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Lecture 22

Lecturer: Damek Davis Scribe: Xueyu Tian

1 Last Time

1. Finished up IPMs.

2. Defined differentiability at x̄

(∃v ∈ Rn)(∀x ∈ Rn) f(x) = f(x̄)+ < v, x− x̄ > +o(x− x̄) (1)

where:

o : Rn → R s.t. lim
x→x̄

1

||x− x̄||
o(x− x̄) = 0; o(0) = 0

Proposition 1 Precisely, one vector can satisfy (1). We write ∇f(x̄) := v, whenever f is
differentiable at x̄.

3. Necessary optimality conditions.

Theorem 2 (necessary optimality) Let f : Rn → R be a function, let C ⊆ Rn be a closed
convex set. Suppose that x̄ ∈ argmin

x∈C
f(x) exists and f is differentiable at x̄. Then

−∇f(x̄) ∈ Nc(x̄) (OPT)

2 Today

Definition 1 Points x̄ satisfying (OPT) are called stationary points.

Observation 1 Minimizers of inf
x∈C

f(x) are stationary points, but stationary points are not nec-

essarily minimizers.

For nonconvex optimization problems, stationary points are all we can hope to find. Later
we will see that stationary points of convex problems are global minimizers. So how can we find
stationary points?

Theorem 3 x̄ satisfies OPT if, and only if,

(∀γ > 0) x̄ = PC(x̄− γ∇f(x̄))

.

22-1



Proof:

−∇f(x̄) ∈ NC(x̄)⇔ −γ∇f(x̄) ∈ γNC(x̄) = NC(x̄)

⇔ (x̄− γ∇f(x̄))− x̄ ∈ NC(x̄)

⇔ x̄ = PC(x̄− γ∇f(x̄)).

2

Thus, stationary points are exactly elements of Fix(PC ◦ (I − γ∇f)). This suggests we apply
KM iteration to T = PC ◦ (I − γ∇f). However T is NOT nonexpansive in such a general setting.
To get any result, we must restrict to f which have globally Lipschitz continuous gradients.

Algorithm 1 Projected Gradient for f with ∇f L-Lipschitz.

Input: x ∈ C, 0 < γ < 2
L

1: loop
2: x ← PC(x− λ∇f(x))

Example 1
f(x) = 〈(1, 0), x〉, C = B(0, 1)

Theorem 4 Suppose inf
x∈C

f(x) > −∞. Let {xk}k∈N be generated by the projected gradient method.

Suppose x̄ is a limit point of {xk}k∈N. Then x̄ is a stationary point for OPT.

Proof: Because f is Lipschitz differentiable, for all k ∈ N, we have

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
||xk+1 − xk||2

= f(xk) +
1

γ
〈xk+1 − (xk − γ∇f(xk)), xk+1 − xk〉 −

(
1

γ
− L

2

)
‖xk+1 − xk‖2 (2)

Notice that,

xk+1 = PC(xk − γ∇f(xk))⇔ (xk − γ∇f(xk))− xk+1 ∈ NC(xk+1).
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Thus,
1

γ
〈(xk − γ∇f(xk))− xk+1, xk − xk+1〉 ≤ 0.

Therefore,

f(xk+1) ≤ (2) ≤ f(xk)−
(

1

γ
− L

2

)
||xk+1 − xk||2.

The Fixed-Point Residual (FPR) is then summable,

∞∑
k=0

||xk − xk+1||2 = lim
T→∞

T∑
k=0

||xk − xk+1||2 ≤ 1
1
γ −

L
2

lim
T→∞

[f(x0)− f(xT )]

≤ 1
1
γ −

L
2

[f(x0)− f∗]

where f∗ = inf f(x)
x∈C

. Thus, ||xk+1 − xk|| → 0, as k→∞.

Suppose some subsequence {xjk}k∈N ⊆ {xk}k∈N converges to x̄. Then, by continuity, PC(xjk −
γ∇f(xjk))→ PC(x̄− γ∇f(x̄)). Moreover, because xkj − xkj+1 → 0, we have xkj+1 → x̄. So

x̄ = lim
k→∞

xkj+1 = lim
k→∞

PC(xkj − γ∇f(xkj )) = PC(x̄− γ∇f(x̄)).

