1 Recap

- We can view the simplex method as a nonsmooth equation solver.

2 Primal-dual Interior Point Method (IPM)

Reference Today’s lecture is based on Jim Renegar’s excellent textbook [?].

History:

- 1984 Karmarkar developed new polynomial time algorithm for linear programming
- First polynomial time algorithm called Ellipsoid method, developed in 1972. Proved to have polynomial complexity by Khachiyan in 1979.
- Ellipsoid method is very slow in practice. Much slower than simplex.
- Throughout the 1980s-1990s IPMs actively researched.
- We will study a simple primal-dual IPMs that often performs well in practice.

Idea:

- Given primal dual pair
 \[
 \min \{ c^T x | Ax = b, \ x \geq 0 \}, \quad \max \{ b^T y | A^T y + s = c, \ s \geq 0 \}
 \]

 form primal dual system
 \[
 C_1 = \left\{ \begin{bmatrix} x \\ y \\ s \end{bmatrix} \left| \begin{bmatrix} A & 0 & 0 \\ 0 & A^T & I \end{bmatrix} \begin{bmatrix} x \\ y \\ s \end{bmatrix} \right. \right\}, \quad C_2 = \left\{ \begin{bmatrix} x \\ y \\ s \end{bmatrix} \left| \begin{bmatrix} x \\ y \\ s \end{bmatrix} \right. \geq 0 \right\}
 \]

 together with the complementary slackness condition
 \[
 x^T (c - A^T y) = c^T - b^T y = 0.
 \]

- Then realize that \(x^T s = x^T (c - A^T y) \).
• IPMs solve a series of relaxed problems

\[(P_v) = \left\{ \begin{bmatrix} x \\ y \\ s \end{bmatrix} \in C_1 \cap C_2^o, \ x \odot s = v, \ v > 0 \right\} \]

depending on vectors \(v \in \mathbb{R}_{>0}^n \) which tend to zero. Where \(C_2^o = \text{int}(C_2) \) and \(x \odot s := (x_is_i)_{i=1}^n \), i.e., the componentwise product.

• In the limit, we get a solution.

Three Questions

1. When is there a solution to \(P_v \)?
2. How do we choose initial \(v \) and solve \(P_v \)?
3. Given \(v \) and a solution to \(P_v \), how should we choose \(v_+ \) (the next \(v \))? and can we easily update the solution of \(P_v \) to a solution of \(P_{v_+} \)?

2.1 Question 1

The answer to question 1 is always.

Define:

\[C = \left\{ (x, s) \mid \exists y \text{ with } \begin{bmatrix} x \\ y \\ s \end{bmatrix} \in C_1 \cap C_2^o \right\} \]

Theorem 1 The mapping

\[F : C \to \mathbb{R}_{>0}^m \]

\[(x, s) \mapsto x \odot s\]

is a bijection.

The proof of this theorem relies on basic techniques in convex optimization, so we omit it.

Why does a solution always exist?

Given \(v \), set \((x, s) = F^{-1}(v) \).

2.2 Question 2

• We choose

\[v = \mu e \]

where \(e = (1, \ldots, 1) \) and \(\mu > 0 \). Then by the theorem, \(\exists x(\mu), s(\mu), \)

\[x(\mu) \odot s(\mu) = \mu e \].

Definition 1 (Central Path) *We call \(\{(x(\mu), s(\mu)) \mid \mu > 0 \} \) the central path.*
• It is typical to initialize IPMs on the central path.

• Why do this?
 – To get best computational complexity.
 – To only have one algorithm parameter μ.
 – To keep variables “balanced”: we want all variables to violate optimality conditions by the same amount.

• How do we find initial $(x(\mu), s(\mu))$?
 In practice, we can’t find the points exactly, but we can assume we satisfy
 \[||x \odot s - \mu e|| < \text{const} \cdot \mu. \]

• This is typically achieved by inexactly solving another related optimization problem, which we won’t dwell on here.

• This is similar to how simplex method requires solving an auxiliary LP to get an initial BFS.

2.3 Question 3

• Suppose have a solution to P_v such that $\|v - \mu e\| < \text{const}\mu$.

• We want to easily find a point v_+ so that
 \[\|v_+ - \mu_+ e\| < \text{const}\mu_+ \]
 where $\mu_+ < \mu$.

and a solution to P_{v_+}.

