ORIE 6300 Mathematical Programming I

September 22, 2016

Scribe: Qinru Shi

Lecture 10

Lecturer: Damek Davis

1 Last Time

• We shifted to the standard form $(A \in \mathbb{R}^{m \times n})$.

$$\begin{array}{ll} \min & c^T x & \max & b^T y \\ \text{s.t.} & Ax = b & \text{s.t.} & A^T y \leq c \\ & x \geq 0 \end{array}$$

Also, $P(A, b) = \{x \mid A^T x = b, x \ge 0\}.$

- Assumption: From now on, we assume that the rows of A are linearly independent $(m \le n)$.
- **Proposition 1** For $P(A, b) = \{x \mid A^T x = b, x \ge 0\}$, $\overline{x} \in P(A, b)$ is a vertex if and only if the columns corresponding to positive components of \overline{x} are linearly independent.
- Definition 1 A set B of m columns of A $(A \in \mathbb{R}^{m \times n})$ is a <u>basis</u> if rank $(A_B) = m$ $(A_B$ is invertible).
- **Proposition 2** Every vertex of P(A, b) is a basic feasible solution corresponding to some basis.

2 Verifying optimality

Given a vertex $\overline{x} \in P(A, b)$, we want to find a "verifying \overline{y} " which we use to check whether \overline{x} is optimal. Clearly, any \overline{y} should satisfy complementary slackness, i.e.

$$\overline{x}_i > 0 \iff (A^T \overline{y})_i = c_i.$$

In order to find \overline{y} , we first prove the following proposition.

Proposition 3 Suppose $\overline{x} \in P(A, b)$ has m non-zero components corresponding to basis B. Then, \overline{x} is optimal if and only if there exists $y \in Q(A^T, c)$ such that $A_B^T y = c_B$.

Proof: By theorem from previous lectures, we know that \overline{x} is optimal if and only if

$$-c \in N_{P(A,b)}(\overline{x}) = \{ \hat{c} \mid \exists \hat{y} \in Q(A^T, \hat{c}), \ s.t. \ \overline{x}^T(\hat{c} - A^T \hat{y}) = 0 \},\$$

which is then equivalent to the condition

$$\exists y \in Q(A^T, c) \quad s.t. \quad x_i > 0 \Rightarrow (A^T y)_i = c_i.$$

Note that $x_i > 0$ if and only if $i \in B$, so the last condition can be translated into

$$\exists y \in Q(A^T, c) \quad s.t. \quad A_B^T y = c_B.$$

We also have the following definition regarding non-degeneracy.

Definition 2 A vertex $\overline{x} \in P(A, b)$ is called non-degenerate if it has exactly m nonzero components and those components correspond to some basis B.

For each non-degenerate \overline{x} with basis B, we will try to find a $y \in Q(A^T, c)$ such that $A_B^T y = c_B$. Then, $(c - A^T y)_i = 0$ when $i \in B$. For simplicity of notation and computation, we create the following definition.

Definition 3 For any $y \in \mathbb{R}^m$, the <u>reduced cost</u> \overline{c} with respect to y is $\overline{c} = c - A^T y$.

Lemma 4 For all $x \in P(A, b)$, range $(A^T) + N_{P(A,b)}(x) = N_{P(A,b)}(x)$.

Proof: Clearly, $N_{P(A,b)}(x) \subseteq \operatorname{range}(A^T) + N_{P(A,b)}(x)$ because $0 \in \operatorname{range}(A^T)$. On the other hand, let $A^T y_0$ be any element in $\operatorname{range}(A^T)$ and $-\hat{c}$ be any element in $N_{P(A,b)}(x)$. Then, there exists \hat{y} such that $A^T \hat{y} \leq \hat{c}$ and $x^T(\hat{c} - A^T \hat{y}) = 0$. Tweaking the equations a bit, we get

$$A^T(\hat{y} - y_0) \le \hat{c} - A^T y_0$$

and

$$x^{T}(\hat{c} - A^{T}y_{0} - A^{T}(\hat{y} - y_{0})) = 0$$

Thus,

$$A^T y_0 - \hat{c} \in N_{P(A,b)}(x)$$

which means that range $(A^T) + N_{P(A,b)}(x) \subseteq N_{P(A,b)}(x)$.

A simple example to illustrate Lemma 5 is when A = [1, 1], b = 1 and $c \in \mathbb{R}^2$. P(A, b) in this case is a line segment connecting (1, 0) and (0, 1). If c is in $N_{P(A,b)}$, then $c + \begin{bmatrix} y \\ y \end{bmatrix}$ is still in $N_{P(A,b)}$.

	-		

From Lemma 5, we can easily reach the following conclusion.

Lemma 5 Consider the two LPs

These LPs have the exact same optimal solution.

Proof: We know that \overline{x} solves (1) if and only if $-c \in N_{P(A,b)}(\overline{x})$. By Lemma 5, we have

$$N_{P(A,b)}(\overline{x}) = \operatorname{range}(A^T) + N_{P(A,b)}(\overline{x}),$$

so $c \in N_{P(A,b)}(\overline{x})$ if and only if $\overline{c} = -c + A^T y \in N_{P(A,b)}(\overline{x})$, which equivalent to \overline{x} being an optimal solution of (2).

We also have the following observation regarding \bar{c} .

Observation 1 $\overline{y} \in Q(A^T, c) \iff A^T \overline{y} \leq c \iff \overline{c} = c - A^T \overline{y} \geq 0.$

Using the conclusions above, we can now work with \overline{c} instead of c.

3 Some Simplex Method-type Computations

Consider a basis B and the new linear program with reduced cost \bar{c} .

