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1 Last time

1. A point x̄ is stationary for the problem infx∈C f(x) if it satisfies

−∇f(x̄) ∈ NC(x̄) (OPT ).

2. The following theorem follows from the relation between the projection and the normal cone.

Theorem 1 x̄ satisfies OPT if and only if

(∀r > 0) x̄ = PC(x̄− γ∇f(x̄)).

3. The projected gradient can be summerized as follows. Let L be the Lipschitz constant of the
gradient ∇f .

Input: x0 ∈ C , 0 < γ < 2
L

For k = 0, 1, . . . , do

xk+1 = PC(xk − γ∇f(xk)).

4. The following theorem asserts that OPT is a sufficient and necessary condtion under differ-
entiability of f and the convexity of f and C.

Theorem 2 Let f be differentiable and convex, and C ∈ Rn be a closed convex set. Then

−∇f(x) ∈ NC(x) ⇐⇒ x ∈ arg min
y∈C

f(y).

5. Using the above theorem, we were able to develop necessary and sufficient conditions for
optimality of infxRn {(f + g)(x)}.

Theorem 3 Suppose, f and g are convex, f differentiable and g continuous, then

x̄ ∈ arg min{f(x) + g(x)} ⇐⇒ 0 ∈ ∇f(x̄) + ∂g(x̄).
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2 Nonsmooth Convex functions

Nonsmoothness is essential to accurately expressive modeling in applied science.

Example 1 The goal of compressed sensing is to solve the following problem:

min ‖x‖1
subject to: Ax = b

The loss function is nonsmooth. As the following figure indicates, random affine spaces are are
highly likely to hit the corners of the `1 ball. These corners are precisely sparse solutions to the
linear equation.

In contrast, solutions to the `2 minimization problem

min‖x‖2
subject to:Ax = b,

are not likely to be sparse. Indeed, random affine spaces are equally likely to touch the `2 ball at
any point on the boundary.
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The following two question come up when we want to solve nonsmooth optimization problems.

• How do we differentiate nonsmooth problems? (Today)

• How do we perform “projected gradient” descent on nonsmooth problems?

First a piece of notation:

Notation 1 Throughout the rest of the course, we will denote R := R ∪ {∞}.

In nonsmooth optimization, it is convenient to consider extended real valued functions, i.e.,
functions which possibly take on the value ∞. Such functions are able to implicitly enforce con-
straints such as x ∈ C by taking on infinite values outside of C. In that spirit, we introduce the
notation

dom(g) := {x ∈ Rn | g(x) <∞}.

Thus, we allow the function g ≡ ∞, but since dom(g) = ∅, it doesn’t seem like a proper function.
This motivates the terminology.

Definition 1 A function g : Rn → R is called proper if

∃x ∈ Rn, s.t. g(x) <∞

Thus, proper functions are exactly the functions with nonempty domain.
We will only deal with convex sets throughout the rest of the course. The definition

of convexity for extended real-valued functions is exactly the same as the standard definition.

Definition 2 (Convexity) A function g : Rn → R is called convex if

(∀α ∈ [0, 1]) , (∀x, y ∈ Rn) g((1− α)x+ αy) ≤ (1− α)g(x) + αg(y).

Functions which take on the value ∞ cannot be continuous. Thus, we need to introduce a new
notion of continuity tailored to ∞-valued functions.
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Definition 3 A function g : Rn → R ∪ {∞} is called lower-semicontinuous, or closed, if

epi(g) := {(x, t) ∈ Rn+1|g(x) ≤ t}

is a closed set.

We arrive at the above definition of lower-semicontinuity because it is analogous to the following
property of continuous functions:

Exercise 1 The function g : Rn → R is continuous if, and only if, g is everywhere finite and
gph(g) = {(x, g(x)) | x ∈ Rn} is a closed set.

One useful property of continuity is that continuous functions commute with limits:

lim
k→∞

xk = x =⇒ lim
k→∞

g(xk) = g(x)

Lower-semicontinuous functions do not commute with limits in general, but they do satisfy another
useful property:

Exercise 2 Let g : R → R, let x ∈ Rn, and suppose that {xk}k∈N is a sequence with the property
that limk→∞ xk = x. Prove that

lim inf g(xk) ≥ g(x).

The above result shows that epi(g) can have sudden downward drops, such as from ∞ to 0.
We give some examples of lower-semicontinuous functions below. You should convince yourself

about the assertions in the examples.

Example 2 Let C ⊂ Rn closed. Then the indicator function

ιC(x) =

{
∞ x /∈ C;

0 x ∈ C.

is closed. If C is conex, then ιC is convex.

