
ORIE 6300: Mathematical Programming I Fall 2016

Lecture 21: 11/08
Lecturer: Damek Davis Scribe: Angela Zhou

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

21.1 Overview of IPMs from last time

The idea of interior point methods: given a primal-dual pair:

min{cTx|Ax = b, x ≥ 0}

max{bT y|AT y + s = c, s ≥ 0}

form the primal dual system of C1, C2:

C1 :

[
A 0 0
0 AT I

]xy
s

 =

[
b
c

]

C2 :

x0
s

 ≥ 0

xT (c−AT y) = cTx− bT y = 0

This is different from the MAP/DRS setting because of the additional complementary slackness condition.

Then realize that xT s = (c−AT y).

Note that IPMs solve a series of relaxed problems, Pv:
xy
s

 ⊂ C1 ∩ C◦2 , x� s = (xi · si) = v, v > 0


Suppose that we have a solution to Pv such that ‖v − µe‖ < Cµ, where C is some constant.

We want to find a point vt so that ‖vt − µte‖ < Cµt, and a solution to Pvt .

Let v′ = µte. Given a solution to Pv, called [x, s], the best case is that we solve v′ = x′ � s′, x′ = x + ∆x,
s′ = s+ ∆s, y′ = y + ∆y, A∆x = 0, AT∆y + ∆s = 0.

It’s difficult to solve this exactly, so we linearize instead:

x�∆s+ ∆x� s = v′ − v
A∆x = 0

AT∆y + ∆s = 0

Then set xt = x+ ∆x and st = s+ ∆s, yt = y + ∆y. Observe that v − vt = ∆x�∆s.
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21.2 Proof of main theorem

Theorem 21.1 If v′ ∈ B(v, r(v)), then (xt, yt, st) is feasible and

‖vt − v′‖ ≤
‖v′ − v‖2

2r(v)
(21.1)

Proof: We will first need some preliminaries:

• (1) (∀u, v ∈ Rn) ‖u� v‖ ≤ ‖u‖ · ‖v‖∞ ≤ ‖u‖ ‖v‖

• (2) Young’s inequality: (∀a, b,∈ R), 2ab ≤ a2

2 + b2

2

• (3) (∀u ∈ Rn>0), let
√
u = (

√
u0)ni=1, u−1 = (u−1i )ni=1

Define: αx =
√
v
−1
s�∆x

αs =
√
v
−1
x�∆s

We now show x+ δx ∈ Rn>0 and s+ δs ∈ Rn>0. It suffices to show that
∥∥x−1 �∆x

∥∥ < 1,
∥∥s−1 �∆s

∥∥ < 1

Observe that αx ◦ αs = v−1 ◦ (x ◦ s) ◦ (∆x ◦∆s) = ∆x�∆s because v = ∆x�∆s.

Moreover, A∆x = 0,∆s = −AT∆y. This implies that the vectors are othogonal: ∆sT∆x = ∆yT (A∆x) = 0.

By (1) we know that αTxαs =
∑

∆xi∆si = 0. So αx ⊥ αs.

We now prove the inequality:

‖v+ − v′‖ = ‖∆x�∆s‖
= ‖αx � αs‖
≤ ‖αx‖ ‖αs‖

1

2
‖αx‖2 + ‖αs‖2 by Young’s inequality

≤ 1

2
‖αx + αs‖2 by orthogonality, (3)

=
1

2

∥∥∥√v−1 � (s�∆x+ ∆s� x)
∥∥∥2

=
1

2

∥∥∥√v−1 � (v′ − v)
∥∥∥2

=
1

2
‖v′ − v‖2

∥∥∥√v−1∥∥∥2 ≤ 1

2r(v)
‖v′ − v‖2 by (2) (****)

So we have the inequality and we want to show that the points are feasible in the end.

We now show that x+∆x ∈ Rn>0 and s+∆s ∈ Rn>0. It suffices to show that
∥∥x−1 �∆x

∥∥ < 1,
∥∥s−1 �∆s

∥∥ < 1.
(Why? You should work this out for yourself- it’s straightforward to show. )

Two other inequalities that we need: If I compute what’s in this norm, x−1�∆x = (x�s)−1�
√
v�(
√
v
−1�

s�∆x) =
√
v
−1
αx, and s−1 �∆s =

√
v−1αs

By Young’s inequality (2), ∥∥x−1 �∆x
∥∥ ≤ αx√

r(v)
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because if you take the inverse of the square root it’s clearly less than the minimum of the vector. As we
showed in (3) and (****):

max{‖αx‖2 , ‖αs‖2} ≤ ‖αx‖2 + ‖αs‖2

≤ ‖v − v
′‖2

r(v)

since the maximum of both elements is less than the sum of both.

So: ∥∥x−1 �∆x
∥∥ ≤ ‖v′ − v‖

r(v)
< 1

∥∥x−1 �∆x
∥∥ ≤ ‖v′ − v‖

r(v)
< 1

We’re really lucky that we don’t have to go through and open Nesterov and Nemirovski’s book because
people have gone through and simplified things.

What’s really going on here is that we’re applying Newton’s method to some system of equations. It should
be clear that you should be able to extend these methods to all of convex programming, using Newton’s
method.

