ORIE 6300 Mathematical Programming I

Lecture 20
Lecturer: Damek Davis
Scribe: Pamela Badian-Pessot

1 Recap

- We can view the simplex method as a nonsmooth equation solver.

2 Primal-dual Interior Point Method (IPM)

Reference Today's lecture is based on Jim Renegar's excellent textbook [?].
History:

- 1984 Karmarkar developed new polynomial time algorithm for linear programming
- First polynomial time algorithm called Ellipsoid method, developed in 1972. Proved to have polynomial complexity by Khachiyan in 1979.
- Ellipsoid method is very slow in practice. Much slower than simplex.
- Throughout the 1980 s-1990s IPMs actively researched.
- We will study a simple primal-dual IPMs that often performs well in practice.

Idea:

- Given primal dual pair

$$
\min \left\{c^{T} x \mid A x=b, x \geq 0\right\}, \quad \max \left\{b^{t} y \mid A^{T} y+s=c, s \geq 0\right\}
$$

form primal dual system

$$
C_{1}=\left\{\left[\begin{array}{l}
x \\
y \\
s
\end{array}\right] \left\lvert\,\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & A^{T} & I
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
s
\end{array}\right]\right.\right\}, \quad C_{2}=\left\{\left.\left[\begin{array}{l}
x \\
y \\
s
\end{array}\right] \right\rvert\,\left[\begin{array}{l}
x \\
s
\end{array}\right] \geq 0\right\}
$$

together with the complementary slackness condition

$$
x^{T}\left(c-A^{T} y\right)=c^{T}-b^{T} y=0 .
$$

- Then realize that $x^{T} s=x^{T}\left(c-A^{T} y\right)$.
- IPMs solve a series of relaxed problems

$$
\left(P_{v}\right)=\left\{\left[\begin{array}{l}
x \\
y \\
s
\end{array}\right] \in C_{1} \cap C_{2}^{\circ}, x \odot s=v, v>0\right\} .
$$

depending on vectors $v \in \mathbb{R}_{>0}^{n}$ which tend to zero. Where $C_{2}^{\circ}=\operatorname{int}\left(C_{2}\right)$ and $x \odot s:=\left(x_{i} s_{i}\right)_{i=1}^{n}$, i.e., the componentwise product.

- In the limit, we get a solution.

Three Questions

1. When is there a solution to P_{v} ?
2. How do we choose initial v and solve P_{v} ?
3. Given v and a solution to P_{v}, how should we choose v_{+}(the next v)? and can we easily update the solution of P_{v} to a solution of $P_{v_{+}}$?

2.1 Question 1

The answer to question 1 is always.

Define:

$$
C=\left\{(x, s) \mid \exists y \text { with }\left[\begin{array}{l}
x \\
y \\
s
\end{array}\right] \in C_{1} \cap C_{2}^{\circ}\right\}
$$

Theorem 1 The mapping

$$
\begin{aligned}
& F: C \rightarrow \mathbb{R}_{>0}^{m} \\
&(x, s) \mapsto x \odot s
\end{aligned}
$$

is a bijection.
The proof of this theorem relies on basic techniques in convex optimization, so we omit it.

Why does a solution always exist?

$$
\text { Given } v \text {, set }(x, s)=F^{-1}(v) \text {. }
$$

2.2 Question 2

- We choose

$$
v=\mu e
$$

where $e=(1, \ldots, 1)$ and $\mu>0$. Then by the theorem, $\exists x(\mu), s(\mu)$,

$$
x(\mu) \odot s(\mu)=\mu e .
$$

Definition 1 (Central Path) We call $\{(x(\mu), s(\mu)) \mid \mu>0\}$ the central path.

- It is typical to initialize IPMs on the central path.
- Why do this?
- To get best computational complexity.
- To only have one algorithm parameter μ.
- To keep variables "balanced:" we want all variables to violate optimality conditions by the same amount.
- How do we find initial $(x(\mu), s(\mu))$?

In practice, we can't find the points exactly, but we can assume we satisfy

$$
\|x \odot s-\mu e\|<\text { const } \cdot \mu \text {. }
$$

- This is typically achieved by inexactly solving another related optimization problem, which we won't dwell on here.
- This is similar to how simplex method requires solving an auxiliary LP to get an initial BFS.

2.3 Question 3

- Suppose have a solution to P_{v} such that $\|v-\mu e\|<$ const μ.
- We want to easily find a point v_{+}so that

$$
\left\|v_{+}-\mu_{+} e\right\|<\text { const }_{+}
$$

where $\mu_{+}<\mu$.

and a solution to $P_{v_{+}}$.

