ORIE 6300 Mathematical Programming I

October 18, 2016
Lecture 16
Lecturer: Damek Davis
Scribe: Matt Hin

1 Last Time:

Theorem 1 (KM Theorem) Suppose $N: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is 1-Lipschitz continuous, i.e. $(\forall x \in$ $\left.R^{n}\right)\left(\forall y \in \mathbb{R}^{n}\right)\|N x-N y\| \leq\|x-y\|$, that $\operatorname{Fix}(N) \neq \emptyset$, and $\lambda \in(0,1)$. Then, given any $z^{0} \in \mathbb{R}^{n}$ the sequence $\left\{z^{k}\right\}_{k \in \mathbb{N}}$ generated by the KM iteration

$$
z^{k+1}=N_{\lambda} z^{k}=(1-\lambda) z^{k}+\lambda N z^{k}
$$

converges to an element of $\operatorname{Fix}(N)$.

2 The Method of Alternating Projections (MAP)

Suppose

$$
x^{*} \in \operatorname{argmin}\left\{c^{T} x \mid A x=b, x \geq 0\right\} \quad \text { and } \quad\left(y^{*}, s^{*}\right) \in \operatorname{argmax}\left\{b^{T} y \mid A^{T} y+s=c, s \geq 0\right\} .
$$

Using strong duality, these inclusions are equivalent to

$$
A x^{*}=b ; \quad A^{T} y^{*}+s=c ; \quad c^{T} x^{*}-b^{T} y^{*}=0 ; \quad x^{*} \geq 0 ; \quad s^{*} \geq 0 .
$$

Define the set C_{1} as the solutions to

$$
\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & A^{T} & 1 \\
c^{T} & -b^{T} & 0
\end{array}\right]\left[\begin{array}{l}
x^{*} \\
y^{*} \\
s^{*}
\end{array}\right]=\left[\begin{array}{l}
b \\
c \\
0
\end{array}\right]
$$

and the set $C_{2}=\left\{(x, y, s) \in \mathbb{R}^{m+2 n} \mid x, s \geq 0\right\}$. We have just shown that LPs can actually be cast as a feasbility problem:

Theorem 2 The pair $\left(x^{*}, y^{*}\right)$ is primal-dual optimal if, and only if, there exists $s^{*} \in \mathbb{R}_{\geq 0}$ such that $\left(x^{*}, y^{*}, s^{*}\right) \in C_{1} \cap C_{2}$.

Now, let's take a step back and consider two closed, convex sets $C_{1}, C_{2} \subseteq \mathbb{R}^{n}$. Let's solve, $x \in C_{1} \cap C_{2}$ by forming an operator $N: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with fixed points $C_{1} \cap C_{2}$. To apply the KM theorem, the operator N must be 1-Lipschitz continuous.

Definition 1 We call a 1-Lipschitz mapping $N: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ nonexpansive.
We will often find the following identity useful:

Lemma 3 For all $a, b \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$, we have

$$
\|(1-\lambda) a+\lambda b\|^{2}=(1-\lambda)\|a\|^{2}+\lambda\|b\|^{2}-\lambda(1-\lambda)\|a-b\|^{2} .
$$

Before we construct the operator N, we prove a Lemma which shows that projection mappings satisfy a property slightly stronger than nonexpansiveness.
Lemma 4 Let $C \subseteq \mathbb{R}^{n}$ be a closed convex set. Then $\left(\forall x \in \mathbb{R}^{n}\right)\left(\forall y \in \mathbb{R}^{n}\right)$

$$
\left\|P_{C}(x)-P_{C}(y)\right\|^{2} \leq\|x-y\|^{2}-\left\|\left(x-P_{C}(x)\right)-\left(y-P_{C}(y)\right)\right\|, \quad(\text { firm non-expansiveness })
$$

In particular, P_{C} and $2 P_{C}-I$ are nonexpansive.
Proof: Recall that $x-P_{C}(x) \in N_{C}\left(P_{C}(x)\right)$ and $y-P_{C}(y) \in N_{C}\left(P_{C}(y)\right)$, so

$$
\left\langle x-P_{C}(x), P_{C}(y)-P_{C}(x)\right\rangle \leq 0 \quad \text { and } \quad\left\langle y-P_{C}(y), P_{C}(x)-P_{C}(y)\right\rangle \leq 0 .
$$

