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1 Last Time

Definition 1 (Bland’s Rule) Choose the entering basic variable xj such that j is the smallest
index with c̄j < 0. Also choose the leaving basic variable i with the smallest index (in case of ties
in the ratio test).

Theorem 1 (Termination with Bland’s Rule) If the simplex method uses Bland’s rule, it ter-
minates in finite number of steps with optimal solution. (i.e. no cycling)

2 Low Cost Methods for LPs

The simplex method is extremely fast when inverting AB is easy. In general, O(m3) operations are
required to solve linear equation ABy = cB, etc. For cases when O(m3) is too large, say m ≥ 106

and m3 ≥ 1018, one iteration of simplex method is too expensive. There do exist approximate
variants of simplex method that are cheaper, for example, column or row generation methods. See
David Williamson’s notes for more details. However, for extremely big problems, we sometimes
resort first-order algorithms, which only use matrix vector products and no inversions. This brings
the cost down to O(mn) operations per iteration. With these methods, accuracy ε can be achieved
in O(1

ε ) iterations, which is not great, but its sometimes the best we can do.
Such algorithms look for fixed points of a nonlinear operator. For example, we saw in HW6

that

x∗ ∈ argmin{cTx | Ax = b, x ≥ 0} and y∗ ∈ argmax{bT y | AT y ≤ c},

if and only if

T

[
y∗

x∗

]
:=

[
y∗

x∗

]
,

where

T

[
x
y

]
:=

[
y − γ (Ax− b)

max{x+ τ
(
AT y − c

)
, 0}

]
,

When looking for fixed-points of nonlinear operators N , there is an obvious algorithm: given
Z0 ∈ Rn, N : Rn → Rn, iterate Zk+1 = NZk. Why? Assume Zk → Z̄ as k → ∞, then
NZk → NZ̄ ⇒ NZ̄ = Z̄. So Z̄ is a fixed point.

If N is linear, then Z̄ is an eigenvector of N and the algorithm is called power method. For
general N , this algorithm is called Krasnosel’skii-Mann (KM) iteration. The most popular variant
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of this algorithm includes a relaxation parameter λ ∈ (0, 1) and iterates Zk+1 = (1−λ)Zk+λNZk.
It is not the only method used to solve nonlinear equations, but it is the most popular in convex
optimization.

Definition 2 We denote the set of fixed points of N by Fix(N) := {x ∈ Rn|N(x) = x}.

Exercise 1 Exercise: Let Nλ = (1− λ)I + λN , prove that Fix(Nλ) = Fix(N).

When does the KM iteration converge to an element of Fix(N)?

Theorem 2 (KM Iteration converges) Suppose N : Rn → Rn is 1-Lipschitz continuous, i.e.
(∀x ∈ Rn,∀y ∈ Rn), ‖Nx − Ny‖ ≤ ‖x − y‖, that Fix(N) 6= ∅, and λ ∈ (0, 1). Then given any
Z0 ∈ Rn, the sequence {Zk}k∈N generated by the KM iteration Zk+1 = (1−λ)Zk+λNZk converges
to an elementent of Fix(N)

Proof: Let Z̄ ∈ Fix(N), then the sequence {Zk}k∈N is bounded because

‖Zk+1 − Z̄‖ = ‖(1− λ)(Zk − Z̄) + λ(NZk −NZ̄))‖
≤ (1− λ)‖Zk − Z̄‖+ λ‖NZk − Z̄‖
≤ (1− λ)‖Zk − Z̄‖+ λ‖NZk −NZ̄‖
≤ ‖Zk − Z̄‖,

and so ‖Zk − Z̄‖ ≤ ‖Zk+1 − Z̄‖ ≤ ‖Z0 − Z̄‖ and ‖Zk − Z̄‖ converges to some ξ ≥ 0. Thus we
have {Zk}k∈N ⊆ B(Z̄, ‖Z̄−Z0‖). If {Zk}k∈N converges, then its limit is an element of Fix(N) and
the proof is complete.

Assume that {Zk}k∈N doesn’t converge.

Exercise 2 If {Zk}k∈N has a unique limit point, then it converges.

