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Lecture 22

Lecturer: Damek Davis Scribe: Lijun Ding

1 Last time

1.

A point Z is stationary for the problem inf,cc f(x) if it satisfies

_Vf(z) e No(z) (OPT).

. The following theorem follows from the relation between the projection and the normal cone.

Theorem 1 7 satisfies OPT if and only if

(Vr > 0) T = Po(z — vV f(Z)).

. The projected gradient can be summerized as follows. Let L be the Lipschitz constant of the

gradient Vf.

Input: xOGC,O<7<%
Fork=0,1,..., do

P = Po(ah — 4V F (b)),

. The following theorem asserts that OPT is a sufficient and necessary condtion under differ-

entiability of f and the convexity of f and C.

Theorem 2 Let f be differentiable and convex, and C' € R™ be a closed convex set. Then

—Vf(z) € No(z) <= z € argmin f(y).
yelC

. Using the above theorem, we were able to develop necessary and sufficient conditions for

optimality of inf,gn {(f + g)(2)}.

Theorem 3 Suppose, f and g are convex, [ differentiable and g continuous, then

z € argmin{f(z) + g(x)} < 0€ Vf(z)+ dg9(z).
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2 Nonsmooth Convex functions
Nonsmoothness is essential to accurately expressive modeling in applied science.
Example 1 The goal of compressed sensing is to solve the following problem:

min ||z||;
subject to: Ax = b
The loss function is nonsmooth. As the following figure indicates, random affine spaces are are

highly likely to hit the corners of the €1 ball. These corners are precisely sparse solutions to the
linear equation.

§
A S ot

In contrast, solutions to the fo minimization problem

min||z|2

subject to:Ax = b,

are not likely to be sparse. Indeed, random affine spaces are equally likely to touch the o ball at
any point on the boundary.
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The following two question come up when we want to solve nonsmooth optimization problems.

e How do we differentiate nonsmooth problems? (Today)

e How do we perform “projected gradient” descent on nonsmooth problems?

First a piece of notation:
Notation 1 Throughout the rest of the course, we will denote R :== RU {oo}.

In nonsmooth optimization, it is convenient to consider extended real valued functions, i.e.,
functions which possibly take on the value co. Such functions are able to implicitly enforce con-
straints such as x € C by taking on infinite values outside of C'. In that spirit, we introduce the
notation

dom(g) :={z € R" | g(z) < c0}.

Thus, we allow the function g = oo, but since dom(g) = (), it doesn’t seem like a proper function.
This motivates the terminology.

Definition 1 A function g : R™ — R is called proper if
Jr € R", s.t. g(r) < o0

Thus, proper functions are exactly the functions with nonempty domain.
We will only deal with convex sets throughout the rest of the course. The definition
of convexity for extended real-valued functions is exactly the same as the standard definition.

Definition 2 (Convexity) A function g : R* — R is called convex if
(Vo€ [0,1]), (Vo,y e R")  g((1 —a)z+ay) < (1 - a)g(z) + ag(y).

Functions which take on the value co cannot be continuous. Thus, we need to introduce a new
notion of continuity tailored to co-valued functions.
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Definition 3 A function g : R™ — R U {oo} is called lower-semicontinuous, or closed, if

epi(g) = {(z,t) € R""g(z) <t}

18 a closed set.

We arrive at the above definition of lower-semicontinuity because it is analogous to the following
property of continuous functions:

Exercise 1 The function g : R™ — R is continuous if, and only if, g is everywhere finite and
gph(g) = {(z,9(x)) | x € R™} is a closed set.

One useful property of continuity is that continuous functions commute with limits:

lim 2 =2 = lim g(zx) = g(2)
k—o0 k—oo

Lower-semicontinuous functions do not commute with limits in general, but they do satisfy another
useful property:

Exercise 2 Let g : R — R, let x € R", and suppose that {x}}ren s a sequence with the property
that limy_,oo x, = x. Prove that
liminf g(z) > g(z).

The above result shows that epi(g) can have sudden downward drops, such as from oo to 0.
We give some examples of lower-semicontinuous functions below. You should convince yourself
about the assertions in the examples.

