1 Finding an initial basic feasible solution

Recall our discussion from last time about how to find an initial basic feasible solution of a linear program. Suppose we want to find a basic feasible solution of

$$
\begin{array}{cc}
\min & c^{T} x \\
\text { s.t. } & A x=b \\
& x \geq 0 .
\end{array}
$$

We modify the LP so that there is an easy choice of basic solution. We start by solving

$$
\begin{array}{cc}
\min & e^{T} z \\
\text { s.t. } & A x+I z=b \\
& x \geq 0 \\
& z \geq 0
\end{array}
$$

where e is the vector of all ones, and $b \geq 0$ (if not, then we can multiply the constraints by -1 to achieve this). The z variables are called artificial variables, and the x 's are called real variables. Define $x^{\prime}:=[x z]^{T}$ and $A^{\prime}:=[A I]$ so that the constraints of the modified LP can be written as $A^{\prime} x^{\prime}=b, x^{\prime} \geq 0$.

Let B be the indices of the artificial variables. Then B is a basis, since the corresponding columns of A^{\prime} are I, the identity, and thus linearly independent. The corresponding basic feasible solution is $x=0, z=b$. We use this to initialize the simplex algorithm.

The simplex method can be one of two possible results (note that the modified LP is never unbounded: since $z \geq 0$, the objective function is bounded from below by 0 .)

Case (1): The value of the LP is non-zero (and thus strictly greater than zero). Then there are no feasible solutions for the original LP, i.e., there are no x such that $A x=b$. Indeed, if there were, we could take $z=0$ and thus obtain a new feasible solution to the modified LP with value 0 , a contradiction.

Case (2): The value of the LP is zero. Then there are two subcases:
(i) The Good Case: All artificial variables are non-basic. Then $A_{B}^{\prime}=A_{B}$, so that B is a basis also for the original problem: $x_{B}^{\prime}=\left(A_{B}^{\prime}\right)^{-1} b, x_{N}^{\prime}=0$ is feasible, so $x_{B}=A_{B}^{-1} b, x_{N}=0$ is a basic feasible solution. for $A x=b$.
We can now run the simplex method for the original problem, starting with the basis B.
(ii) The Bad Case: Some artificial variables are in the basis.

In the bad case, we know that all the artificial variables $z_{i}=0$. Therefore, the idea is that we should perform pivots, taking artificial variables out of basis, putting "real" variables in.

Recall: $\bar{A}^{\prime}=\left(A_{B}^{\prime}\right)^{-1} A_{N}^{\prime}$

Now we again have two cases. We fix the index $i \in B$ corresponding to artificial variables.
Case (1): Suppose there exists a "real" variable $j \in N$ such that $\overline{A_{i j}} \neq 0$ for artificial variable $i \in B$. Consider pivot $\hat{B} \leftarrow B-\{i\} \cup\{j\}$.

Claim 1 Current solution x^{\prime} is also a solution associated with \hat{B}
Proof: All we need to show is that x^{\prime} satisfies $A^{\prime} x^{\prime}=b$ and $x_{k}^{\prime}=0 \quad \forall k \notin \hat{B} . A^{\prime} x^{\prime}=b$ since no change to x^{\prime}. $x_{k}^{\prime}=0 \forall k \notin \hat{B}$ since either $k \notin B$ or $k=i$. For $k \notin B, x_{k}^{\prime}=0$ (same as before). For $k=i, x_{i}^{\prime}=0$ (since i an artificial variable).

Claim $2 \hat{B}$ is a basis
Proof: We use the same proof we used to show that a pivot leads to a new basis. We have

$$
\begin{align*}
& A_{\hat{B}}^{\prime}=A_{B}^{\prime}\left(A_{B}^{\prime-1} A_{\hat{B}}^{\prime}\right) \tag{1}\\
& =A_{B}^{\prime}\left[\begin{array}{ccccc}
1 & & \left(\overline{A_{1 j}^{\prime}}\right. \\
& 1 & & \\
& & \\
& & & \\
& & & & \\
& & & \\
& & & &
\end{array}\right] \tag{2}\\
& i^{\text {th }} \stackrel{\uparrow}{\text { column }}
\end{align*}
$$

where A_{B}^{\prime} is non-singular (it was a basis), and the next matrix is also non-singular (because its determinant value is $\overline{A_{i j}} \neq 0$ by assumption.

Case (2): Suppose for artificial variable $i \in B$, for all real $j \in N, \overline{A_{i j}^{\prime}}=0$. Let α_{i} be $i^{\text {th }}$ row of $\left(\overline{\left.A_{B}^{\prime}\right)^{-1} \text {. Then for each real } j \in N}\right.$

$$
\alpha_{i} A_{j}^{\prime}=\overline{A_{i j}}=0 . \quad\left(A_{j}^{\prime}: j^{\text {th }} \text { column of } A^{\prime}\right)
$$

For each real $j \in B$

$$
\alpha_{i} A_{j}^{\prime}=0
$$

since $\left(A_{B}^{\prime}\right)^{-1} A_{B}=I$, and $i \neq j$ since j real and i artificial. So then, $\alpha_{i} A=0$, which implies that the rows of A not linearly independent. Either this violates an assumption (if we assumed that A has linearly independent rows) or we can find a linearly dependent row and eliminate it. Get rid of constraints linearly dependent on others and continue.

