1 Finding an initial basic feasible solution

Recall our discussion from last time about how to find an initial basic feasible solution of a linear program. Suppose we want to find a basic feasible solution of

\[\min c^T x \]
\[\text{s.t.} \quad Ax = b \]
\[x \geq 0. \]

We modify the LP so that there is an easy choice of basic solution. We start by solving

\[\min e^T z \]
\[\text{s.t.} \quad Ax + Iz = b \]
\[x \geq 0 \]
\[z \geq 0, \]

where \(e \) is the vector of all ones, and \(b \geq 0 \) (if not, then we can multiply the constraints by \(-1\) to achieve this). The \(z \) variables are called artificial variables, and the \(x \)'s are called real variables. Define \(x' := [x \ z]^T \) and \(A' := [A \ I] \) so that the constraints of the modified LP can be written as \(A'x' = b, \ x' \geq 0. \)

Let \(B \) be the indices of the artificial variables. Then \(B \) is a basis, since the corresponding columns of \(A' \) are \(I \), the identity, and thus linearly independent. The corresponding basic feasible solution is \(x = 0, \ z = b \). We use this to initialize the simplex algorithm.

The simplex method can be one of two possible results (note that the modified LP is never unbounded: since \(z \geq 0 \), the objective function is bounded from below by 0.)

Case (1): The value of the LP is non-zero (and thus strictly greater than zero). Then there are no feasible solutions for the original LP, i.e., there are no \(x \) such that \(Ax = b \). Indeed, if there were, we could take \(z = 0 \) and thus obtain a new feasible solution to the modified LP with value 0, a contradiction.

Case (2): The value of the LP is zero. Then there are two subcases:

(i) The Good Case: All artificial variables are non-basic. Then \(A'_B = A_B \), so that \(B \) is a basis also for the original problem: \(x'_B = (A'_B)^{-1}b, \ x'_N = 0 \) is feasible, so \(x_B = A_B^{-1}b, \ x_N = 0 \) is a basic feasible solution. for \(Ax = b \).

We can now run the simplex method for the original problem, starting with the basis \(B \).

(ii) The Bad Case: Some artificial variables are in the basis.

In the bad case, we know that all the artificial variables \(z_i = 0 \). Therefore, the idea is that we should perform pivots, taking artificial variables out of basis, putting “real” variables in.
Recall: \(\bar{A}' = (A'_B)^{-1} A'_N \)

Now we again have two cases. We fix the index \(i \in B \) corresponding to artificial variables.

Case (1): Suppose there exists a “real” variable \(j \in N \) such that \(\bar{A}_{ij} \neq 0 \) for artificial variable \(i \in B \). Consider pivot \(\hat{B} \leftarrow B \setminus \{i\} \cup \{j\} \).

Claim 1 Current solution \(x' \) is also a solution associated with \(\hat{B} \)

Proof: All we need to show is that \(x' \) satisfies \(A'x' = b \) and \(x'_k = 0 \) \(\forall k \notin \hat{B} \). For \(k \notin \hat{B} \), \(x'_k = 0 \) \(\forall k \notin \hat{B} \). For \(k \notin B \), \(x'_k = 0 \) (same as before). For \(k = i \), \(x'_i = 0 \) (since \(i \) is an artificial variable). \(\square \)

Claim 2 \(\hat{B} \) is a basis

Proof: We use the same proof we used to show that a pivot leads to a new basis. We have

\[
A'_B = A'_B (A'^{-1}_B A'_B) \\
= A'_B \begin{bmatrix} 1 & 1 & (A'_j) \\ \vdots & & \end{bmatrix} \\
\uparrow \text{ith column}
\]

where \(A'_B \) is non-singular (it was a basis), and the next matrix is also non-singular (because its determinant value is \(\bar{A}_{ij} \neq 0 \) by assumption. \(\square \)

Case (2): Suppose for artificial variable \(i \in B \), for all real \(j \in N \), \(\bar{A}_{ij} = 0 \). Let \(\alpha_i \) be \(i^{th} \) row of \((A'_B)^{-1} \). Then for each real \(j \in N \)

\[
\alpha_i A'_j = \bar{A}_{ij} = 0.
\]

For each real \(j \in B \)

\[
\alpha_i A'_j = 0
\]

since \((A'_B)^{-1} A_B = I \), and \(i \neq j \) since \(j \) real and \(i \) artificial. So then, \(\alpha_i A = 0 \), which implies that the rows of \(A \) not linearly independent. Either this violates an assumption (if we assumed that \(A \) has linearly independent rows) or we can find a linearly dependent row and eliminate it. Get rid of constraints linearly dependent on others and continue.

