_{C}}(x)=\frac{1}{2} d_{C}^{2}(x)$ is smooth. Further, we know that $\nabla\left(\frac{1}{2} d_{C}^{2}(x)\right)=x-P_{C}(x) \in \partial \iota_{C}\left(P_{C}(x)\right)=N_{C}\left(P_{C}(x)\right)$.

Question. Why is the Moreau envelope smooth?
We can define the addition of two sets C_{1} and C_{2} as $C_{1}+C_{2}=\left\{a_{1}+a_{2} \mid a_{1} \in C_{1} a_{2} \in C_{2}\right\}$. Then we observe that adding a smooth set to one with corners will always produce a smooth set. In essence, the smoothness is inherited from either of the underlying sets. An instructive example is given by the sum of a triangle and a disk in the plane. Now to relate this smoothness to the Moreau envelope, we decompose the epigraph of the Moreau envelope into the sum of two simpler epigraphs.

Theorem 5 (epigraph addition formula) epi $\left(e_{\gamma g}\right)=\operatorname{epi}(g)+\operatorname{epi}\left(\frac{1}{2 \gamma}\|\cdot\|^{2}\right)$
Proof: First we prove the \subseteq inclusion. Let $(x, t) \in \operatorname{epi}\left(e_{\gamma g}\right)$. Then we know the following:

$$
e_{\gamma g}(x)=g\left(\operatorname{prox}_{\gamma g}(x)\right)+\frac{1}{2 \gamma}\left\|x-\operatorname{prox}_{\gamma g}(x)\right\|^{2} \leq t=t_{1}+t_{2}
$$

where $\left(\operatorname{prox}_{\gamma g}(x), t_{1}\right) \in \operatorname{epi}(g)$ and $\left(x-\operatorname{prox}_{\gamma g}(x), t_{2}\right) \in \operatorname{epi}\left(\frac{1}{2 \gamma}\|\cdot\|^{2}\right)$.
Now we prove the \supseteq inclusion. Let $\left(x_{1}, t_{1}\right) \in \operatorname{epi}(g)$ and $\left(x_{2}, t_{2}\right) \in \operatorname{epi}\left(\frac{1}{2 \gamma}\|\cdot\|^{2}\right)$. Let $x:=x_{1}+x_{2}$. Then we know the following:

$$
\begin{aligned}
t_{1}+t_{2} & \geq g\left(x_{1}\right)+\frac{1}{2 \gamma}\left\|x_{2}\right\|^{2} \\
& \geq \inf _{y+z=x}\left\{g(y)+\frac{1}{2 \gamma}\|z\|^{2}\right\} \\
& =\inf _{y}\left\{g(y)+\frac{1}{2 \gamma}\|y-x\|^{2}\right\} \\
& =e_{\gamma g}(x) .
\end{aligned}
$$

This decomposition of the epigraph of the Moreau envelope shows how its smoothness is inherited from the smoothness of $\|\cdot\|^{2}$.

3 How Well Does The Moreau Envelope Approximate $g(x)$?

Observe that setting γ near zero will cause the quadratic term to dominate the envelope. Thus we find that as $\gamma \rightarrow 0$, we will have $e_{\gamma g}(x)=g(x)$. Conversely, as $\gamma \rightarrow \infty$, we will have $e_{\gamma g}(x)=$ $\inf g(y)$. This motivates the question. How good of an approximation of $g(x)$ is the Moreau envelope for a fixed γ. In the case of Lipschitz functions, we can give a guarantee of its quality.

Theorem 6 (Constant approximation for Lipschitz functions) Let g be an L-Lipschitz function.

$$
0 \leq g(x)-e_{\gamma g}(x) \leq L^{2} \gamma
$$

Proof: \quad Notice that $v_{p}:=(1 / \gamma)\left(x-\operatorname{prox}_{\gamma g}(x)\right) \in \partial g\left(\operatorname{prox}_{\gamma g}(x)\right)$. Let $v \in \partial g(x)$. By question 3 in Homework 10, we know that $\|v\|,\left\|v_{p}\right\| \leq L$. Moreover, we know that the Moreau envelope is always a lower bound. Thus, we know the following:

$$
\begin{aligned}
0 & \leq g(x)-e_{\gamma g}(x) \\
& \leq g(x)-g\left(\operatorname{prox}_{\gamma g}(x)\right)-\frac{1}{2 \gamma}\left\|\operatorname{prox}_{\gamma g}(x)\right\|^{2} \\
& \leq\left\langle v, x-\operatorname{prox}_{\gamma g}(x)\right\rangle-\frac{1}{2 \gamma}\left\|\operatorname{prox}_{\gamma g}(x)\right\|^{2} \\
& \leq\|v\|\left\|v_{p}\right\| \gamma \\
& \leq L^{2} \gamma
\end{aligned}
$$

Finally, note that if g is L-Lipschitz, then its Moreau envelope is also L-Lipschitz.

