
ORIE 6300 Mathematical Programming I September 22, 2016

Lecture 10

Lecturer: Damek Davis Scribe: Qinru Shi

1 Last Time

• We shifted to the standard form (A ∈ Rm×n).

min cTx max bT y
s.t. Ax = b s.t. AT y ≤ c

x ≥ 0

Also, P (A, b) = {x | ATx = b, x ≥ 0}.

• Assumption: From now on, we assume that the rows of A are linearly independent (m ≤ n).

• Proposition 1 For P (A, b) = {x | ATx = b, x ≥ 0}, x ∈ P (A, b) is a vertex if and only if
the columns corresponding to positive components of x are linearly independent.

• Definition 1 A set B of m columns of A (A ∈ Rm×n) is a basis if rank(AB) = m (AB is
invertible).

• Proposition 2 Every vertex of P (A, b) is a basic feasible solution corresponding to some
basis.

2 Verifying optimality

Given a vertex x ∈ P (A, b), we want to find a “verifying y” which we use to check whether x is
optimal. Clearly, any y should satisfy complementary slackness, i.e.

xi > 0 ⇐⇒ (AT y)i = ci.

In order to find y, we first prove the following proposition.

Proposition 3 Suppose x ∈ P (A, b) has m non-zero components corresponding to basis B. Then,
x is optimal if and only if there exists y ∈ Q(AT , c) such that AT

By = cB.

Proof: By theorem from previous lectures, we know that x is optimal if and only if

−c ∈ NP (A,b)(x) = {ĉ | ∃ŷ ∈ Q(AT , ĉ), s.t. xT (ĉ−AT ŷ) = 0},

which is then equivalent to the condition

∃y ∈ Q(AT , c) s.t. xi > 0⇒ (AT y)i = ci.
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Note that xi > 0 if and only if i ∈ B, so the last condition can be translated into

∃y ∈ Q(AT , c) s.t. AT
By = cB.

�

We also have the following definition regarding non-degeneracy.

Definition 2 A vertex x ∈ P (A, b) is called non-degenerate if it has exactly m nonzero components
and those components correspond to some basis B.

For each non-degenerate x with basis B, we will try to find a y ∈ Q(AT , c) such that AT
By = cB.

Then, (c − AT y)i = 0 when i ∈ B. For simplicity of notation and computation, we create the
following definition.

Definition 3 For any y ∈ Rm, the reduced cost c with respect to y is c = c−AT y.

Lemma 4 For all x ∈ P (A, b), range(AT ) +NP (A,b)(x) = NP (A,b)(x).

Proof: Clearly, NP (A,b)(x) ⊆ range(AT ) + NP (A,b)(x) because 0 ∈ range(AT ). On the other

hand, let AT y0 be any element in range(AT ) and −ĉ be any element in NP (A,b)(x). Then, there

exists ŷ such that AT ŷ ≤ ĉ and xT (ĉ−AT ŷ) = 0. Tweaking the equations a bit, we get

AT (ŷ − y0) ≤ ĉ−AT y0

and
xT (ĉ−AT y0 −AT (ŷ − y0)) = 0.

Thus,
AT y0 − ĉ ∈ NP (A,b)(x),

which means that range(AT ) +NP (A,b)(x) ⊆ NP (A,b)(x). �

A simple example to illustrate Lemma 5 is when A = [1, 1], b = 1 and c ∈ R2. P (A, b) in this

case is a line segment connecting (1, 0) and (0, 1). If c is in NP (A,b), then c+

[
y
y

]
is still in NP (A,b).
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From Lemma 5, we can easily reach the following conclusion.

Lemma 5 Consider the two LPs

(LP1) min cTx (LP2) min cTx
s.t. Ax = b s.t. Ax = b

x ≥ 0 x ≥ 0.

These LPs have the exact same optimal solution.

Proof: We know that x solves (1) if and only if −c ∈ NP (A,b)(x). By Lemma 5, we have

NP (A,b)(x) = range(AT ) +NP (A,b)(x),

so c ∈ NP (A,b)(x) if and only if c = −c+AT y ∈ NP (A,b)(x), which equivalent to x being an optimal
solution of (2). �

We also have the following observation regarding c.

