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1 Last Time

• We introduced value functions: V (u) = max{cTx|Ax ≤ b + u}. We found that the supgradi-
ents of a value function are exactly the dual optimal solutions.

• Following from our analysis of value functions, we found that we can always perturb a linear
program slightly to make the optimal solution unique.

• We proved Fourier-Motzkin’s Theorem, which states that LQ(A, b) is a polyhedron for any
linear transformation L. As a consequence of this, we find that for any two polyhedral
sets S1, S2 the sets S1 + S2 and S1 − S2 are closed. This fact was necessary in lectures
7/8 to show the existence of minimizers and maximizers. We also need this result to show
{AT y|y ≥ 0, yT (b−Ax) = 0} is closed.

2 Verifying Optimality

Consider a primal and dual LP in the generic form in which we have been studying LPs so far in
the course, in the case when both are feasible. We know the optimal values of the LPs are equal,
but is there a good procedure to tell whether a given x̄ is optimal? Let’s look at the following LP
primal and dual pair:

min cTx max yT b
s.t. Ax ≤ b s.t. AT y = c

y ≥ 0
(1)

Given primal and dual feasible x̄ and ȳ, how do we determine that they are optimal? From the
strong duality theorem, we know if x̄ and ȳ are optimal, then cT x̄ = bT ȳ. For this to be true, we
need that if

∑m
i=1 aij x̄j < bi then ȳi = 0. Call these conditions (∗).

Definition 1 We say that a primal feasible solution x̄, and a dual feasible solution ȳ obey the
complementary slackness conditions if (∗) holds.

So we see from the above that if x̄ and ȳ are optimal solutions, then complementary slackness
holds. But actually we can say something stronger than this.

Lemma 1 Let x̄ satisfy Ax̄ ≤ b. Then x̄ is primal optimal if and only if there exists a ȳ ≥ 0 such
that AT ȳ = c and ȳT (b−Ax̄)=0.

Proof: We know x̄ is optimal if and only if c ∈ NQ(A,b) = {AT y|y ≥ 0, yT (b − Ax̄)}. Selecting
such a y from the normal cone of Q(A, b) suffices to complete the proof. �
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Lemma 2 Let ȳ satisfy AT x̄ = c and y ≥ 0. Then ȳ is dual optimal if and only if there exists a x̄
such that Ax̄ ≤ b and ȳT (b−Ax̄)=0.

Proof: Left as an exercise. This will be similar to the proof of the previous Lemma. �
Hence we have an answer to our question. We find that x̄ is primal optimal if there exists a

dual feasible ȳ such that the complementary slackness conditions hold. Further, ȳ is dual optimal
if there exists a primal feasible x̄ such that complementary slackness holds.

This still doesn’t seem like such a useful way of verifying optimality, but it will prove to be
a step in the right direction. As we have done before, we can partition the columns of A into
A= = A=(x̄) and A< = A<(x̄) (and similarly b= and b<). We know that the rank of A= is n for
any vertex x̄. Then we can partition any dual solution y such that AT y = c into (y=, y<)T to match
the corresponding rows of A.

Now suppose y satisfies complementary slackness. We know that b< − A<x > 0, which imme-
diately implies that y< = 0. So we find the following:

AT
=y + AT

<y = c =⇒ AT
=y = c

In the best case scenario, we would have exactly n rows in A=. Then the matrix AT
= would

be invertible. So we could compute y= = (AT
=)−1c. If we find that y= ≥ 0, then y must be dual

optimal, and thus our original x̄ is primal optimal.
At this point, we will change our notation to have a standard form linear program be the primal

problem. So our pair of primal and dual programs becomes the following:

min cTx max yT b
s.t. Ax = b s.t. AT y ≤ c

x ≥ 0
(2)

Notation 1 We let P (A, b) = {x | Ax = b, x ≥ 0}.

So far we haven’t been taking advantage of something that we know about optimal solutions. We
know that there exists an optimal solution that is a vertex for standard form programs. Further, we
have shown this on a problem set for bounded polyhedra, and in a recitation for pointed polyhedra.
We’ve also shown in a problem set that if x is not a vertex, we can find a vertex x̃ such that
cT x̃ ≤ cTx. So we can assume that x is a vertex.

Lemma 3 A feasible solution x̄ ∈ P (A, b) is a vertex if and only if the columns corresponding to
its positive coordinates are linearly independent.

Proof: Let C =

 A
−A
−I

. Then we will prove the two directions of the lemma separately.

First, suppose x̄ is a vertex. Then C= has rank n. Without loss of generality, we order x such
that x1, ..., xk > 0 and xk+1, ..., xn = 0. Then we can partition A and C as follows:

A =
[
AB AN

]
, C =

 AB AN

−AB −AN

0 −I

 .
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We find that C= =

 AB AN

−AB −AN

0 −In−k

 must have rank n.

Then it follows that

[
AB AN

0 −In−k

]
must also have rank n. Applying simple row operations

will give us that n = rank
([ AB AN

0 −In−k

])
= rank

([ AB 0
0 −In−k

])
= rank(AB) + n − k.

Rearranging this gives rank(AB) = k, which completes the forward direction of our proof.
Now we show the reverse direction. Again, suppose x1, ..., xk > 0 and xk+1, ..., xn = 0. Then

we partition A =
[
AB AN

]
. By our assumption, we have rank(AB) = k. Just like our forward

direction proof, we know that C= has the following form:

C= =

 AB AN

−AB −AN

0 −In−k


Then rank(C=) = rank

([ AB AN

0 −In−k

])
= rank(AB) + n− k = n, completing our proof. �

This gives us an easy way to check if a feasible solution is a vertex or not. It’s worth encoding this
into a definition. First, we need an assumption though. We assume without loss of generality that
the m rows of A are linearly independent. It’s without loss of generality since otherwise a constraint
is redundant (if a constraint can be expressed as a linear combination of other constraints) or the
system Ax = b is infeasible.

Definition 2 A set B of m columns of A is a basis if these columns are linearly independent.

We will focus on a subset of columns of A which correspond to a basis B.

A: m lin. ind. rows

A
Ai

  → AB

↑ ↑ ↑
m columns B

Note that for any basis B, the matrix AB will be invertible.
We will denote by xB the coordinates of x corresponding to basis B. We do the same for the

nonbasic variables N , which correspond to all the columns of A not in B, and define AN and xN
similarly. In the basic solution corresponding to basis B, we set the nonbasic variables to zero, so
that ANxN = 0.

Definition 3 We say x is a basic solution if xi 6= 0 implies i ∈ B, for some basis B of A.

Lemma 4 For any basis B, there is a unique corresponding basic solution to Ax = b.

Proof: To see this, notice that any such solution has to satisfy

[
ABAN

] xB−
xN

 = b
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Notice that ANxN = 0, Ax = b ⇒ ABxB + ANxN = b ⇒ ABxB = b. Since AB is an m×m
matrix of rank m, the solution xB = A−1

B b is uniquely determined. �
However, the reverse of this lemma is not the case. There could be multiple basis associated

with the same basic solution. To see this, suppose xB = A−1
B b has some i ∈ B such that xi = 0.

This could occur if b = 0, or in a much more general context.

Proposition 5 Every vertex x of P (A, b) is a basic solution corresponding to some basis.

Proof: We know any vertex in standard form will have k ≤ m positive indices. Let x1, ..., xk > 0
and xk+1, ..., xn = 0. Further, the columns 1, ..., k of A must be linearly independent. Since we
assume A is full rank, we can select m − k additional linearly independent columns with index in
k + 1, ..., n. Together all of these columns will give a basis for x. �
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