Add these inequalities to get

$$
\begin{aligned}
0 & \geq\left\langle\left(x-P_{C}(x)\right)-\left(y-P_{C}(y)\right), P_{C}(y)-P_{C}(x)\right\rangle \\
& =\frac{1}{2}\left(-\|x-y\|^{2}+\left\|\left(x-P_{C}(x)\right)-\left(y-P_{C}(y)\right)\right\|^{2}+\left\|P_{C}(x)-P_{C}(y)\right\|^{2}\right), \quad \text { law of cosines } \\
& \Longleftrightarrow\left\|P_{C}(x)-P_{C}(y)\right\|^{2} \leq\|x-y\|^{2}-\left\|\left(x-P_{C}(x)\right)-\left(y-P_{C}(y)\right)\right\|^{2} .
\end{aligned}
$$

Thus P_{C} is firmly nonexpansive. Finally, by Lemma 3, we have

$$
\begin{aligned}
& \left\|\left(2 P_{C}(x)-x\right)-\left(2 P_{C}(y)-y\right)\right\|^{2}=\left\|2\left(P_{C}(x)-P_{C}(y)\right)+(1-2)(x-y)\right\|^{2}, \\
& \quad=2\left\|P_{C}(x)-P_{C}(y)\right\|^{2}+(1-2)\|x-y\|^{2}-2(1-2)\left\|\left(P_{C}(x)-x\right)-\left(P_{C}(y)-y\right)\right\|^{2}, \\
& \quad \leq 2\left[\|x-y\|^{2}-\left\|\left(x-P_{C}(x)\right)-\left(y-P_{C}(y)\right)\right\|^{2}\right]-\|x-y\|^{2}+2\left\|\left(x-P_{C}(x)\right)-\left(y-P_{C}(y)\right)\right\|^{2}, \\
& \quad=\|x-y\|^{2} .
\end{aligned}
$$

Corollary 5 Let $C_{1}, C_{2} \subseteq \mathbb{R}^{m}$ be closed nonempty convex sets. Then $N=\frac{3}{2} P_{C_{2}} P_{C_{1}}-\frac{1}{2} I$ is nonexpansive.

Proof: Recall that $\|\cdot\|^{2}$ is a convex function, so

$$
\left\|\frac{1}{2}(x+y)\right\|^{2} \leq \frac{1}{2}\|x\|^{2}+\frac{1}{2}\|y\|^{2}, \quad \text { i.e. } \quad \frac{1}{2}\|x+y\|^{2} \leq\|x\|^{2}+\|y\|^{2} .
$$

Now let $x, y \in \mathbb{R}^{n}$.

$$
\begin{aligned}
& \frac{1}{2}\left\|\left(I-P_{C_{2}} P_{C_{1}}\right)(x)-\left(I-P_{C_{2}} P_{C_{1}}\right)(y)\right\|^{2} \\
& \quad=\frac{1}{2}\left\|\left(I-P_{C_{1}}\right)(x)-\left(I-P_{C_{1}}\right)(y)+\left(P_{C_{1}}-P_{C_{2}} P_{C_{1}}\right)(x)-\left(P_{C_{1}}-P_{C_{2}} P_{C_{1}}\right)(y)\right\|^{2}, \\
& \quad \leq\left\|\left(I-P_{C_{1}}\right)(x)-\left(I-P_{C_{1}}\right)(y)\right\|^{2}+\left\|\left(P_{C_{1}}-P_{C_{2}} P_{C_{1}}\right)(x)-\left(P_{C_{1}}-P_{C_{2}} P_{C_{1}}\right)(y)\right\|^{2}, \\
& \quad \leq\|x-y\|^{2}-\left\|P_{C_{1}}(x)-P_{C_{1}}(y)\right\|^{2}+\left\|P_{C_{1}}(x)-P_{C_{1}}(y)\right\|^{2}-\left\|P_{C_{2}} P_{C_{1}}(x)-P_{C_{2}} P_{C_{1}}(y)\right\|^{2},
\end{aligned}
$$

where we apply Lemma 4 twice to get the last inequality. Thus,

$$
\left\|P_{C_{2}} P_{C_{1}}(x)-P_{C_{2}} P_{C_{1}}(y)\right\|^{2}+\frac{1}{2}\left\|\left(I-P_{C_{2}} P_{C_{1}}\right)(x)-\left(I-P_{C_{2}} P_{C_{1}}\right)(y)\right\|^{2} \leq\|x-y\|^{2} .
$$

