ORIE 6300 Mathematical Programming I

September 22, 2016
Lecture 10
Lecturer: Damek Davis
Scribe: Qinru Shi

1 Last Time

- We shifted to the standard form $\left(A \in \mathbb{R}^{m \times n}\right)$.

$$
\begin{aligned}
\min & c^{T} x & \max & b^{T} y \\
\text { s.t. } & A x=b & \text { s.t. } & A^{T} y \leq c
\end{aligned}
$$

Also, $P(A, b)=\left\{x \mid A^{T} x=b, x \geq 0\right\}$.

- Assumption: From now on, we assume that the rows of A are linearly independent ($m \leq n$).
- Proposition 1 For $P(A, b)=\left\{x \mid A^{T} x=b, x \geq 0\right\}, \bar{x} \in P(A, b)$ is a vertex if and only if the columns corresponding to positive components of \bar{x} are linearly independent.
- Definition $1 A$ set B of m columns of $A\left(A \in \mathbb{R}^{m \times n}\right)$ is a basis if $\operatorname{rank}\left(A_{B}\right)=m\left(A_{B}\right.$ is invertible).
- Proposition 2 Every vertex of $P(A, b)$ is a basic feasible solution corresponding to some basis.

2 Verifying optimality

Given a vertex $\bar{x} \in P(A, b)$, we want to find a "verifying \bar{y} " which we use to check whether \bar{x} is optimal. Clearly, any \bar{y} should satisfy complementary slackness, i.e.

$$
\bar{x}_{i}>0 \Longleftrightarrow\left(A^{T} \bar{y}\right)_{i}=c_{i}
$$

In order to find \bar{y}, we first prove the following proposition.
Proposition 3 Suppose $\bar{x} \in P(A, b)$ has m non-zero components corresponding to basis B. Then, \bar{x} is optimal if and only if there exists $y \in Q\left(A^{T}, c\right)$ such that $A_{B}^{T} y=c_{B}$.
Proof: By theorem from previous lectures, we know that \bar{x} is optimal if and only if

$$
-c \in N_{P(A, b)}(\bar{x})=\left\{\hat{c} \mid \exists \hat{y} \in Q\left(A^{T}, \hat{c}\right), \text { s.t. } \bar{x}^{T}\left(\hat{c}-A^{T} \hat{y}\right)=0\right\},
$$

which is then equivalent to the condition

$$
\exists y \in Q\left(A^{T}, c\right) \text { s.t. } x_{i}>0 \Rightarrow\left(A^{T} y\right)_{i}=c_{i} .
$$

Note that $x_{i}>0$ if and only if $i \in B$, so the last condition can be translated into

$$
\exists y \in Q\left(A^{T}, c\right) \text { s.t. } A_{B}^{T} y=c_{B} .
$$

We also have the following definition regarding non-degeneracy.
Definition $2 A$ vertex $\bar{x} \in P(A, b)$ is called non-degenerate if it has exactly m nonzero components and those components correspond to some basis B.

For each non-degenerate \bar{x} with basis B, we will try to find a $y \in Q\left(A^{T}, c\right)$ such that $A_{B}^{T} y=c_{B}$. Then, $\left(c-A^{T} y\right)_{i}=0$ when $i \in B$. For simplicity of notation and computation, we create the following definition.

Definition 3 For any $y \in \mathbb{R}^{m}$, the reduced cost \bar{c} with respect to y is $\bar{c}=c-A^{T} y$.
Lemma 4 For all $x \in P(A, b)$, range $\left(A^{T}\right)+N_{P(A, b)}(x)=N_{P(A, b)}(x)$.
Proof: Clearly, $N_{P(A, b)}(x) \subseteq \operatorname{range}\left(A^{T}\right)+N_{P(A, b)}(x)$ because $0 \in \operatorname{range}\left(A^{T}\right)$. On the other hand, let $A^{T} y_{0}$ be any element in range $\left(A^{T}\right)$ and $-\hat{c}$ be any element in $N_{P(A, b)}(x)$. Then, there exists \hat{y} such that $A^{T} \hat{y} \leq \hat{c}$ and $x^{T}\left(\hat{c}-A^{T} \hat{y}\right)=0$. Tweaking the equations a bit, we get

$$
A^{T}\left(\hat{y}-y_{0}\right) \leq \hat{c}-A^{T} y_{0}
$$

and

$$
x^{T}\left(\hat{c}-A^{T} y_{0}-A^{T}\left(\hat{y}-y_{0}\right)\right)=0 .
$$

Thus,

$$
A^{T} y_{0}-\hat{c} \in N_{P(A, b)}(x),
$$

which means that range $\left(A^{T}\right)+N_{P(A, b)}(x) \subseteq N_{P(A, b)}(x)$.
A simple example to illustrate Lemma 5 is when $A=[1,1], b=1$ and $c \in \mathbb{R}^{2} . P(A, b)$ in this case is a line segment connecting $(1,0)$ and $(0,1)$. If c is in $N_{P(A, b)}$, then $c+\left[\begin{array}{l}y \\ y\end{array}\right]$ is still in $N_{P(A, b)}$.