(LP2) min
$$\overline{c}^T x$$

s.t. $Ax = b$
 $x \ge 0.$

We reorganize the vectors and matrices so that $x = \begin{bmatrix} x_B \\ x_N \end{bmatrix}$, $A = \begin{bmatrix} A_B & A_N \end{bmatrix}$ and $\overline{c} = \begin{bmatrix} \overline{c}_B \\ \overline{c}_N \end{bmatrix}$. Note that $x_B > 0, x_N = 0$ and

$$\begin{bmatrix} A_B & A_N \end{bmatrix} \begin{bmatrix} x_B \\ x_N \end{bmatrix} = b.$$

Multiplying through by A_B^{-1} , we convert LP2 into

$$\begin{array}{ll} \min & \overline{c}_B^T x_B + \overline{c}_N^T x_N \\ \text{s.t.} & I x_B + A_B^{-1} A_N x_N = A_B^{-1} b \\ & x \ge 0. \end{array}$$

Now set $y = A_B^{-T} c_B$ and $\overline{c} = c - A^T y$. Then, $\overline{c}_B = c_B - A_B^T A_B^{-T} c_B = 0$. Our problem becomes

min
$$\overline{c}_N^T x_N$$

s.t. $x_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x \ge 0.$

We can further simplify the problem by discarding x_B . Then, the LP looks like

$$(LP3) \quad \min_{X_N} \quad \overline{c}_N^T x_N \\ \text{s.t.} \quad A_B^{-1} A_N x_N \le A_B^{-1} b \\ x_N \ge 0.$$

If $y \in Q(A^T, c)$, then $\overline{c} = c - A^T y \ge 0$. Because $\overline{c}_N^T x_N \ge 0$, the optimal value of the reduced problem is bounded below by 0. Thus, if $A_B^{-1}b \ge 0$, then $x_N = 0$ is feasible and $\overline{c}^T 0 = 0$, so $x_N = 0$ is an optimal solution. In the original problem, $x = \begin{bmatrix} A_B^{-1}b \\ 0 \end{bmatrix}$ is optimal.

Now suppose B is an arbitrary basis. Let $x_N = 0$ and $x_B = A_B^{-1}b$. Based on the analysis above, we devise the following simplex scheme for finding the optimal solution:

- If $A_B^{-1}b \ge 0$, then $x = \begin{bmatrix} x_B \\ x_N \end{bmatrix}$ is feasible and a vertex.
- If, in addition, x has m nonzero components, then solve $y = A_B^{-1}c_B$ and compute reduced cost \overline{c} with respect to y.
- If $\overline{c} \ge 0$, then x and y are optimal by Proposition 3.
- Failure Case: If there exists *i* such that $\overline{c}_j < 0$, then $j \in N$ since $c_B = 0$. Increase x_j and we get an improvement in the objective value of LP3. Then, all entries of x_N are zero except for $x_{N(j)}$ which corresponds to x_j . Note that we can increase $x_{N(j)}$ as long as

$$(A_B^{-1}A_N)_{iN(j)}x_j \le (A_B^{-1}b)_i$$

for all i.

We have assumed that $x = A_B^{-1}b$ is feasible so $A_B^{-1}b \ge 0$.

If $(A_B^{-1}A_N)_{iN(j)} \leq 0$ for all *i*, then the constraint is never violated as $x_j \to \infty$, and $c_j x_j \to -\infty$ as $x_j \to \infty$. Therefore, in this case, LP is <u>unbounded</u>.

If there exists *i* such that $(A_B^{-1}A_N)_{iN(j)} > 0$, then we cannot improve $x_{N(j)}$ over $\frac{(A_B^{-1}b)_i}{(A_B^{-1}A_N)_{iN(j)}}$. Define

$$i^* = \operatorname{argmin}_{i:(A_B^{-1}A_N)_{iN(j)}>0} \frac{(A_B^{-1}b)_i}{(A_B^{-1}A_N)_{iN(j)}}$$

and

$$\epsilon = \frac{(A_B^{-1}b)_{i^*}}{(A_B^{-1}A_N)_{i^*N(i)}}$$

Hence, we can increase x_j to ϵ and get a new point \hat{x}_N . The new point has a strictly smaller cost $\bar{c}_N^T \hat{x}_N$ than $\bar{c}_N^T x_N = 0$.

Now we update x_B through the equation

$$\hat{x}_B = A_B^{-1}b - A_B^{-1}A_N\hat{x}_N.$$

 $\hat{x}_B \ge 0$ by construction. Clearly, $\hat{x} = \begin{bmatrix} \hat{x}_B \\ \hat{x}_N \end{bmatrix}$ satisfies $A\hat{x} = b$.

Notice that $\hat{x}_{B(i^*)} = 0$ by construction. Thus, we can update our basis to

$$\hat{B} = (B \setminus \{i^*\}) \cup \{j\}.$$

To summarize, the main update step works as follows:

- If $\overline{c} \geq 0$, find j, s.t. $\overline{c}_j < 0$. $(j \in N)$.
- Check for unboundedness: If $(A_B^{-1}A_N)_{iN(j)} \leq 0$ for all *i*, then LP is unbounded.
- Ratio test: Compute

$$i^* = \arg \min_{i:(A_B^{-1}A_N)_{iN(j)}>0} \frac{(A_B^{-1}b)_i}{(A_B^{-1}A_N)_{iN(j)}}$$

and

$$\epsilon = \frac{(A_B^{-1}b)_{i^*}}{(A_B^{-1}A_N)_{i^*N(j)}}.$$

- Update $x: x_i \leftarrow \epsilon$ and $x_B \leftarrow A_B^{-1}b A_B^{-1}A_N x_N$.
- Update basis: $B \leftarrow (B \setminus \{i^*\}) \cup \{j\}$. We say that j enters the basis and i^* leaves the basis.