Therefore, by Lemma 3, we have

$$
\begin{aligned}
& \|N(x)-N(y)\|^{2}=\left\|\frac{3}{2}\left(P_{C_{2}} P_{C_{1}}(x)-P_{C_{2}} P_{C_{1}}(y)\right)-\frac{1}{2}(x-y)\right\|^{2}, \\
& =\frac{3}{2}\left\|P_{C_{2}} P_{C_{1}}(x)-P_{C_{2}} P_{C_{1}}(y)\right\|^{2}-\frac{1}{2}\|x-y\|^{2}+\frac{3}{4}\left\|\left(I-P_{C_{2}} P_{C_{1}}\right)(x)-\left(I-P_{C_{2}} P_{C_{1}}\right)(y)\right\|^{2}, \\
& \leq \frac{1}{2}\left[3\|x-y\|^{2}-\|x-y\|^{3}\right], \\
& =\|x-y\|^{2} .
\end{aligned}
$$

We'll use the following simple fact.
Exercise $1 \operatorname{Fix}\left(P_{C}\right)=C$.
Proposition 6 Let $C_{1}, C_{2} \subseteq \mathbb{R}^{n}$ be closed, convex sets such that $C_{1} \cap C_{2} \neq \emptyset$. Then

$$
C_{1} \cap C_{2}=\operatorname{Fix}\left(P_{C_{2}} \circ P_{C_{1}}\right)=\operatorname{Fix}\left(\frac{3}{2} P_{C_{2}} \circ P_{C_{1}}-\frac{1}{2} I\right) .
$$

Proof: $\quad N=P_{C_{2}} \circ P_{C_{2}}$ is nonexpansive by Lemma 4, and the fact that the compositions of nonexpansive maps are nonexpansive. Now, let $x \in C_{1} \cap C_{2}$. Then $P_{C_{1}}(x)=x$ and $P_{C_{2}}(x)=x$. Thus, $\left(P_{C_{2}} \circ P_{C_{1}}\right)(x)=x$ and $x \in \operatorname{Fix}(N)$.

Now suppose, $x \in \operatorname{Fix}(N)$. Then

$$
x=P_{C_{2}} \circ P_{C_{1}}(x),
$$

and so $x \in C_{2}$. We consider three cases:

1. Suppose $P_{C_{1}}(x) \in C_{2}$. Then $x=P_{C_{2}} P_{C_{1}} x=P_{C_{1}} x$, so $x \in C_{1} \cap C_{2}$.
2. Suppose $x \in C_{1}$. Then $x \in C_{1} \cap C_{2}$.
3. Suppose $x \notin C_{1}$ and $P_{C_{1}} x \notin C_{2}$. Then $\forall y \in C_{1} \cap C_{2}$, we have

$$
\begin{aligned}
\|x-y\| & =\left\|P_{C_{2}} P_{C_{1}}(x)-P_{C_{2}} P_{C_{1}}(y)\right\|, \\
& <\left\|P_{C_{1}}(x)-P_{C_{1}}(y)\right\|, \quad\left(P_{C_{1}}(y)=y \in C_{2} \quad \text { and } \quad P_{C_{1}}(x) \notin C_{2},\right. \\
& <\|x-y\|, \quad\left(x \notin C_{1} \quad \text { and } \quad y \in C_{1} \cap C_{2}\right) .
\end{aligned}
$$

This is a contradiction! So $x \in C_{1} \cap C_{2}$.
The equality $\operatorname{Fix}\left(P_{C_{2}} P_{C_{1}}\right)=\operatorname{Fix}\left(\frac{3}{2} P_{C_{2}} P_{C_{1}}-\frac{1}{2} I\right)$ follows because $P_{C_{2}} P_{C_{1}}=\frac{2}{3}\left(\frac{3}{2} P_{C_{2}} P_{C_{1}}+\left(1-\frac{3}{2}\right) I\right)+$ $\frac{1}{3} I$.

