ORIE 6300 Mathematical Programming I

Lecture 22
Lecturer: Damek Davis
Scribe: Lijun Ding

1 Last time

1. A point \bar{x} is stationary for the problem $\inf _{x \in C} f(x)$ if it satisfies

$$
-\nabla f(\bar{x}) \in N_{C}(\bar{x}) \quad(O P T) .
$$

2. The following theorem follows from the relation between the projection and the normal cone.

Theorem $1 \bar{x}$ satisfies OPT if and only if

$$
(\forall r>0) \quad \bar{x}=P_{C}(\bar{x}-\gamma \nabla f(\bar{x}))
$$

3. The projected gradient can be summerized as follows. Let L be the Lipschitz constant of the gradient ∇f.

Input: $x^{0} \in C, 0<\gamma<\frac{2}{L}$
For $k=0,1, \ldots$, do

$$
x^{k+1}=P_{C}\left(x^{k}-\gamma \nabla f\left(x^{k}\right)\right) .
$$

4. The following theorem asserts that OPT is a sufficient and necessary condtion under differentiability of f and the convexity of f and C.

Theorem 2 Let f be differentiable and convex, and $C \in \mathbb{R}^{n}$ be a closed convex set. Then

$$
-\nabla f(x) \in N_{C}(x) \Longleftrightarrow x \in \arg \min _{y \in C} f(y) .
$$

5. Using the above theorem, we were able to develop necessary and sufficient conditions for optimality of $\inf _{x \mathbb{R}^{n}}\{(f+g)(x)\}$.

Theorem 3 Suppose, f and g are convex, f differentiable and g continuous, then

$$
\bar{x} \in \arg \min \{f(x)+g(x)\} \Longleftrightarrow 0 \in \nabla f(\bar{x})+\partial g(\bar{x}) .
$$

2 Nonsmooth Convex functions

Nonsmoothness is essential to accurately expressive modeling in applied science.
Example 1 The goal of compressed sensing is to solve the following problem:

$$
\begin{gathered}
\min \|x\|_{1} \\
\text { subject to: } A x=b
\end{gathered}
$$

The loss function is nonsmooth. As the following figure indicates, random affine spaces are are highly likely to hit the corners of the ℓ_{1} ball. These corners are precisely sparse solutions to the linear equation.

In contrast, solutions to the ℓ_{2} minimization problem

$$
\begin{gathered}
\min \|x\|_{2} \\
\text { subject to: } A x=b,
\end{gathered}
$$

are not likely to be sparse. Indeed, random affine spaces are equally likely to touch the ℓ_{2} ball at any point on the boundary.

The following two question come up when we want to solve nonsmooth optimization problems.

- How do we differentiate nonsmooth problems? (Today)
- How do we perform "projected gradient" descent on nonsmooth problems?

First a piece of notation:
Notation 1 Throughout the rest of the course, we will denote $\overline{\mathbb{R}}:=\mathbb{R} \cup\{\infty\}$.
In nonsmooth optimization, it is convenient to consider extended real valued functions, i.e., functions which possibly take on the value ∞. Such functions are able to implicitly enforce constraints such as $x \in C$ by taking on infinite values outside of C. In that spirit, we introduce the notation

$$
\operatorname{dom}(g):=\left\{x \in \mathbb{R}^{n} \mid g(x)<\infty\right\}
$$

Thus, we allow the function $g \equiv \infty$, but since $\operatorname{dom}(g)=\emptyset$, it doesn't seem like a proper function. This motivates the terminology.

Definition 1 A function $g: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is called proper if

$$
\exists x \in \mathbb{R}^{n}, \text { s.t. } g(x)<\infty
$$

Thus, proper functions are exactly the functions with nonempty domain.
We will only deal with convex sets throughout the rest of the course. The definition of convexity for extended real-valued functions is exactly the same as the standard definition.