Thus, x̄ is stationary. 2

Corollary 5 For all T ∈ N, we have

min
k=0,1,...,T

||xk+1 − xk|| ≤

√√√√√f(x0)− inf
x∈C

f(x)

T
(

1
γ −

L
2

)
Proof:

min
k=0,1,...,T

||xk+1 − xk||2 ≤ 1

T

T∑
k=0

||xk − xk+1||2 ≤
f(x0)− inf

x∈C
f(x)

T
(

1
γ −

L
2

)
which implies the result. 2

Significance of the convergence rate. The steplength xk+1 − xk satisfies

1

γ
(xk − xk+1) ∈ NC(xk+1) +∇f(xk) = NC(xk+1) +∇f(xk+1) +∇f(xk)−∇f(xk+1)

=⇒ 1

γ
(xk − xk+1) + (∇f(xk+1)−∇f(xk)) ∈ NC(xk+1) +∇f(xk+1)

So it is a natural measure of stationarity.
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Using Lipschitz continuity of ∇f , we can easy get rates on

min
k=0,1,...,T

||(xk − xk+1) +∇f(xk+1)−∇f(xk)|| ≤ min
k=0,1,...,T

(1 + L)||xk − xk+1||

≤ (1 + L)

√√√√f(x0)− inf
x∈C

f(x)

T ( 1
γ −

L
2 )

This is a pretty terrible rate, but with convexity, we can get MUCH faster rates, and much stronger
guarantees. Let’s play with convexity for a bit first.

Definition 2 A continuously differentiable function f on Rn (notation f ∈ F(Rn)) is called convex
if

(∀x, y ∈ Rn) f(y) ≥ f(x) + 〈∇f(x), y − x〉 (3)

The picture to have in mind is the following

Proposition 6 Convexity is equivalent to the following

(∀x, y ∈ Rn)(α ∈ [0, 1]) f((1− α)x+ αy) ≤ (1− α)f(x) + αf(y)

Proof: See thm 2.1.2 from Nesterov’s book. 2

For convex functions, stationary points are global minimizers.

Notation. We let F(Rn) denote the set of continuously differentiable, convex functions on Rn.

Theorem 7 (Sufficient Optimality Conditions) Let f ∈ F(Rn) and let C ∈ Rn be a closed
convex set. Then

−∇f(x) ∈ NC(x)⇔ x ∈ argmin
y∈C

f(y)

Proof: We proved necessity last time.
Let’s prove sufficiency. Suppose −∇f(x) ∈ NC(x). Then

(∀y ∈ C) 〈−∇f(x), y − x〉 ≤ 0⇒ 〈∇f(x), y − x〉 ≥ 0.

Thus,
(∀y ∈ C) f(y) ≥ f(x) + 〈∇f(x), y − x〉 ≥ f(x)

2

When C = Rn, so all stationary points satisfy ∇f(x) = 0.
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Example 2 (Linearly constrained optimization) Let C = {x | Ax = b}. Then

NC(x) =

{
ATRn if Ax = b;

∅ if otherwise.

The optimality conditions of the problem inf
x∈C

f(x) become:

∃y s.t. ∇f(x) +AT y = 0

Ax = b

If f is convex, these conditions are necessary and sufficient.

The conditions should remind you of Lagrange multipliers. What about nonsmooth convex
functions? Consider the minimization problem.

min f(x) + g(x)

where g is nonsmooth, but convex. Can we reformulate it into a form that the projected gradient
method applies to?
Yes!

min{f(x) + t}

(x, t) ∈ epi(g) = {x| g(x) ≤ t}

epi(g) is a closed, convex set and f(x) + t is a smooth function.
Our optimality conditions become[

−∇f(x̄)
−1

]
∈ Nepi(g)(x̄, t).

Notice that if g is a continuous function, then g(x) < t⇒ int(epi(g)) =⇒ Nepi(g)(x, t) = 0.
Thus, optimality must occur at (x̄, t) = (x̄, g(x̄)). Then from homework 3, problem 3, we find that

−∇f(x̄) ∈ ∂g(x̄)

i.e.,
0 ∈ ∇f(x̄) + ∂g(x̄)

where ∂g(x) = {v|(∀x) g(x) ≥ g(x̄) + 〈v, x− x̄〉}. Thus

Theorem 8 Suppose, f and g are convex. Then

x̄ ∈ argmin{f(x) + g(x)} ⇔ 0 ∈ ∇f(x̄) + ∂g(x̄).
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