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1 Review

Last time we talked about the Chambolk-Pock (CP) algorithm. The CP operator is given below:

TCP

[
y
x

]
=

[
y − γ(Ax+ b)

max{x+ τ(AT (y − 2γ(Ax− b))− c), 0}

]
We have following proposition:

Proposition 1 If γτ < 1
‖A‖2 , then TCP is firmly nonexpansive:(

∀z1, z2 ∈ Rn+m
)
‖TCP z1 − TCP z2‖ ≤ ‖z1 − z2‖2Q − ‖(I − TCP )(z1)− (I − TCP )(z2)‖2Q

in the Mahalanbois norm ‖ · ‖Q, where Q =

[ 1
γ I −A
−AT 1

τ I

]
Thus, 2TCP − I is nonexpansive in ‖ · ‖Q and the KM iteration, initialized at

[
y0

x0

]
∈ Rn+m and

recursively defined by [
yk+1

xk+1

]
=

[
yk − γ(Axk − b)

max{xk + τ(A(2yk+1 − yk)− c), 0}

]
,

converges to a primal-dual optimal pair.

2 Simplex method and nonlinear operators

So far we have developed three fixed-point algorithms: DRS, MAP, CP. All are special cases of
KM iteration The KM iteration is just one of many ways to solve nonlinear, non-differentiable
equations. We will discuss ways of solving differentiable equations in the coming weeks.

Today, we will view the the simplex method as just another way of solving nonlinear
equations.

The following is a description of one iteration of the simplex method.

• Input: BFS x with basis B

• Compute verifying y: y = A−TB cB and reduced cost: c̄ = c−AT y

• c̄B = 0, xN = 0, xB = A−1
B b
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• If c̄ ≥ 0, then x and y are primal-dual optimal.

• If c̄j < 0, then j ∈ N . Let b̄ = A−1
B A, Ā = A−1

B AN

• Check for unboundedness: If ĀiN(j) ≤ 0 ∀i, then xN = εeN(j) if feasible ∀ε > 0 and c̄TN (εeN(j))→
∞ as ε→∞ So LP is unbounded

•Otherwise, we perform the ratio test. If ∃ i s.t. ĀiN(j) > 0, define

ε = min
i:ĀiN(j)>0

b̄i
ĀiN(j)

Let i∗ achieve min.

• Construct new BFS x̂: x̂j = ε, x̂N\{j} = 0, x̂B = b̄− Āx̂N

• Set B̂ = B ∪ {i∗} \ {j}(updated basis)

• The new point satisfies cT x̂ ≤ cTx and B̂ is a basis.

How do we view the simplex method as an algorithm for solving nonlinear equations? Recall the
mapping T : Rm+n → Rm+n

T

[
y
x

]
=

[
y − (Ax− b)

max{x+AT y − c, 0}

]
Lemma 2 Suppose x is a BFS and B is a basis. Let y = A−TB cB be a verifying y. Let c̄ = c−AT y
be the reduced cost. Then

T

[
y
x

]
=

 y
xB

max{−c̄N , 0}


Proof: We look at three components of RHS separately:

• x is feasible implies
y − (Ax− b) = y

• c̄B = 0 implies

max{xB + (AT y − c)B, 0} = max{xB − c̄B, 0} = max{xB, 0} = xB

• xN = 0 implies
max{xN − c̄N , 0} = max{−c̄N , 0}

2

Thus, BFS correspond to partial fixed-points of T . The fixed-point residual satisfies:∥∥∥∥[yx
]
− T

[
y
x

]∥∥∥∥ = ‖max{−c̄N , 0}‖.
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This shows that the reduced cost measures fixed-point violation. Clearly,

[
y
x

]
is not a fixed point

whenever cN � 0. Now suppose that all vertices are nondegenerate.
Suppose we want to generate a new point x̄ s.t. Ax̄ = b, x̄ ≥ 0, cT x̄ < cTx and

T

[
y
x̄

]
=

 y
x̄B
??

 ,
where “??” signifies that we do not constrain those components. Then, to ensure that the objective
function decreases, we have

cTBx̄B + cTN x̄N < cTBxB + cTBxN = cTBxB

This is equivalent to

cTB(x̄B − xB) + cTN x̄N < 0 (1)

Use

Ax̄ = b⇔ x̄B = A−1
B b−A−1

B AN x̄N

and xB = A−1
B b, to get

(1)⇔ −cTB(A−1
B AN x̄N ) + cTN x̄N < 0

⇔ (cN −ANy)T x̄N < 0

⇔ c̄T x̄N < 0

So we can choose j s.t. c̄j < 0, choose x̄N\{j} = 0, and x̄j = ε where ε > 0 is chosen so that

0 ≤ x̄B = A−1
B b−A−1

B AN x̄N = A−1
B b−A−1

B AN x̄NεeN(j)

i.e.,

ε = min
i:(A−1

B AN )ij>0

(A−1
B b)i

(A−1
B AN )ij

Then by working backwards we can check that cT x̄ ≤ cTx + εc̄j < cTx. Of course this x̄ is just x̂
generated by simplex.

Moreover (
T

[
y
x

])
y

= y − (Ax̄− b) = y(
T

[
y
x

])
x̄B

= max{x̄B − c̄B, 0} = max{x̄B, 0} = x̄B(
T

[
y
x

])
x̄j

= max{x̄j − c̄j , 0} > x̄j(
T

[
y
x

])
x̄N\{j}

= max{x̄N\{j} − c̄N\{j}, 0} = max{−c̄N\{j}, 0}
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Let B̂ be the updated basis. How can we choose ȳ such that

T

[
ȳ
x̄

]
=

 ȳ
x̂B̂
??


By the lemma, choose ȳ = A−T

B̂
cB̂. Thus,

the simplex method tries to maintain a partial fixed point while simultaneously
decreasing the objective.

This view of the simplex method seems to be new.
We list three open questions:

1. Given that

∥∥∥∥[yx
]
− T

[
y
x

]∥∥∥∥ = ‖max{−c̄N , 0}‖, is it better to choose x̂ so that

∥∥∥∥[ŷx̂
]
− T

[
ŷ
x̂

]∥∥∥∥ < ∥∥∥∥[yx
]
− T

[
y
x

]∥∥∥∥
And how would we do this?

2. The arguments above generalize to the CP operator. We know that∥∥∥∥TCP

(
TCP

[
y
x

])
− TCP

([
ŷ
x̂

])∥∥∥∥ < ∥∥∥∥TCP

[
y
x

]
−
[
y
x

]∥∥∥∥
Does the closest BFS

[
ŷ
x̂

]
to TCP

[
y
x

]
satisfy

∥∥∥∥[ŷx̂
]
− TCP

[
ŷ
x̂

]∥∥∥∥ < ∥∥∥∥[yx
]
− TCP

[
y
x

]∥∥∥∥?

3. Can we interpret the simplex method as a fixed-point method on the DRS and MAP opera-
tors?
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