- Let $v^{\prime}=\mu_{+} e$. Given a solution to P_{v}, called $[x, y, s]$, the best case is that we solve

$$
\begin{gathered}
v^{\prime}=x^{\prime} \odot s^{\prime}, \quad x^{\prime}=x+\Delta x, \quad s^{\prime}=s+\Delta s, \quad y^{\prime}=y+\Delta y \\
x^{\prime}, s^{\prime} \geq 0, \quad A \Delta x=0, \quad A^{T} \Delta y+\Delta s=0
\end{gathered}
$$

- The last two conditions guarantee that $A x^{\prime}=b, A^{T} y^{\prime}+s^{\prime}=c$.
- The first equation can be expanded

$$
v^{\prime}=(x+\Delta) \odot(s+\Delta s)=x \odot s+x \odot \Delta s+\Delta x \odot s+\Delta x \odot \Delta s
$$

I.e.

$$
v^{\prime}-v=x \odot \Delta s+\Delta x \odot s+\Delta x \odot \Delta s
$$

- Clearly $x^{\prime}, y^{\prime}, s^{\prime}$ solves $P_{v^{\prime}}$ but this is too hard in general because of the quadratic coupling $\Delta x \odot \Delta s$.
- However, we CAN solve the first order approximation

$$
\begin{aligned}
x \odot \Delta s+\Delta x \odot s & =v^{\prime}-v \\
A \Delta x & =0 \\
A^{T} \Delta y+\Delta s & =0
\end{aligned}
$$

Then we set:

$$
x_{+}=x+\Delta x ; \quad s_{+}=s+\Delta s ; \quad y_{+}=y+\Delta y .
$$

And let $v_{+}=x_{+} \odot s_{+}$.

- Observation: $v-v_{+}=\Delta x \odot \Delta s$.
- Is $\left(x_{+}, y_{+}, s_{+}\right)$feasible? To answer this we need a function and a theorem.

Definition 2 Define a function $r: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
\left(\forall v \in \mathbb{R}^{n}\right) \quad r(v)=\min \left\{v_{1}, \ldots, v_{n}\right\} .
$$

Theorem 2 If $v^{\prime} \in B(v, r(v))$, then $\left(x_{+}, y_{+}, s_{+}\right)$is feasible and

$$
\left\|v_{+}-v^{\prime}\right\| \leq \frac{\left\|v^{\prime}-v\right\|^{2}}{2 r(v)}
$$

Before we prove the theorem we indicate its use in algorithmic analysis.
Corollary 3 If $v^{\prime} \in B(v, \operatorname{tr}(v))$ where $t<1$, then $\left(x_{+}, y_{+}, s_{+}\right)$is feasible and

$$
v_{+} \in B\left(v^{\prime}, \frac{1}{2} \frac{t^{2}}{1-t} r\left(v^{\prime}\right)\right) .
$$

In particular, if
(a) $\|v-\mu e\|<\frac{1}{24} \mu$; and
(b) $\mu_{+}=\left(1-\frac{1}{8 \sqrt{n}}\right) \mu$
then $\left\|v_{+}-\mu_{+} e\right\| \leq \frac{1}{24} \mu_{+}$.

Proof: By the theorem

$$
\left\|v_{+}-v^{\prime}\right\| \leq \frac{\left\|v_{+}^{\prime}-v\right\|^{2}}{2 r(v)} \leq \frac{t^{2} r(v)}{2}
$$

On the other hand,

$$
r\left(v^{\prime}\right) \geq r(v)-\left\|v-v^{\prime}\right\| \geq(1-t) r(v)
$$

by 1-Lipschitz continuity of r. So we can substitute $r(v) \leq \frac{r\left(v^{\prime}\right)}{1-t}$ above.
Exercise: Assume (a) and (b) and derive the bound $\left\|v_{+}-\mu_{+} e\right\|$.

- Thus if v is near the central path, then v_{+}is also near the central path! Therefore iterating and finding v_{++}makes sense.
- After k iterations, we have

$$
\left\|v_{k}-\mu_{k} e\right\| \leq \frac{1}{24} \mu_{k} \leq \frac{1}{24}\left(1-\frac{1}{8 \sqrt{n}}\right) \mu_{k-1} \leq \cdots \leq \frac{1}{24}\left(1-\frac{1}{8 \sqrt{n}}\right)^{k} \mu_{0}
$$

- Moreover,

$$
\begin{aligned}
c^{T} x-b^{T} y=x^{T} s & =\sum v_{j} \\
& =\|v\|_{1} \\
& \geq\|\mu e\|_{1}-\|v-\mu e\|_{1} \\
& \geq n \mu-\sqrt{n}\|v-\mu e\| \\
& =n\left(1-\frac{1}{24 \sqrt{n}}\right) \mu
\end{aligned}
$$

and similarly

$$
c^{T} x_{+}-b^{T} y_{+} \leq n\left(1+\frac{1}{24 \sqrt{n}}\right) \mu_{+} .
$$

Exercise: Show

$$
\frac{c^{T} x_{+}-b^{Y}+}{c^{T} x-b^{T} y} \leq 1-\frac{1}{24 \sqrt{n}} .
$$

- Thus, the primal-dual gap is halved once ever $O(\sqrt{n})$ iterations.
- We will prove theorem 2 next time.
- Why is each iteration of this IPM more expensive than DRS and MAP?

Because the linear system changes at every iteration of this method, while each iteration of DRS/MAP limited to matrix-vector multiplications if we precompute D^{\dagger}.

- Paper of possible interest [?]