Theorem 7 Suppose $C_{1}, C_{2} \subseteq \mathbb{R}^{n}$ are closed convex sets such that $C_{1} \cap C_{2} \notin \emptyset$. Let $z^{0} \in \mathbb{R}^{n}$. Then the Method of Alternating Projections

$$
z^{k+1}=P_{C_{2}} P_{C_{1}} z^{k}
$$

converges to an element of $C_{1} \cap C_{2}$.
Proof: Let $N=\frac{3}{2} P_{C_{2}} P_{C_{1}}-\frac{1}{2} I$, apply KM iteration theorem with $\lambda=\frac{2}{3}$ and observe that

$$
N_{\lambda}=(1-\lambda) I+\lambda N=\frac{1}{3} I+P_{C_{2}} P_{C_{1}}-\frac{1}{3} I=P_{C_{2}} P_{C_{1}} .
$$

Remark 1 1. In general, the method of alternating projections can converge arbitrarily slowly!
2. If $C_{1} \cap C_{2}=\emptyset$, then under certain conditions

$$
\left\|z^{k}-P_{C_{1}}\left(z^{k}\right)\right\| \rightarrow \inf _{z \in C_{2}, w \in C_{1}}\|z-w\|
$$

and $z^{k}-P_{C_{1}}\left(z^{k}\right)$ converges to the gap vector $v=z^{*}-w^{*}$, where $\left(z^{*}, w^{*}\right) \in \operatorname{argmin}_{z \in C_{2}, w \in C_{1}} \| z-$ $w \|$
3. Was originally introduced by van-Neumann and Halperin in the 1930 s.

Returning to the LP feasibility problem, i.e.: we let C_{1} be the solutions to

$$
\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & A^{T} & 1 \\
c^{T} & -b^{T} & 0
\end{array}\right]\left[\begin{array}{l}
x^{*} \\
y^{*} \\
s^{*}
\end{array}\right]=\left[\begin{array}{l}
b \\
c \\
0
\end{array}\right]
$$

and the set $C_{2}=\left\{(x, y, s) \in \mathbb{R}^{m+2 n} \mid x, s \geq 0\right\}$. Then we consider the feasibility problem:

$$
\left[\begin{array}{c}
x^{*} \\
y^{*} \\
s^{*}
\end{array}\right] \in C_{1} \cap C_{2} .
$$

Let's apply the MAP algorithm. Must compute projections first. Let $z=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$.

- The projection onto C_{2} is a simple thresholding operation:

$$
P_{C_{2}}(z)=\left[\begin{array}{c}
\max \{x, 0\} \\
y \\
\max \{s, 0\}
\end{array}\right] .
$$

- Computing $P_{C_{1}}(z)$ requires a linear system solve. Let

$$
D=\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & A^{T} & 1 \\
c^{T} & -b^{T} & 0
\end{array}\right]
$$

then

$$
P_{C_{1}}(z)=z-D^{\dagger}\left(D z-\left[\begin{array}{l}
b \\
c
\end{array}\right]\right)
$$

where D^{\dagger} is the Moore-Penrose inverse. When D has full rank,

$$
P_{C_{1}}(z)=z-D^{\dagger}\left(D D^{\dagger}\right)^{-1}\left(D z-\left[\begin{array}{l}
b \\
c
\end{array}\right]\right) .
$$

- The matrix D^{\dagger} can be computed offline or one can solve the equation at each iteration. If one intends to run the algorithm for a long time, it may be a good idea to precompute D^{\dagger}.
- Furthermore, it can be shown that, given $z^{0}=\left[\begin{array}{l}x^{0} \\ y^{0} \\ s^{0}\end{array}\right]$,

$$
z^{k+1}=P_{C_{2}} P_{C_{1}}\left(z^{k}\right),
$$

the MAP sequence converges linearly.
Theorem 8 There exists $\delta \in(0,1)$ such that for all $k \in \mathbb{N}$

$$
\operatorname{dist}_{C_{1} \cap C_{2}}\left(z^{k+1}\right) \leq \delta \operatorname{dist}_{C_{1} \cap C_{2}}\left(z^{k}\right) .
$$

Hence, for all $k \in \mathbb{N} \operatorname{dist}_{C_{1} \cap C_{2}}\left(z^{k}\right) \leq \delta^{k} \operatorname{dist}_{C_{1} \cap C_{2}}\left(z^{0}\right)$.
In general, δ depends on the "angle" between C_{1} and C_{2}. The more transversely they meet, the better.

