
ORIE 6300 Mathematical Programming I October 6, 2016

Lecture 14

Lecturer: Damek Davis Scribe: Chamsi Hssaine

1 Pivot Rules

A key factor in the performance of the simplex method is the rule we use to decide which j (s.t.
c̄j < 0) should enter the basis on each pivot. We know, from the last lecture, that the time spent in
checking c̄j < 0, for each j, is O(m), and if we check all possible j’s, the total time is O(mn). This
compares with the O(km) time needed to complete the rest of the pivot, where k is the number
of pivots performed since we last computed A−1

B . However, the selection of a pivot rule not only
will affect the performance of each pivot, but also the total number of pivots needed to reach the
optimum (if it exists). The following are common practices on how to do this; however, remember
that these methods are only heuristics. Below (+)=Advantage and (−)=Disadvantage.

1. Use first negative reduced cost c̄j found.
(+) It is computationally cheap.
(−) We are not sure whether we are making progress or not.

2. Use most negative reduced cost c̄j found.
(−) It is more expensive than the first.
(−) We are not sure of progress, since we could have εj = 0.

3. Use greatest improvement c̄jε found.
(+) We are clearly making progress.
(−) Needs even more computation. We need to compute: ABd = Aj , ∀j s.t. c̄j < 0.
Then for each j compute: max εj s.t. εjd ≤ b̄ = xB and set ε = argmaxεj c̄jεj

4. Use the steepest edge:

min
j

c̄j
‖d‖2

The reasoning for this method is that d = A−1
B Aj represents the vector of change.

x̂B = xB − Ā(εej) = xB − εd

Solution xB moves in direction −d. Consequently, the steepest edge method gives the greatest
objective value improvement per amount of current solution perturbation.
(−) Computationally expensive. Less than “greatest improvement” (we only compute d for
each j, not ε).
(+) Works well in practice. Seems to lead to fewer overall pivots than greatest improvement.
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2 Pivot Pool

For LP problems with many variables, the use of a “pivot pool” often works well. This is how a
pivot pool works. Periodically, the algorithm computes the reduced costs for all the variables, and
among those with c̄j < 0 a subset of “best” variables are chosen. This subset is used in all further
iterations of the simplex method until the pivot pool either becomes empty or grows too old. This
allows the algorithm to choose entering variables quickly (by one of rules (2), (3), or (4), above, for
example), but only considering a tuned subset of the entire set of variables.

3 Cycling & Bland’s Rule

Consider a linear programming problem input in standard form: min(cTx : x ≥ 0, Ax = b).
Recall: A basic feasible solution, x, is degenerate if ∃ i such that xi = 0 and i is in the basis
corresponding to x.
Possible Problem: If x is degenerate and i ∈ B, s.t. xi = 0, is chosen to leave the basis, then
the objective function doesn’t change.

Another Problem: Degeneracy can potentially cause cycling in the simplex method.

Definition 1 A cycle in the simplex method is a sequence of κ+ 1 iterations with corresponding
bases B0,. . . ,Bκ,B0 and κ ≥ 1.

This is not a theoretical concern; this can actually happen. In Example 1, a sequence of pivots
leads back to the initial basis (i.e. cycling occurs).

Example 1 (Degenerate Pivoting)
Pivot rules:

• Choose entering variable with largest reduced cost.

• Choose leaving variable with smallest subscript.

maximize 10x1 − 57x2 − 9x3 − 24x4

subject to 0.5x1 − 5.5x2 − 2.5x3 + 9x4 ≤ 0
0.5x1 − 1.5x2 − 0.5x3 + x4 ≤ 0
x1 ≤ 1
x1 , x2 , x3 , x4 ≥ 0.

Introduce slacks in initial tableau. Initial basis: {5, 6, 7}.

z −10x1 +57x2 +9x3 +24x4 = 0

0.5x1 −5.5x2 −2.5x3 +9x4 +x5 = 0

0.5x1 −1.5x2 −0.5x3 +x4 +x6 = 0
x1 +x7 = 1.
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z −53x2 −41x3 +204x4 +20x5 = 0
x1 −11x2 −5x3 +18x4 +2x5 = 0

4x2 +2x3 −8x4 −x5 +x6 = 0

11x2 +5x3 −18x4 −2x5 +x7 = 1.

z −14.5x3 +98x4 +6.75x5 +13.25x6 = 0

x1 +0.5x3 −4x4 −0.75x5 +2.75x6 = 0

x2 +0.5x3 −2x4 −0.25x5 +0.25x6 = 0
−0.5x3 +4x4 +0.75x5 −2.75x6 +x7 = 1.

z +29x1 −18x4 −15x5 +93x6 = 0
2x1 +x3 −8x4 −1.5x5 +5.5x6 = 0

−x1 +x2 +2x4 +0.5x5 −2.5x6 = 0

x1 +x7 = 1.

z +20x1 +9x2 −10.5x5 +70.5x6 = 0

−2x1 +4x2 +x3 +0.5x5 −4.5x6 = 0

−0.5x1 +0.5x2 +x4 +0.25x5 −1.25x6 = 0
x1 +x7 = 1.

z −22x1 +93x2 +21x3 −24x6 = 0
−4x1 +8x2 +2x3 +x5 −9x6 = 0

+0.5x1 −1.5x2 −0.5x3 +x4 +x6 = 0

x1 +x7 = 1.