Definition 2 (Convexity) A function $g: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is called convex if

$$
(\forall \alpha \in[0,1]),\left(\forall x, y \in \mathbb{R}^{n}\right) \quad g((1-\alpha) x+\alpha y) \leq(1-\alpha) g(x)+\alpha g(y) .
$$

Functions which take on the value ∞ cannot be continuous. Thus, we need to introduce a new notion of continuity tailored to ∞-valued functions.

Definition 3 A function $g: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is called lower-semicontinuous, or closed, if

$$
\operatorname{epi}(g):=\left\{(x, t) \in \mathbb{R}^{n+1} \mid g(x) \leq t\right\}
$$

is a closed set.
We arrive at the above definition of lower-semicontinuity because it is analogous to the following property of continuous functions:

Exercise 1 The function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous if, and only if, g is everywhere finite and $\operatorname{gph}(g)=\left\{(x, g(x)) \mid x \in \mathbb{R}^{n}\right\}$ is a closed set.

One useful property of continuity is that continuous functions commute with limits:

$$
\lim _{k \rightarrow \infty} x_{k}=x \Longrightarrow \lim _{k \rightarrow \infty} g\left(x_{k}\right)=g(x)
$$

Lower-semicontinuous functions do not commute with limits in general, but they do satisfy another useful property:

Exercise 2 Let $g: \mathbb{R} \rightarrow \overline{\mathbb{R}}$, let $x \in \mathbb{R}^{n}$, and suppose that $\left\{x_{k}\right\}_{k \in \mathbb{N}}$ is a sequence with the property that $\lim _{k \rightarrow \infty} x_{k}=x$. Prove that

$$
\lim \inf g\left(x_{k}\right) \geq g(x)
$$

The above result shows that epi (g) can have sudden downward drops, such as from ∞ to 0 .
We give some examples of lower-semicontinuous functions below. You should convince yourself about the assertions in the examples.

Example 2 Let $C \subset \mathbb{R}^{n}$ closed. Then the indicator function

$$
\iota_{C}(x)= \begin{cases}\infty & x \notin C ; \\ 0 & x \in C .\end{cases}
$$

is closed. If C is conex, then ι_{C} is convex.
Example 3 Let $g: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be closed and convex and $A \in \mathbb{R}^{n \times m}$. Then $g(A x)$ is convex and closed.

Example 4 The sum of closed convex functions is convex.
Example 5 Let $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \overline{\mathbb{R}}$, be a function such that for all $y \in \mathbb{R}^{n}$, the function $f(\cdot, y)$ is closed and convex. Then $g(x):=\sup _{y} f(x, y)$ is closed and convex.

Example 6 The following is a list of convex functions that often appear in real optimization problems: $\exp (x), \log (1+\exp (x)), \frac{1}{2}\|A x-b\|^{2},\|x\|_{p}$ for $p \in[1, \infty],-\sqrt{x},-\log (x)$, , $\max \{0,1-x\}$ (hinge).

Example 7 Example of a function which is convex, but not closed:

$$
g(x, y)= \begin{cases}0 & x^{2}+y^{2}<1 \\ \phi(x, y) & x^{2}+y^{2}=1\end{cases}
$$

where ϕ is an arbitrary nonnegative function. The function g may not be always closed.
Note that $\operatorname{dom}(g)$ may be open even if epi (g) is closed. Indeed, consider the function defined by $g(x)=\frac{1}{x}$ if $x>0$ and $g(x)=\infty$ otherwise.

3 Differentiating nonsmooth ∞-valued functions

Definition 4 Let $g: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be a function. The set

$$
\partial g(x):=\left\{v \in \mathbb{R}^{n} \mid(\forall y) g(y) \geq g(x)+\langle v, y-x\rangle\right\}
$$

is called the convex subdifferential operator of g. Elements $v \in \partial g(x)$ are called subgradients.
You should have the following figure in mind:

Even for convex functions, subgradients do not necessarily exist. Indeed, consider $-\frac{1}{\sqrt{x}}$ at $x=0$:

Example 8 Let C be closed and convex. Then $\partial \iota_{C}(x)=N_{C}(x)$
Thus, we have been studying subgradients since week 3! On Homework 3, problem 3, you showed that

$$
\left[\begin{array}{c}
v \\
-1
\end{array}\right] \in N_{\operatorname{epi}(g)}((x, g(x))) \Longleftrightarrow v \in \partial g(x)
$$

In that exercise, we assumed that g is convex and continuous, but that condition can be relaxed to merely assuming that g is convex and closed. So subdifferential operators are deeply connected to normal cones of epigraphs.