• Let $v' = \mu_+ e$. Given a solution to P_v, called $[x, y, s]$, the best case is that we solve
 \[v' = x' \odot s', \quad x' = x + \Delta x, \quad s' = s + \Delta s, \quad y' = y + \Delta y \]
 \[x', s' \geq 0, \quad A\Delta x = 0, \quad A^T \Delta y + \Delta s = 0. \]

• The last two conditions guarantee that $Ax' = b, A^T y' + s' = c.$
• The first equation can be expanded

\[v' = (x + \Delta) \circ (s + \Delta s) = x \circ s + x \circ \Delta s + \Delta x \circ s + \Delta x \circ \Delta s. \]

I.e.

\[v' - v = x \circ \Delta s + \Delta x \circ s + \Delta x \circ \Delta s. \]

• Clearly \(x', y', s' \) solves \(P_{v'} \) but this is too hard in general because of the quadratic coupling \(\Delta x \circ \Delta s \).

• However, we CAN solve the first order approximation

\[x \circ \Delta s + \Delta x \circ s = v' - v \]
\[A\Delta x = 0 \]
\[A^T \Delta y + \Delta s = 0 \]

Then we set:

\[x_+ = x + \Delta x; \quad s_+ = s + \Delta s; \quad y_+ = y + \Delta y. \]

And let \(v_+ = x_+ \circ s_+ \).

• Observation: \(v - v_+ = \Delta x \circ \Delta s \).

• Is \((x_+, y_+, s_+) \) feasible? To answer this we need a function and a theorem.

Definition 2 Define a function \(r : \mathbb{R}^n \to \mathbb{R} \) by

\[(\forall v \in \mathbb{R}^n) \quad r(v) = \min\{v_1, \ldots, v_n\}. \]

Theorem 2 If \(v' \in B(v, r(v)) \), then \((x_+, y_+, s_+) \) is feasible and

\[||v_+ - v'|| \leq \frac{||v' - v||^2}{2r(v)}. \]

Before we prove the theorem we indicate its use in algorithmic analysis.

Corollary 3 If \(v' \in B(v, tr(v)) \) where \(t < 1 \), then \((x_+, y_+, s_+) \) is feasible and

\[v_+ \in B\left(v', \frac{1}{2} \frac{t^2}{1 - t} r(v') \right). \]

In particular, if

(a) \(||v - \mu e|| < \frac{1}{27} \mu \); and

(b) \(\mu_+ = \left(1 - \frac{1}{8\sqrt{n}}\right) \mu \)

then \(||v_+ - \mu_+ e|| \leq \frac{1}{27} \mu_+ \).
Proof: By the theorem
\[||v_+ - v'|| \leq \frac{||v'_+ - v||^2}{2r(v)} \leq \frac{t^2r(v)}{2}. \]

On the other hand,
\[r(v') \geq r(v) - ||v - v'|| \geq (1-t)r(v) \]
by 1-Lipschitz continuity of \(r \). So we can substitute \(r(v) \leq \frac{r(v')}{1-t} \) above.

Exercise: Assume (a) and (b) and derive the bound \(||v_+ - \mu e|| \).

\begin{itemize}
 \item Thus if \(v \) is near the central path, then \(v_+ \) is also near the central path! Therefore iterating and finding \(v_{++} \) makes sense.
 \item After \(k \) iterations, we have
 \[||v_k - \mu_k e|| \leq \frac{1}{24} \mu_k \leq \frac{1}{24} \left(1 - \frac{1}{8\sqrt{n}} \right) \mu_{k-1} \leq \cdots \leq \frac{1}{24} \left(1 - \frac{1}{8\sqrt{n}} \right)^k \mu_0. \]
 \item Moreover,
 \[c^T x - b^T y = x^T s = \sum v_j \]
 \[= ||v||_1 \]
 \[\geq ||\mu e||_1 - ||v - \mu e||_1 \]
 \[\geq n\mu - \sqrt{n}||v - \mu e|| \]
 \[= n \left(1 - \frac{1}{24\sqrt{n}} \right) \mu \]
 and similarly
 \[c^T x_+ - b^T y_+ \leq n \left(1 + \frac{1}{24\sqrt{n}} \right) \mu_+. \]
\end{itemize}

Exercise: Show
\[\frac{c^T x_+ - b^Y_+}{c^T x - b^T y} \leq 1 - \frac{1}{24\sqrt{n}}. \]

\begin{itemize}
 \item Thus, the primal-dual gap is halved once ever \(O(\sqrt{n}) \) iterations.
 \item We will prove theorem 2 next time.
 \item Why is each iteration of this IPM more expensive than DRS and MAP?
 Because the linear system changes at every iteration of this method, while each iteration of DRS/MAP limited to matrix-vector multiplications if we precompute \(D^T \).
 \item Paper of possible interest [?]
\end{itemize}