Example 2 Let C' C R" closed. Then the indicator function

Joo z¢C;
Lc(x)_{O zeC.

is closed. If C is conez, then tc is convex.

Example 3 Let g : R® — R be closed and convex and A € R™™. Then g(Ax) is conver and
closed.

Example 4 The sum of closed convex functions is convex.

Example 5 Let f : R” x R™ — R, be a function such that for all y € R™, the function f(-,y) is
closed and conver. Then g(x) := sup,, f(z,y) is closed and conver.

Example 6 The following is a list of convex functions that often appear in real optimization prob-
lems: exp(x), log(1-+exp(z)), 3| Az — |1, |y for p € [1, 00], —y/Z, — log(z),, max{0, 1} (hinge).

Example 7 Example of a function which is convex, but not closed:

(z.5) 0 2 +y? <1
g(z,y) =
P(x,y) «*+y* =1,

where ¢ is an arbitrary nonnegative function. The function g may not be always closed.
Note that dom(g) may be open even if epi(g) is closed. Indeed, consider the function defined
by g(z) = 2 if z > 0 and g(z) = oo otherwise.
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3 Differentiating nonsmooth oco-valued functions
Definition 4 Let g : R® — R be a function. The set
9g(x) :=A{v € R"|(Vy) g(y) = 9(x) + (v,y — z)}

is called the convex subdifferential operator of g. Elements v € Og(x) are called subgradients.

You should have the following figure in mind:

N S,
C‘f%'\\"\,lf'\_q;_la )

-
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Even for convex functions, subgradients do not necessarily exist. Indeed, consider —% atx =0:

) | = |
P SN e SN s W= W Sub oo Vagent
- - ) J

Example 8 Let C be closed and convex. Then Ovc(x) = Nc(x)

Thus, we have been studying subgradients since week 3! On Homework 3, problem 3, you
showed that

[_Ul] € Nepi(g) (2, 9(2))) <= v € Ig(x).

In that exercise, we assumed that g is convex and continuous, but that condition can be relaxed
to merely assuming that g is convex and closed. So subdifferential operators are deeply connected

to normal cones of epigraphs.
When

HEE )
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we get horizontal normals (or vertical hyperplanes); see the the plot of —/x at the point (0, 0).
These horizontal normals are called horizon subgradients.

Definition 5 For closed, conver g : R" - R, the horizon subdifferential is the set-valued operator

m € Ny (x,g<x>>} |

Exercise 3 Let g : R"® — R be closed and convez. Show that for all x € R™, 0®g(x) = Naom(q) (T)-
(Note that there is a slight technicality here. The domain of g is not necessarily closed, but we can
still define its normal cone in the usual way. In particular, for points x € int(dom(g)), we still

have Ngom(q)(7) = {0}.)

We can completely characterize the normal cone of the epigraph through the convex and horizon
subdifferentials.

0°g(z) = {v eR"

Theorem 4 Let g : R"* — R be closed and convex. Then Yz € dom(g),

Nepi(q) (. 9())) = {A [_"J v € dg(x), x> 0} U { M

Proof: From the the definition of the horizon subdifferential and the equivalence

ve 8°°g(:c)}.

[01] € Nepi(g) (2, g(x)) <= v € dg(x),

we see we only need to that Av € R" s.t.

m € Nepi(g) ((z, 9(2)))-

Suppose for contradicition that such v exists. Then

0= <m ’ [g(rc;UﬂL 1] - [g(giv)b =gle)+1-gl@)=1

which is a contradiction. O
Corollary 5 Let g : R™ — R be closed and convex. Then

1. (Vx € dom(g))  9g(x) U (9g(x)\{0}) # 0

2. (Vzx € int(dom(g))) dg(z) # 0.
Proof:

1. Since (z, g(z)) € boundary(epi(g)),

Napi(q) (@, 9(x))) # {0}.
Then use the previous theorem.

2. Since 0%°g(x) = Ngom(g)(z) = {0} by previous exercise, part 1 implies dg(z) # 0.

O
The above corollary tells us that subgradients (in a broader sense) exist at any any point in
dom(g) and they are either vertical (horizon) or non vertical.
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