New basis, {5, 6, 7}, is identical with the first basis, so now we CYCLE!

But this solution has objective value 0, so is NOT optimal: x = (1, 0, 1, 0) is better.

There are a couple of ways for avoiding cycling. One way is the “Perturbation Method”. In
this, we perturb the right-hand side b by small amounts different for each bi. Then, xi 6= 0 ∀i ∈ B
since xi will always have some linear combination of these small amounts. See the textbook for
details. This is equivalent to a lexicographic method for breaking ties in choosing entering and
exiting variables.

Another way to avoid cycling is a lexicographic method known as Bland’s Rule.

Definition 2 (Bland’s Rule) Choose the entering basic variable xj such that j is the smallest
index with c̄j < 0. Also choose the leaving basic variable i with the smallest index (in case of ties
in the ratio test).

Theorem 1 (Termination with Bland’s Rule) If the simplex method uses Bland’s rule, it ter-
minates in finite time with optimal solution. (i.e. no cycling)

14-3



Proof: Suppose the simplex method is implemented with Bland’s rule and a cycle exists. Then
there exist bases B0,. . . ,Bκ,B0 that form the cycle. Additionally, recall that the objective value
and the current solution x∗ remain the same throughout the cycle. The solutions remain the same
because x̂B = xB − Ā(εej). Since ε = 0, x̂B = xB.

Definition 3 A variable xj is fickle if it is in some, but not all, bases Bi in the cycle.

Clearly, if x∗j is fickle, then x∗j=0 throughout the cycle.
Let xt be the fickle variable with the largest index. Then we know:

(1) There exists a basis B in the cycle such that t ∈ B, but is not in the next basis in the cycle.
Let s be the index of entering variable. It must be the case that s is fickle because it wasn’t
in B, but enters the next basis in the cycle.

As before, we have Ā = A−1
B AN , b̄ = A−1

B b and the reduced cost c̄ s.t. c̄B = 0.

Note that since s enters and t leaves the basis, Āst > 0. Since s is fickle, by definition of t,
s < t. Also c̄s < 0 (s enters) and c̄t = 0 (since t ∈ B).

The direction of movement, d, in this case is

(
−Ās
es

)
where −Ās corresponds to direction of

movements for basic variables and es to nonbasic variables. The reason is that x̃B = b̄− εĀs,
x̃j = 0 for all j ∈ N − {s} and xs increases by ε.

(2) There exists a basis B̂ in the cycle such that t /∈ B̂ and t is selected to be the entering variable
for the next basis. Let ĉ denote the reduced costs corresponding to B̂. Again, since t is
entering the new basis, ĉt < 0. Also since s is fickle, by definition s < t and by using the
pivoting rule, either s ∈ B which implies ĉs = 0 or c ∈ N which implies ĉs ≥ 0; in either case
ĉs ≥ 0. More generally for all fickle j such that j 6= t, ĉj ≥ 0.

We summarize the facts about vector d in the following tabular form.

dt = −Āst < 0
ds = 1 > 0
dj ≥ 0 if j ∈ B, j 6= t, j is fickle

(dj < 0⇔ Āsj > 0 because of the pivot rule)
dj = 0 if j ∈ N , j 6= s
dj =? if j ∈ B, j is not fickle

Note that Ad = 0. (Ad = AB(−A−1
B As)+ANes = −As+As = 0, or more intuitively, in order

for the primal solution to stay feasible, the direction of movement is in the nullspace of A).
Since c̄ and ĉ are vectors of reduced cost corresponding to B and B̂ respectively, we have:
c̄ = c−AT ȳ and ĉ = c−AT ŷ. Define c̃ = ĉ− c̄ = AT (y − ŷ). Then c̃ is a linear combination
of columns of AT and therefore a linear combination of rows of A. On the other hand Ad = 0
implies d is orthogonal to all rows of A. Hence:

c̃Td = 0

We complete the table by adding c̃j values for different j:
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dt = −Āst < 0 c̃t = ĉt − c̄t < 0
ds = 1 > 0 c̃s = ĉs − c̄s > 0
dj ≥ 0 c̃j = ĉj − c̄j ≥ 0 if j ∈ B, j 6= t, j is fickle
dj = 0 c̃j =? if j ∈ N , j 6= s
dj =? c̃j = ĉj − c̄j = 0 if j ∈ B, j is not fickle

c̃Td can also be computed using the values in the table:

0 = c̃Td = c̃sds + c̃tdt +
∑
j∈B
fickle
j 6=t

c̃jdj +
∑
j∈B

not fickle

c̃jdj +
∑
j∈N
j 6=s

c̃jdj > 0

Thus we have reached a contradiction.

�
Therefore, if we make our entering and leaving variables selections according to Bland’s rule,

we never cycle. Therefore in each iteration we have a unique basis and hence the simplex algorithm
terminates after a finite number of iterations, since there are a finite number of possible bases.
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