Definition 1 Finding an initial basic feasible solution an associate basis is called Phase I of the simplex method. Finding an optimal solution given the initial basic feasible solution is called Phase II.

2 The complexity of a pivot

We now turn to thinking about the complexity (number of arithmetic operations) needed to perform a single pivot. Assume we have a basic feasible solution x and associated basis B. Recall the steps of a pivot:

- Step 1: Solve $A_{B}{ }^{T} y=c_{B}$ for y.
- Step 2: Compute $\bar{c}=c-A^{T} y$. If $\bar{c} \geq 0$, stop. Else find $\overline{c_{j}}<0$
- Step 3: Solve $A_{B} d=A_{j}$ for d. This computes column $\mathrm{d}=\left(\begin{array}{c}\overline{A_{1 j}} \\ \vdots \\ \overline{A_{m j}}\end{array}\right)$ of $\bar{A}=\left(A_{B}{ }^{-1}\right) A_{N}$.
- Step 4: Compute max ϵ s.t. $\epsilon d \leq \bar{b}=x_{B}$
- Step 5: Update solution to \hat{x} where $\hat{x_{j}}=\epsilon . \hat{x_{B}}=x_{B}-\epsilon d$, Basis $\hat{B}=B-\left\{i^{*}\right\} \cup\{j\}$

Let's now consider the total work involved:

- Step 1 and 3: need to solve $m \times m$ system of equations. : $O\left(m^{3}\right)$ (this is faster if A_{B} is sparse, lots of zeros)
- Step 4 and 5: check $O(m)$ inequalities: Check $O(m)$ inequatities or update $O(m)$ components $O(m)$ work
- In Step 2, to compute any component of \bar{c} is $O(m)$ work, but there are n of them. Overall, $O(m n)$ times if we look through all entries.

Therefore, the overall work involved is $O\left(m^{3}+m n\right)$ per pivot.
Suppose we do one pivot step with input x, B, output x^{\prime}, B^{\prime}. The next pivot involves $A_{\hat{B}}, c_{\hat{B}}, A_{\hat{N}}$ and $|B \cap \hat{B}|=n-1$. So linear system sovling should not be too different in next pivot.

Suppose initially $A_{B}=I$. (If not true, we can multiply the constraints by $A_{B}{ }^{-1}$ to make it true). Suppose $B_{0}=B, B_{1}, B_{2}, \cdots B_{k}$ be bases in a sequence of k pivots.

Recall that

Let E_{i} be $i^{\text {th }}$ eta matrix. Given that this, is the case how hard is it to solve the systems

$$
A_{B_{1}} x=b \text { for } x
$$

$$
\begin{gathered}
A_{B_{1}}^{T} y=c_{B_{1}} \quad \text { for } y \\
A_{B_{1}} d=A_{j} \quad \text { for } d
\end{gathered}
$$

We know that $A_{B_{1}}=E_{1}$ for E_{1} an eta matrix. So $A_{B_{1}} x=b$ is equivalent to

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & & (\\
& 1 & \\
& & \\
& & \\
& & \\
& & \\
& & 1
\end{array}\right]\left[\begin{array}{l}
\\
\\
\\
\\
\\
\end{array}\right]} \\
& j^{t h}
\end{aligned}
$$

This implies

$$
x_{i}+d_{i} x_{j}=b_{i} \quad(i \neq j) \quad \text { and } \quad d_{j} x_{j}=b_{j} \quad(i=j) .
$$

Then to solve this system, set $x_{j}=\frac{b_{j}}{d_{j}}$, and then $x_{i}=b_{i}-\frac{d_{i} b_{j}}{d_{j}}$. Solving this then takes $O(m)$ time.
Now consider solving $A_{B_{1}}{ }^{T} y=c_{B_{1}}$ for y. Then

$$
\left[\right][y]=\left[\begin{array}{l}
\\
c_{B_{1}} \\
\end{array}\right]
$$

This implies

$$
y_{i}=c_{i} \quad i \neq j \quad \text { and } \quad \sum_{i=1}^{n} d_{i} y_{i}=c_{j},
$$

which we can easily solve in $O(m)$ time.
In the general case, we want to solve equations of the form $A_{B_{k}} x=b$. Note that we can solve $\left(E_{1} E_{2} \ldots E_{k}\right) x=b$ if we solve $\left(E_{2} \ldots E_{k}\right) x=b$. Let x_{1} denote the product $E_{2} \cdots E_{k} x$ (where we still don't know x). Then $E_{1} x_{1}=b$. We can solve this system for x_{1} in $O(m)$ time. Now we iteratively solve $E_{2} \ldots E_{k} x=x_{1}$ for x. Thus we can solve for x in $O(k m)$ time.

Hence in general, after k pivots, we can perform a pivot in $O(k m+m n)$ time. Note that this running time gets larger after we have performed a large number of pivots, so in practice, after some number of iterations, we recompute $A_{B}{ }^{-1}$, make the current basis I, and start over again.

