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1 Last Time

1. Definition 1 Let g : Rn → R̄ be a function. Then the set-valued operators

∂g(x) := {v ∈ Rn | ∀y, g(y) ≥ g(x) + 〈v, y − x〉}

∂g∞(x) :=

{
v ∈ Rn |

[
v
0

]
∈ Nepi(g)(x, g(x))

}
are called the subdifferential and horizontal subdifferential respectively. We left it as an exercise to
prove that ∂∞g(x) = Ndom(g)(x).

2. Theorem 1 Let g : Rn → R̄ be closed, convex. Then ∀x ∈ dom(g), we have

Nepi(g)(x, g(x)) =

{
λ

[
v
−1

]
| v ∈ ∂g(x), λ > 0

}
∪
{[
v
0

]
| v ∈ ∂∞g(x)

}
3. Corollary 2 Let g : Rn → R̄ be closed and convex. Then the following holds.

1. (∀x ∈ dom(g)) ∂g(x) ∪ (∂g∞(x)\{0}) 6= ∅.
2. (∀x ∈ int(dom(g))) ∂g(x) 6= ∅.

2 Today

Assumption: All functions considered in this lecture are closed, proper, convex. With this assumption, the
set ∂g(x) is closed and convex. This fact will be needed later and we leave the proof as an exercise.
This will be a very technical lecture. However, it will be one of the most useful “fact sheets” for those of
you who study optimization.

To compute with subdifferentials, it’s extremely useful to relate subdifferentials to directional derivatives.

Definition 2 Let x ∈ dom(g), we call g differentiable at x in the direction p ∈ Rn if g′(x; p) = limα↓0
g(x+αp)−g(x)

α
exists.

Example 1
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Lemma 3 Let g be closed, convex. Let x ∈ int(dom(g)), then ∀p ∈ Rn, g′(x; p) exists.

Proof: Let r(α) = 1
α [g(x+ αp)− g(x)] and z = x+ βp, where 0 < α ≤ β <∞ and λ = α

β . Then

r(α) =
1

α
[g(x+ αp)− g(x)]

=
1

α
[g(λz + (1− λ)x)− g(x)]

≤ 1

α
[λg(z) + (1− λ)g(x)− g(x)]

=
1

α
[λg(x+ βp)− λg(x)]

= r(β)

Thus r(α) is increasing. Further, ∀v ∈ ∂g(x) (such v must exist because x ∈ int(dom(g))),

r(α) =
1

α
[g(x+ αp)− g(x)]

≥ 1

α
〈v, αp〉

= 〈v, p〉

which means r(α) is bounded below. Therefore the limit must exist. 2

Proposition 4 Let g be closed, convex. If x ∈ int(dom(g)), then the following holds.
1. g′(x; ·) is convex, homogeneous function of degree one, which means g′(x; τp) = τg′(x; p).
2. (∀y ∈ Rn) g(y) ≥ g(x) + g′(x; y − x).

Proof:
1. We leave this as an exercise.
2. Define gα = (1− α)x+ αy. Then

g(yα) ≤ (1− α)g(x) + αg(y)

⇒ 1
α (1− α)[g(yα)− g(x)] + g(yα) ≤ g(y)

⇒ g(y) ≥ lim infα↓0{g(yα) + 1−α
α [g(yα)− g(x)]} ≥ g(x) + g′(x; y − x)

2

Finally, we find the following exact relation between g′(x; p) and ∂g(x).

Theorem 5 (Max formula) Let g : Rn → R be closed, convex. Suppose x ∈ int(dom(g)), then ∀p ∈ Rn,
g′(x; p) = sup{〈v, p〉 | v ∈ ∂g(x)}.

Proof: First we prove the claim that ∂g(x) = ∂pg
′(x; 0).

“⊆”: ∀v ∈ ∂g(x),

g′(x; p) = lim
α↓0

1

α
[g(x+ αp)− g(x)]

≥ 1

α
〈v, αp〉 (∗)

= g′(x; 0) + 〈v, p〉
⇒ v ∈ ∂pg

′(x; 0)

“⊇”: ∀y ∈ Rn,

g(y) ≥ g(x) + g′(x; y − x)

≥ g(x) + 〈w, y − x〉
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where w ∈ ∂pg′(x; 0). Thus w ∈ ∂g(x). Therefore, ∂g(x) = ∂pg
′(x; 0).

Let w ∈ ∂pg′(x; p), then ∀p̄ ∈ Rn, τ > 0,

τg′(x; p̄) = g′(x; τ p̄) ≥ g′(x; p) + 〈w, τ p̄− p〉

Take τ →∞, we get

g′(x; p̄) ≥ 〈w, p̄〉 = g(x; 0) + 〈w, p̄〉
⇒ w ∈ ∂pg

′(x; 0) = ∂g(x)

Take τ → 0, we get
g′(x; p) ≤ 〈w, p〉

From (∗) we have g′(x; p) ≥ 〈w, p〉. Thus g′(x; p) = 〈w, p〉 = sup{〈v, p〉 | v ∈ ∂g(x)}. 2

Why is the max formula useful?

Definition 3 Given a closed conves set C ⊆ Rn, the support function is defined as

σC(v) = sup{〈y, v〉 | y ∈ C}.

Support functions “find” points y ∈ C, s.t. v ∈ NC(y), becauseNC(y) = {v ∈ Rn | y maxizes 〈x, v〉 over all x ∈
C}
The max formula shows that g′(x; v) = σ∂g(x)(v).