From Lemma 5, we can easily reach the following conclusion.
Lemma 5 Consider the two LPs

$$
\begin{aligned}
(L P 1) \quad \min & c^{T} x & (L P 2) & \min
\end{aligned} \bar{c}^{T} x, ~ 子 \begin{aligned}
\text { s.t. } & A x=b \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{aligned}
$$

These LPs have the exact same optimal solution.
Proof: We know that \bar{x} solves (1) if and only if $-c \in N_{P(A, b)}(\bar{x})$. By Lemma 5, we have

$$
N_{P(A, b)}(\bar{x})=\operatorname{range}\left(A^{T}\right)+N_{P(A, b)}(\bar{x}),
$$

so $c \in N_{P(A, b)}(\bar{x})$ if and only if $\bar{c}=-c+A^{T} y \in N_{P(A, b)}(\bar{x})$, which equivalent to \bar{x} being an optimal solution of (2).

We also have the following observation regarding \bar{c}.
Observation $1 \bar{y} \in Q\left(A^{T}, c\right) \Longleftrightarrow A^{T} \bar{y} \leq c \Longleftrightarrow \bar{c}=c-A^{T} \bar{y} \geq 0$.
Using the conclusions above, we can now work with \bar{c} instead of c.

3 Some Simplex Method-type Computations

Consider a basis B and the new linear program with reduced cost \bar{c}.

$$
\begin{array}{rll}
(L P 2) & \text { min } & \bar{c}^{T} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{array}
$$

We reorganize the vectors and matrices so that $x=\left[\begin{array}{l}x_{B} \\ x_{N}\end{array}\right], A=\left[\begin{array}{ll}A_{B} & A_{N}\end{array}\right]$ and $\bar{c}=\left[\begin{array}{l}\bar{c}_{B} \\ \bar{c}_{N}\end{array}\right]$. Note that $x_{B}>0, x_{N}=0$ and

$$
\left[\begin{array}{ll}
A_{B} & A_{N}
\end{array}\right]\left[\begin{array}{l}
x_{B} \\
x_{N}
\end{array}\right]=b
$$

Multiplying through by A_{B}^{-1}, we convert LP2 into

$$
\begin{aligned}
\min & \bar{c}_{B}^{T} x_{B}+\bar{c}_{N}^{T} x_{N} \\
\text { s.t. } & I x_{B}+A_{B}^{-1} A_{N} x_{N}=A_{B}^{-1} b \\
& x \geq 0 .
\end{aligned}
$$

Now set $y=A_{B}^{-T} c_{B}$ and $\bar{c}=c-A^{T} y$. Then, $\bar{c}_{B}=c_{B}-A_{B}^{T} A_{B}^{-T} c_{B}=0$. Our problem becomes

$$
\begin{aligned}
\min & \bar{c}_{N}^{T} x_{N} \\
\text { s.t. } & x_{B}+A_{B}^{-1} A_{N} x_{N}=A_{B}^{-1} b \\
& x \geq 0 .
\end{aligned}
$$

We can further simplify the problem by discarding x_{B}. Then, the LP looks like

$$
\begin{array}{rll}
(L P 3) & \min & \bar{c}_{N}^{T} x_{N} \\
\text { s.t. } & A_{B}^{-1} A_{N} x_{N} \leq A_{B}^{-1} b \\
& x_{N} \geq 0
\end{array}
$$

If $y \in Q\left(A^{T}, c\right)$, then $\bar{c}=c-A^{T} y \geq 0$. Because $\bar{c}_{N}^{T} x_{N} \geq 0$, the optimal value of the reduced problem is bounded below by 0 . Thus, if $A_{B}^{-1} b \geq 0$, then $x_{N}=0$ is feasible and $\bar{c}^{T} 0=0$, so $x_{N}=0$ is an optimal solution. In the original problem, $x=\left[\begin{array}{c}A_{B}^{-1} b \\ 0\end{array}\right]$ is optimal.