Definition 1 Finding an initial basic feasible solution an associate basis is called Phase I of the simplex method. Finding an optimal solution given the initial basic feasible solution is called Phase II.
2 The complexity of a pivot

We now turn to thinking about the complexity (number of arithmetic operations) needed to perform a single pivot. Assume we have a basic feasible solution x and associated basis B. Recall the steps of a pivot:

- **Step 1:** Solve $A_B^T y = c_B$ for y.

- **Step 2:** Compute $\bar{c} = c - A^T y$. If $\bar{c} \geq 0$, stop. Else find $\bar{c}_j < 0$

- **Step 3:** Solve $A_B d = A_j$ for d. This computes column $d = \begin{pmatrix} \bar{A}_{1j} \\ \vdots \\ \bar{A}_{mj} \end{pmatrix}$ of $\bar{A} = (A_B^{-1}) A_N$.

- **Step 4:** Compute $\max \epsilon$ s.t. $\epsilon d \leq \bar{b} = x_B$

- **Step 5:** Update solution to \hat{x} where $\hat{x}_j = \epsilon$. $\hat{x}_B = x_B - \epsilon d$, Basis $\hat{B} = B - \{i^*\} \cup \{j\}$

Let’s now consider the total work involved:

- Step 1 and 3: need to solve $m \times m$ system of equations. : $O(m^3)$ (this is faster if A_B is sparse, lots of zeros)

- Step 4 and 5: check $O(m)$ inequalities: Check $O(m)$ inequatities or update $O(m)$ components $O(m)$ work

- In Step 2, to compute any component of \bar{c} is $O(m)$ work, but there are n of them. Overall, $O(mn)$ times if we look through all entries.

Therefore, the overall work involved is $O(m^3 + mn)$ per pivot.

Suppose we do one pivot step with input x, B, output x', B'. The next pivot involves $A_{\hat{B}}, c_{\hat{B}}, A_{\hat{N}}$ and $|B \cap \hat{B}| = n - 1$. So linear system solving should not be too different in next pivot.

Suppose initially $A_B = I$. (If not true, we can multiply the constraints by A_B^{-1} to make it true). Suppose $B_0 = B, B_1, B_2, \cdots B_k$ be bases in a sequence of k pivots.

Recall that

$$A_{B_{i+1}} = A_{B_i} \begin{bmatrix} 1 & 1 & \vdots & d \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix}$$

called an eta matrix

Let E_i be i^{th} eta matrix. Given that this, is the case how hard is it to solve the systems

$$A_{B_i} x = b \text{ for } x$$
\[A_{B_1}^T y = c_{B_1} \quad \text{for } y \]
\[A_{B_1} d = A_j \quad \text{for } d \]

We know that \(A_{B_1} = E_1 \) for \(E_1 \) an eta matrix. So \(A_{B_1} x = b \) is equivalent to

\[
\begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
d \\
x
\end{bmatrix}
= \begin{bmatrix}
b
\end{bmatrix}
\]

\(j \text{th} \)

This implies

\[x_i + d_i x_j = b_i \quad (i \neq j) \quad \text{and} \quad d_j x_j = b_j \quad (i = j). \]

Then to solve this system, set \(x_j = \frac{b_j}{d_j} \), and then \(x_i = b_i - \frac{d_i b_j}{d_j} \). Solving this then takes \(O(m) \) time.

Now consider solving \(A_{B_1}^T y = c_{B_1} \) for \(y \). Then

\[
\begin{bmatrix}
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
d & 0 & \cdots & 1 & 0 \\
0 & 0 & \cdots & 0 & 1
\end{bmatrix}
\begin{bmatrix}
y
\end{bmatrix}
= \begin{bmatrix}
c_{B_1}
\end{bmatrix}
\]

This implies

\[y_i = c_i \quad i \neq j \quad \text{and} \quad \sum_{i=1}^{n} d_i y_i = c_j, \]

which we can easily solve in \(O(m) \) time.

In the general case, we want to solve equations of the form \(A_{B_k} x = b \). Note that we can solve \((E_1E_2\ldots E_k)x = b\) if we solve \((E_2\ldots E_k)x = b\). Let \(x_1 \) denote the product \(E_2 \cdot \cdots \cdot E_k x \) (where we still don’t know \(x \)). Then \(E_1 x_1 = b \). We can solve this system for \(x_1 \) in \(O(m) \) time. Now we iteratively solve \(E_2 \ldots E_k x = x_1 \) for \(x \). Thus we can solve for \(x \) in \(O(km) \) time.

Hence in general, after \(k \) pivots, we can perform a pivot in \(O(km + mn) \) time. Note that this running time gets larger after we have performed a large number of pivots, so in practice, after some number of iterations, we recompute \(A_B^{-1} \), make the current basis \(I \), and start over again.