Observation 1 y ∈ Q(AT , c) ⇐⇒ AT y ≤ c ⇐⇒ c = c−AT y ≥ 0.

Using the conclusions above, we can now work with c instead of c.

3 Some Simplex Method-type Computations

Consider a basis B and the new linear program with reduced cost c.

(LP2) min cTx
s.t. Ax = b

x ≥ 0.

We reorganize the vectors and matrices so that x =

[
xB
xN

]
, A = [AB AN ] and c =

[
cB
cN

]
. Note that

xB > 0, xN = 0 and

[AB AN ]

[
xB
xN

]
= b.

Multiplying through by A−1
B , we convert LP2 into

min cTBxB + cTNxN
s.t. IxB +A−1

B ANxN = A−1
B b

x ≥ 0.

Now set y = A−T
B cB and c = c−AT y. Then, cB = cB −AT

BA
−T
B cB = 0. Our problem becomes

min cTNxN
s.t. xB +A−1

B ANxN = A−1
B b

x ≥ 0.
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We can further simplify the problem by discarding xB. Then, the LP looks like

(LP3) min cTNxN
s.t. A−1

B ANxN ≤ A−1
B b

xN ≥ 0.

If y ∈ Q(AT , c), then c = c − AT y ≥ 0. Because cTNxN ≥ 0, the optimal value of the reduced
problem is bounded below by 0. Thus, if A−1

B b ≥ 0, then xN = 0 is feasible and cT 0 = 0, so xN = 0

is an optimal solution. In the original problem, x =

[
A−1

B b
0

]
is optimal.

Now suppose B is an arbitrary basis. Let xN = 0 and xB = A−1
B b. Based on the analysis above,

we devise the following simplex scheme for finding the optimal solution:

• If A−1
B b ≥ 0, then x =

[
xB
xN

]
is feasible and a vertex.

• If, in addition, x has m nonzero components, then solve y = A−1
B cB and compute reduced

cost c with respect to y.

• If c ≥ 0, then x and y are optimal by Proposition 3.

• Failure Case: If there exists i such that cj < 0, then j ∈ N since cB = 0. Increase xj and
we get an improvement in the objective value of LP3. Then, all entries of xN are zero except
for xN(j) which correspends to xj . Note that we can increase xN(j) as long as

(A−1
B AN )iN(j)xj ≤ (A−1

B b)i

for all i.

We have assumed that x = A−1
B b is feasible so A−1

B b ≥ 0.

If (A−1
B AN )iN(j) ≤ 0 for all i, then the constraint is never violated as xj →∞, and cjxj → −∞

as xj →∞. Therefore, in this case, LP is unbounded.

If there exists i such that (A−1
B AN )iN(j) > 0, then we cannot improve xN(j) over

(A−1
B b)i

(A−1
B AN )iN(j)

.

Define

i∗ = argmini:(A−1
B AN )iN(j)>0

(A−1
B b)i

(A−1
B AN )iN(j)

and

ε =
(A−1

B b)i∗

(A−1
B AN )i∗N(i)

.

Hence, we can increase xj to ε and get a new point x̂N . The new point has a strictly smaller
cost cTN x̂N than cTNxN = 0.

Now we update xB through the equation

x̂B = A−1
B b−A−1

B AN x̂N .
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x̂B ≥ 0 by construction. Clearly, x̂ =

[
x̂B
x̂N

]
satisfies Ax̂ = b.

Notice that x̂B(i∗) = 0 by construction. Thus, we can update our basis to

B̂ = (B \ {i∗}) ∪ {j}.

To summarize, the main update step works as follows:

– If c 6≥ 0, find j, s.t. cj < 0. (j ∈ N).

– Check for unboundedness: If (A−1
B AN )iN(j) ≤ 0 for all i, then LP is unbounded.

– Ratio test: Compute

i∗ = arg min
i:(A−1

B AN )iN(j)>0

(A−1
B b)i

(A−1
B AN )iN(j)

and

ε =
(A−1

B b)i∗

(A−1
B AN )i∗N(j)

.

– Update x: xi ← ε and xB ← A−1
B b−A−1

B ANxN .

– Update basis: B ← (B \ {i∗}) ∪ {j}. We say that j enters the basis and i∗ leaves the
basis.
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