Now suppose B is an arbitrary basis. Let $x_{N}=0$ and $x_{B}=A_{B}^{-1} b$. Based on the analysis above, we devise the following simplex scheme for finding the optimal solution:

- If $A_{B}^{-1} b \geq 0$, then $x=\left[\begin{array}{l}x_{B} \\ x_{N}\end{array}\right]$ is feasible and a vertex.
- If, in addition, x has m nonzero components, then solve $y=A_{B}^{-1} c_{B}$ and compute reduced cost \bar{c} with respect to y.
- If $\bar{c} \geq 0$, then x and y are optimal by Proposition 3 .
- Failure Case: If there exists i such that $\bar{c}_{j}<0$, then $j \in N$ since $c_{B}=0$. Increase x_{j} and we get an improvement in the objective value of LP3. Then, all entries of x_{N} are zero except for $x_{N(j)}$ which correspends to x_{j}. Note that we can increase $x_{N(j)}$ as long as

$$
\left(A_{B}^{-1} A_{N}\right)_{i N(j)} x_{j} \leq\left(A_{B}^{-1} b\right)_{i}
$$

for all i.
We have assumed that $x=A_{B}^{-1} b$ is feasible so $A_{B}^{-1} b \geq 0$.
If $\left(A_{B}^{-1} A_{N}\right)_{i N(j)} \leq 0$ for all i, then the constraint is never violated as $x_{j} \rightarrow \infty$, and $c_{j} x_{j} \rightarrow-\infty$ as $x_{j} \rightarrow \infty$. Therefore, in this case, LP is unbounded.
If there exists i such that $\left(A_{B}^{-1} A_{N}\right)_{i N(j)}>0$, then we cannot improve $x_{N(j)}$ over $\frac{\left(A_{B}^{-1} b\right)_{i}}{\left(A_{B}^{-1} A_{N}\right)_{i N(j)}}$. Define

$$
i^{*}=\operatorname{argmin}_{i:\left(A_{B}^{-1} A_{N}\right)_{i N(j)}>0} \frac{\left(A_{B}^{-1} b\right)_{i}}{\left(A_{B}^{-1} A_{N}\right)_{i N(j)}}
$$

and

$$
\epsilon=\frac{\left(A_{B}^{-1} b\right)_{i^{*}}}{\left(A_{B}^{-1} A_{N}\right)_{i^{*} N(i)}} .
$$

Hence, we can increase x_{j} to ϵ and get a new point \hat{x}_{N}. The new point has a strictly smaller cost $\bar{c}_{N}^{T} \hat{x}_{N}$ than $\bar{c}_{N}^{T} x_{N}=0$.
Now we update x_{B} through the equation

$$
\hat{x}_{B}=A_{B}^{-1} b-A_{B}^{-1} A_{N} \hat{x}_{N} .
$$

$\hat{x}_{B} \geq 0$ by construction. Clearly, $\hat{x}=\left[\begin{array}{l}\hat{x}_{B} \\ \hat{x}_{N}\end{array}\right]$ satisfies $A \hat{x}=b$.
Notice that $\hat{x}_{B\left(i^{*}\right)}=0$ by construction. Thus, we can update our basis to

$$
\hat{B}=\left(B \backslash\left\{i^{*}\right\}\right) \cup\{j\} .
$$

To summarize, the main update step works as follows:

- If $\bar{c} \nsupseteq 0$, find j, s.t. $\bar{c}_{j}<0 . \quad(j \in N)$.
- Check for unboundedness: If $\left(A_{B}^{-1} A_{N}\right)_{i N(j)} \leq 0$ for all i, then LP is unbounded.
- Ratio test: Compute

$$
i^{*}=\arg \min _{i:\left(A_{B}^{-1} A_{N}\right)_{i N(j)}>0} \frac{\left(A_{B}^{-1}\right)_{i}}{\left(A_{B}^{-1} A_{N}\right)_{i N(j)}}
$$

and

$$
\epsilon=\frac{\left(A_{B}^{-1} b\right)_{i^{*}}}{\left(A_{B}^{-1} A_{N}\right)_{i^{*} N(j)}}
$$

- Update $x: x_{i} \leftarrow \epsilon$ and $x_{B} \leftarrow A_{B}^{-1} b-A_{B}^{-1} A_{N} x_{N}$.
- Update basis: $B \leftarrow\left(B \backslash\left\{i^{*}\right\}\right) \cup\{j\}$. We say that j enters the basis and i^{*} leaves the basis.