Support functions completely characterize convex sets.

Proposition 6 Let C1, C2 ⊆ Rn be closed convex sets. Suppose that σC1 = σC2 , then C1 = C2.

Proof: Let y ∈ C1, and suppose that y /∈ C2. Then by the separating hyperplane theorem, ∃v ∈ Rn, b ∈ R,
such that

σC1
(v) ≥ 〈v, y〉 > b ≥ sup

x∈C2

〈v, x〉 = σC2
(v)

Thus we’ve reached a contradiction and σC1
= σC2

. 2

3 Calculus

Convex subdifferentials satisfy several calculus rules. We start with differentiable functions.

Proposition 7 Let g : Rn → R be differentiable on its domain and let x ∈ int(dom(g)), then ∂g(x) =
{∇g(x)}.

Proof: By the max formula we have ∀p ∈ Rn,

σ{∇g(x)}(p) = 〈∇g(x), p〉 = g′(x; p) = σ∂g(x)(p).

2

Functions of the form g(c(x)), where g : Rn → R, c : Rm → Rn and g, c are both smooth, satisfy the chain
rule ∇(g ◦ c)(x) = ∇c(x)T∇g(c(x)). Nonsmooth functions also satisfy a chain rule. But, in general, g ◦ c is
NOT convex, unless C is linear.

24-3



Proposition 8 (Chain rule) Let A ∈ Rn×m and b ∈ Rn. Let f(y) = g(Ay − b) and x ∈ int(dom(f)). Then
∂f(x) = AT∂g(Ax− b).

Proof: ∀p ∈ Rn, we have

f ′(x; p) = lim
α↓0

f(x+ αp)− f(x)

α

= lim
α↓0

g(A(x+ αp)− b)− g(Ax− b)
α

= lim
α↓0

g(z + αAp)− g(z)

α
(z := Ax− b)

= g′(Ax− b;Ap)
= max{〈v,Ap〉 | v ∈ ∂g(Ax− b)}
= max{〈v̄, p〉 | v̄ ∈ AT∂g(Ax− b)}

Thus ∀p ∈ Rn, max{〈v, p〉 | v ∈ ∂f(x)} = f ′(x, p) = max{〈v, p〉 | v ∈ AT∂g(Ax − b)}, i.e. ∂f(x) =
AT∂g(Ax− b). 2

Exercise: Given g1 : Rn → R and g2 : Rm → R. Let g(x, y) = g1(x)+g2(y), then ∂g(x, y) = ∂g1(x)×∂g2(y).

Corollary 9 (Sum rule) Let g1, g2 : Rn → R and define g := g1 + g2. Suppose that x ∈ int(dom(g)) =
int(dom(g1)) ∩ int(dom(g2)). Then ∂g(x) = ∂g1(x) + ∂g2(x).

Proof: Define f(x1, x2) = g1(x1) + g2(x2) and let g = f ◦
[
I
I

]
. Then using the chain rule, we get

∂g(x) =
[
I I

]
∂f

([
I
I

]
x

)
=

[
I I

]
∂g1(x)× ∂g2(x)

= ∂g1(x) + ∂g2(x)

2

The product of convex functions is usually not convex so we shouldn’t expect to see a “product rule”.

We do have one final rule for maximums of convex functions.

Lemma 10 Let g1, ..., gm : Rn → R̄, define g(x) := max{g1(x), ..., gm(x)}. Assume x ∈ int(dom(g)) =
∩mi=1int(dom(gi)). Then ∂g(x) = conv{∂gi(x) | gi(x) = g(x)}.

Proof: Without loss of generality, assume {i | gi(x) = g(x)} = {1, ..., k}. Then ∀p ∈ Rn, we have

g′(x; p) = max
i=1,...,k

g′i(x; p) (Exercise)

= max
i=1,...,k

{〈vi, p〉 | vi ∈ ∂gi(x)} (∗)
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Define ∆k = {λ ∈ [0, 1]k |
∑k
i=1 λi = 1}. Then

(∗) = max
λ∈∆k

{
k∑
i=1

λi max{〈vi, p〉 | vi ∈ ∂gi(x)}}

= max{
k∑
i=1

〈λivi, p〉 | vi ∈ ∂gi(x), λ ∈ ∆k}

= max{〈v, p〉 | v ∈
k∑
i=1

λivi, vi ∈ ∂gi(x), λ ∈ ∆k}

= max{〈v, p〉 | v ∈ conv{∂gi(x) | gi(x) = g(x)}}
= σconv{∂gi(x) | gi(x)=g(x)}

2

Example 2 Consider the maximal value function v(u) := max{cTx | Ax ≤ b+u}. Suppose that P (AT , c) =
{y | AT y = c, y ≥ 0} is bounded. Then

v(u) = min{(b+ u)T y | y ∈ P (AT , c)}
= min{(b+ u)T yi | i = 1, ..., k}

where y1, ..., yk are the vertices of P (AT , c).

Then −V (u) is convex and ∂[−V ](u) = conv{−yi | (b+ u)T yi = V (v)}.

We previously showed that −∂[−V ](u) = argmin{(b+u)T y | y ∈ P (AT , c)}. Thus, every solution to the dual
is a convex combination of vertices.

Next time we will examine properties of the subdifferential that immediately lead to algorithms.
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