Thus {Zk}k∈N must have at least two limit points, say Z1 and Z2, and assume that Zjk → Z1

and Z lk → Z2 as k →∞.
Suppose that Z1, Z2 ∈ Fix(N), then let ξ1 = limk→∞ ‖Zk − Z1‖ and ξ2 = limk→∞ ‖Zk − Z2‖

(the limit exists by the argument at the beginning of the proof). We have (exercise!)

2〈Zk, Z1 − Z2〉 = ‖Zk − Z2‖2 − ‖Zk − Z1‖2 + ‖Z2‖2 − ‖Z1‖2
k→∞→ ξ2 − ξ1 + ‖Z2‖2 − ‖Z1‖2︸ ︷︷ ︸

:=l

Thus

2〈Zjk , Z1 − Z2〉 → 2〈Z1, Z1 − Z2〉
2〈Z lk , Z1 − Z2〉 → 2〈Z2, Z1 − Z2〉

and

2〈Z1, Z1 − Z2〉 = l = 2〈Z1, Z1 − Z2〉

so ‖Z1 − Z2‖2 = 0. Thus Z1 = Z2 and we have reached a contradiction.
Therefore, to complete the proof, we must show that every limit point of {Zk}k∈N is actually

a fixed point. To do this, we prove the two claims,
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Claim 3 {‖Zk −N(Zk)‖}k∈N is nonincreasing.

Claim 4 (∀Z ∈ Rn,∀Z̄ ∈ Fix(N)), ‖Nλ(Z)− Z̄‖2 ≤ ‖Z − Z̄‖2 − λ(1− λ)‖Z −N(Z)‖2.

How do we use these claims? First Claim 4 implies that ∀k ∈ N,

‖Zk+1 − Zk‖2 = ‖Nλ(Zk)− Zk‖2
≤ ‖Zk − Z̄‖2 − λ(1− λ)‖Zk −N(Zk)‖2

Then for ∀T ∈ N,∑T
k=0 λ(1− λ)‖Zk −N(Zk)‖2 ≤

∑T
k=0{‖Zk − Z̄‖2 − ‖Zk+1 − Z̄‖2}

≤ ‖Z0 − Z̄‖2 − ‖ZT+1 − Z̄‖2
≤ ‖Z0 − Z̄‖2

So ∀T ∈ N, Claim 3 implies

‖ZT −N(ZT )‖2 ≤ 1
T

∑T
k=0 ‖Zk −N(Zk)‖2

≤ ‖Z0−Z̄‖2
T (1−λ)λ

→ 0 when T →∞

Thus, ‖Zk −N(Zk)‖ → 0 as k →∞.
Now suppose that Ẑ is a limit point of Zkk∈N, say Zjk → Ẑ. Then ‖Zjk − N(Zjk)‖ → 0 as

k →∞. ‖Ẑ −N(Ẑ)‖ = 0⇒ Ẑ = N(Ẑ) So any limit point of {Zk}k∈N is a fixed point.
Thus, the only loose ends left are the proofs of the Claims.

Proof: [of Claim 3]

‖Zk+1 −N(Zk+1)‖
= ‖(1− λ)Zk + λN(Zk)−N(Zk+1)‖
= ‖(1− λ)(Zk −N(Zk)) +N(Zk)−N(Zk+1)‖
≤ (1− λ)‖Zk −N(ZK)‖+ ‖N(Zk)−N(Zk+1)‖
≤ (1− λ)‖Zk −N(ZK)‖+ ‖Zk − Zk+1‖
≤ (1− λ)‖Zk −N(ZK)‖+ ‖Zk − [(1− λ)Zk + λN(Zk)]‖
≤ (1− λ)‖Zk −N(ZK)‖+ λ‖Zk −N(Zk)‖
= ‖Zk −N(Zk))‖

�
Proof: [of Claim 4]

‖Nλ(Z)− Z̄‖2 = ‖(1− λ)(Z − Z̄) + λ(N(Z)− Z̄)‖2
Exercise ! = (1− λ)‖Z − Z̄‖2 + λ‖N(Z)− Z̄‖2 − λ(1− λ)‖Z −N(Z)‖2

= (1− λ)‖Z − Z̄‖2 + λ‖N(Z)−N(Z̄)‖2 − λ(1− λ)‖Z −N(Z)‖2
≤ ‖(Z − Z̄)‖2 − λ(1− λ)‖Z −N(Z̄)‖2

� �
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