21.3 Nonlinear optimization

Today I’m going to generalize the optimality conditions we have for linear programming to optimizing smooth
functions

What does differentiability mean to you? That’s my question. Why do we take derivatives, besides doing
gradient descent?

You really want a very good linear approximation at that point: just slightly higher than first-order approx-
imation.

Definition 21.2 A function f : Rn → R is differentiable at x̄ ∈ Rn if ∃v ∈ Rn such that

f(x) = f(x̄) + 〈v, x− x̄〉+ o(x− x̄) (21.2)

where o : Rn → R is a function satisfying

lim
x→x

o(x− x)

‖x− x‖
= 0

and o(0) = 0.

So functions are differentiable if locally they can be locally well approximated by a linear function.

Can there be two such v that approximate f?

Proposition 21.3 (Uniqueness of derivative) If ∃v1, v2 such that ∀x ∈ Rn, i = 1, 2

f(x) = f(x̄) + 〈vi, x− x̄〉+ oi(‖x− x̄‖)

Then v1 = v2.
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Proof: Informally, linear approximations that are this good have to be unique.

What we will do is use the inner product and compare.

〈v1 − v2,
x− x̄
x− x̄

〉 =
(f(x)− f(x̄)− o1(x− x̄))− (f(x)− f(x̄)− o2(x− x̄))

‖x− x̄‖

=
o2(x− x̄)− o1(x− x̄)

‖x− x̄‖

We want to choose a path between some x and x̄ which gives a good direction to compare with, i.e. a
function xε which satisfies xε → x̄ as ε→ 0. Define

xε := x̄+ ε(v1 − v2)

.

We plug this xε into our inner product:

‖v1 − v2‖ = 〈v1 − v2,
v1 − v2
‖v1 − v2‖

〉 = 〈v1 − v2,
xε − x̄
‖xε − x̄‖

〉 → 0 as ε→ 0

where we use the identity ‖xε − x̄‖ = ε ‖v1 − v2‖. Thus, v1 = v2.

Definition 21.4 We write ∇f(x) = v whenever (21.2) holds.

The optimality conditions we saw in linear programming were necessary and sufficient. They are no longer
sufficient, but we prove necessity.

Theorem 21.5 (Necessary Optimality Conditions) Let f : Rn → R be a function, let C ⊆ Rn be
closed and convex. Suppose that x̄ ∈ argminx∈C f(x), and that f is differentiable at x̄. Then

−∇f(x) ∈ NC(x̄)

It’s easier to understand this via a picture:
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Proof: For x ∈ C we have

〈−∇f(x̄), x− x̄〉 = f(x)− f(x̄) + o(x− x̄) ≤ o(x− x̄)

By definition of the normal cone we then just need to show that this inner product is negative.

Suppose, by way of contradiction, that ∃x̄ ∈ C such that 〈−∇f(x̄), x̂− x〉 > 0.

Let x̂ε = εx̂+ (1− ε)x ∈ C.

Note that we have convergence x̂ε → x as ε→ 0, trivially.

Thus, just as in the previous proof: by definition of x̂,

0 < 〈−∇f(x̄),
x̂− x
‖x̂− x‖

〉

= 〈−∇f(x̄),
x̂ε − x
‖x̂ε − x‖

〉

≤ o(x̂ε − x)

‖x̂ε − x‖
→ 0 as ε→ 0

This is a contradiction. =⇒ −∇f(x) ∈ NC(x̄).

21.4 Examples

Example 1: Projections

If you’re given some x0 ∈ Rn and you want to compute the projection of x0 onto the set C,

PC(x0) = argmin
x∈C

{
1

2
‖x− x0‖2

}

If we denote f(x) = ‖x− x0‖2 what is the gradient? ∇f(x) = x − x0. Recall that our projection inclusion
formula said that we had to satisfy x0 − PC(x0) ∈ NC(PC(x0)).

So the projection inclusion formula is a consequence of the optimality conditions.

21.4.1 Crazy nonlinear thing

f(x) = sin(x), C = [0, π], ∇f(x) = cosx. Recall that

NC(x) =


0 x ∈ (0, π)

R≥0 x = π

R≤0 x = 0

Observe that cos(x) = 0 ⇐⇒ x = π
2 . Observe that π/2 is a stationary point since − cos(π2 ) ∈ NC(π2 ).

We can also check the endpoints: − cos(0) = −1 ∈ NC(0) and − cos(π) = −1 ∈ NC(π).
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Nonnegative matrix factorization

Say that you’d like to factor a matrix into the product of two different matrices. In other words, given
A ∈ Rm×n we want to find X ∈ Rk×m, Y ∈ Rk×m such that and X ≥ 0, Y ≥ 0, and A = XTY .

A common loss function is the squared error.

f(X,Y ) =
1

2

∥∥XTY −A
∥∥2

and if you take the matrix derivative:

∇f(X,Y ) = [Y (XTY −A)T , X(XTY −A)]

To find the global optimum, we use the fact that the minimizer (X∗, Y ∗) satisfies the following:

−[Y ∗((X∗)TY ∗ −A)T , X∗((X∗)TY ∗ −A)] ∈ NRm×k≥0(X∗)×NRm×k≥0(Y ∗)

So here we have a cubic system of inequalities...you will end up with a lot of stationary points! If you can
fit the data exactly that’s great, it’ll be the stationary point.