When

$$
\left[\begin{array}{l}
v \\
0
\end{array}\right] \in N_{\operatorname{epi}(g)}((x, g(x)))
$$

we get horizontal normals (or vertical hyperplanes); see the the plot of $-\sqrt{x}$ at the point $(0,0)$.
These horizontal normals are called horizon subgradients.
Definition 5 For closed, convex $g: \overline{\mathbb{R}}^{n} \rightarrow \overline{\mathbb{R}}$, the horizon subdifferential is the set-valued operator

$$
\partial^{\infty} g(x)=\left\{v \in \mathbb{R}^{n} \left\lvert\,\left[\begin{array}{l}
v \\
0
\end{array}\right] \in N_{\mathrm{epi}(g)}(x, g(x))\right.\right\} .
$$

Exercise 3 Let $g: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be closed and convex. Show that for all $x \in \mathbb{R}^{n}, \partial^{\infty} g(x)=N_{\operatorname{dom}(g)}(x)$. (Note that there is a slight technicality here. The domain of g is not necessarily closed, but we can still define its normal cone in the usual way. In particular, for points $x \in \operatorname{int}(\operatorname{dom}(g))$, we still have $N_{\mathrm{dom}(g)}(x)=\{0\}$.)

We can completely characterize the normal cone of the epigraph through the convex and horizon subdifferentials.

Theorem 4 Let $g: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be closed and convex. Then $\forall x \in \operatorname{dom}(g)$,

$$
N_{\text {epi }(g)}((x, g(x)))=\left\{\left.\lambda\left[\begin{array}{c}
v \\
-1
\end{array}\right] \right\rvert\, v \in \partial g(x), \lambda>0\right\} \cup\left\{\left.\left[\begin{array}{l}
v \\
0
\end{array}\right] \right\rvert\, v \in \partial^{\infty} g(x)\right\} .
$$

Proof: From the the definition of the horizon subdifferential and the equivalence

$$
\left[\begin{array}{c}
v \\
-1
\end{array}\right] \in N_{\mathrm{epi}(g)}((x, g(x)) \Longleftrightarrow v \in \partial g(x),
$$

we see we only need to that $\nexists v \in \mathbb{R}^{n}$ s.t.

$$
\left[\begin{array}{l}
v \\
1
\end{array}\right] \in N_{\mathrm{epi}(g)}((x, g(x))) .
$$

Suppose for contradicition that such v exists. Then

$$
0 \geq\left\langle\left[\begin{array}{l}
v \\
1
\end{array}\right],\left[\begin{array}{c}
x \\
g(x)+1
\end{array}\right]-\left[\begin{array}{c}
x \\
g(x)
\end{array}\right]\right\rangle=g(x)+1-g(x)=1
$$

which is a contradiction.
Corollary 5 Let $g: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be closed and convex. Then

1. $(\forall x \in \operatorname{dom}(g)) \quad \partial g(x) \cup(\partial g(x) \backslash\{0\}) \neq \emptyset$
2. $(\forall x \in \operatorname{int}(\operatorname{dom}(g))) \quad \partial g(x) \neq \emptyset$.

Proof:

1. Since $(x, g(x)) \in$ boundary $(\operatorname{epi}(g))$,

$$
N_{\mathrm{epi}(g)}((x, g(x))) \neq\{0\} .
$$

Then use the previous theorem.
2. Since $\partial^{\infty} g(x)=N_{\text {dom }(g)}(x)=\{0\}$ by previous exercise, part 1 implies $\partial g(x) \neq \emptyset$.

The above corollary tells us that subgradients (in a broader sense) exist at any any point in $\operatorname{dom}(g)$ and they are either vertical (horizon) or non vertical.