Example 3 Let g : Rn → R be closed and convex and A ∈ Rn×m. Then g(Ax) is convex and
closed.

Example 4 The sum of closed convex functions is convex.

Example 5 Let f : Rn × Rm → R, be a function such that for all y ∈ Rn, the function f(·, y) is
closed and convex. Then g(x) := supy f(x, y) is closed and convex.

Example 6 The following is a list of convex functions that often appear in real optimization prob-
lems: exp(x), log(1+exp(x)), 12‖Ax−b‖

2, ‖x‖p for p ∈ [1,∞],−
√
x,− log(x),, max{0, 1−x}(hinge).

Example 7 Example of a function which is convex, but not closed:

g(x, y) =

{
0 x2 + y2 < 1

φ(x, y) x2 + y2 = 1,

where φ is an arbitrary nonnegative function. The function g may not be always closed.

Note that dom(g) may be open even if epi(g) is closed. Indeed, consider the function defined
by g(x) = 1

x if x > 0 and g(x) =∞ otherwise.
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3 Differentiating nonsmooth ∞-valued functions

Definition 4 Let g : Rn → R be a function. The set

∂g(x) := {v ∈ Rn|(∀y) g(y) ≥ g(x) + 〈v, y − x〉}

is called the convex subdifferential operator of g. Elements v ∈ ∂g(x) are called subgradients.

You should have the following figure in mind:

Even for convex functions, subgradients do not necessarily exist. Indeed, consider − 1√
x

at x = 0:

Example 8 Let C be closed and convex. Then ∂ιC(x) = NC(x)

Thus, we have been studying subgradients since week 3! On Homework 3, problem 3, you
showed that [

v
−1

]
∈ Nepi(g)((x, g(x))) ⇐⇒ v ∈ ∂g(x).

In that exercise, we assumed that g is convex and continuous, but that condition can be relaxed
to merely assuming that g is convex and closed. So subdifferential operators are deeply connected
to normal cones of epigraphs.

When [
v
0

]
∈ Nepi(g)((x, g(x)))
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we get horizontal normals (or vertical hyperplanes); see the the plot of −
√
x at the point (0, 0).

These horizontal normals are called horizon subgradients.

Definition 5 For closed, convex g : Rn → R̄, the horizon subdifferential is the set-valued operator

∂∞g(x) =

{
v ∈ Rn

∣∣∣∣ [v0
]
∈ Nepi(g)(x, g(x))

}
.

Exercise 3 Let g : Rn → R be closed and convex. Show that for all x ∈ Rn, ∂∞g(x) = Ndom(g)(x).
(Note that there is a slight technicality here. The domain of g is not necessarily closed, but we can
still define its normal cone in the usual way. In particular, for points x ∈ int(dom(g)), we still
have Ndom(g)(x) = {0}.)

We can completely characterize the normal cone of the epigraph through the convex and horizon
subdifferentials.

Theorem 4 Let g : Rn → R be closed and convex. Then ∀x ∈ dom(g),

Nepi(g)((x, g(x))) =

{
λ

[
v
−1

] ∣∣∣∣v ∈ ∂g(x), λ > 0

}
∪
{[
v
0

] ∣∣∣∣v ∈ ∂∞g(x)

}
.

Proof: From the the definition of the horizon subdifferential and the equivalence[
v
−1

]
∈ Nepi(g)((x, g(x)) ⇐⇒ v ∈ ∂g(x),

we see we only need to that 6 ∃v ∈ Rn s.t.[
v
1

]
∈ Nepi(g)((x, g(x))).

Suppose for contradicition that such v exists. Then

0 ≥
〈[
v
1

]
,

[
x

g(x) + 1

]
−
[
x
g(x)

]〉
= g(x) + 1− g(x) = 1

which is a contradiction. 2

Corollary 5 Let g : Rn → R be closed and convex. Then

1. (∀x ∈ dom(g)) ∂g(x) ∪ (∂g(x)\{0}) 6= ∅

2. (∀x ∈ int(dom(g))) ∂g(x) 6= ∅.

Proof:

1. Since (x, g(x)) ∈ boundary(epi(g)),

Nepi(g)((x, g(x))) 6= {0}.

Then use the previous theorem.

2. Since ∂∞g(x) = Ndom(g)(x) = {0} by previous exercise, part 1 implies ∂g(x) 6= ∅.

2

The above corollary tells us that subgradients (in a broader sense) exist at any any point in
dom(g) and they are either vertical (horizon) or non vertical.
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