ORIE 6300 Mathematical Programming I
 Lecture 8
 Lecturer: Damek Davis

1 Recap

- Finished proving strong duality
- Theorem of Alternatives

Theorem 1 (Theorem of Alternatives) Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$. Then exactly one of the following hold:
(a) $\exists x \in \mathbb{R}^{n}$ such that $A x \leq b$
(b) $\exists y \in \mathbb{R}^{m}$ such that $A^{T} y=0, y \geq 0, b^{T} y<0$.

- Value function and sensitivity analysis:

We showed

$$
v(u)=\max \left\{c^{T} x \mid A x \leq b+u\right\}
$$

is concave and piecewise linear.

2 Value Functions

Proposition 2 Suppose that $v(0)$ exists and is finite. Then the following are equivalent:
(a) $\forall u \in \mathbb{R}^{n}, v(u) \leq v(0)+u^{T} y^{*}$;
(b) $y^{*} \in \operatorname{argmin}\left\{b^{T} y \mid A^{T} y=c, y \geq 0\right\}$.

Proof: Let $x^{*}(u) \in Q(A, b+u)$ satisfy $v(u)=c^{T} x^{*}(u)$.
" $(a) \Rightarrow(b)$ ": Let u^{*} satisfy (a). We will prove that

1. $y^{*} \geq 0$
2. $y^{*^{T}}\left(b-A x^{*}(0)\right)=0$
3. $A^{T} y^{*}=c$

Which implies that y^{*} is dual optimal because

$$
\min \left\{b^{T} y \mid A^{T} y=c, y \geq 0\right\} \geq c^{T} x^{*}(0)=\left(A^{T} y^{*}\right)^{T} x^{*}(0)=b^{T} y^{*} \geq \min \left\{b^{T} y \mid A^{T} y=c, y \geq 0\right\}
$$

Proof of 1. $\left(y^{*} \geq 0\right)$
$(\forall i)-\infty<v(0) \leq v\left(e_{i}\right)$ because $A x^{*}(0) \leq b \leq b+e_{i}$. Thus, the inequality $v\left(e_{i}\right) \leq v(0)+e_{i}^{T} y^{*}$ implies

$$
-e_{i}^{T} y^{*} \leq v(0)-v\left(e_{i}\right) \leq 0
$$

i.e., $y_{i} \geq 0$.

Proof of 2. $\left(y^{*^{T}}\left(b-A x^{*}(0)\right)=0\right)$
First, $-\infty<v(0) \leq v\left(A x^{*}(0)-b\right)$ because $x^{*}(0) \in Q\left(A, b+\left(A x^{*}(0)-b\right)\right)$. Thus the inequality $v\left(A x^{*}(0)-b\right) \leq v(0)+\left(A x^{*}(0)-b\right)^{T} y^{*}$ implies

$$
0 \leq\left(b-A x^{*}(0)\right)^{T} y^{*} \leq v(0)-v\left(A x^{*}(0)-b\right) \leq 0
$$

So $y^{*^{T}}\left(b-A x^{*}(0)\right)=0$.
Proof of 3. $\left(A^{T} y^{*}=c\right)$
Because $x \in Q(A, b+(A x-b))$, we have

$$
\left(\forall x \in \mathbb{R}^{n}\right) \quad c^{T} x+(b-A x)^{T} y^{*} \leq v(A x-b)+(b-A x)^{T} y^{*} \leq v(0)
$$

where the second inequality follows by assumption. Notice that

$$
v(0)=c^{T} x^{*}(0)=c^{T} x^{*}(0)+\left(b-A x^{*}(0)\right)^{T} y^{*}
$$

Thus $f(x)=c^{T} x+(b-A x)^{T} y^{*}$ is maximized at $x^{*}(0)$. Therefore

$$
0=\nabla f\left(x^{*}(0)\right)=c-A^{T} y^{*}
$$

so $A^{T} y^{*}=c$ and y^{*} is dual optimal.
$"(a) \Leftarrow(b)$ ": If y^{*} is dual optimal then

$$
v(0)=\max \left\{c^{T} x \mid A x \leq b\right\}=b^{T} y^{*}
$$

If $v(u)=-\infty$, then the inequality is trivial. Otherwise, because y^{*} is dual feasible it follows that

$$
v(u)=\min \left\{(b+u)^{T} y \mid A^{T} y=c, y \geq 0\right\} \leq(b+u)^{T} y *=v(0)+u^{T} y^{*}
$$

Remarks

- We have shown that the set of optimal dual solutions is exactly $-\partial[-V](0)$, i.e. the set of supgradients of v at 0 . (See homework 3).
- By shifting v, we have also shown that the subgradients of v at u are exactly the solutions of $\min \left\{(b+u)^{T} y \mid A^{T} y=c, y \geq 0\right\}$.
- When v happens to be differentiable at u, we can show that

$$
\nabla v(u)=\arg \min \left\{(b+u)^{T} y \mid A^{T} y=c, y \geq 0\right\}
$$

which implies that the dual minimizer is unique.

- Clearly, piecewise linear functions are differentiable almost everywhere on their domains (the almost everywhere part comes from ties in the expression for v). Notice that

$$
\operatorname{dom}(v)=\{u \mid v(u)>-\infty\} \supseteq\{u \mid u \geq 0\} .
$$

Corollary 3

$$
P\left(\arg \min \left\{(b+u)^{T} y \mid y \geq 0, A^{T} y=c\right\} \text { is unique }\right)=1
$$

where $u \sim U n i f[0,1]^{m}$.

3 Fourier Motzkin

Several times in this class we've made the assumption that, for linear maps L,

$$
L Q(A, b)=\{x \mid A x \leq b\}
$$

is a closed set. This is a nontrival fact. The next proof follows the proof from Jim Renegar's Excellent textbook [1].

Theorem 4 (Fourier Motzkin Elimination) Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ and $L \in \mathbb{R}^{k \times m}$. Then the set

$$
L Q(A, b)=\{x \mid A x \leq b\}
$$

is a polyhedron.
Proof: Observation: It suffices to prove the result for a special kind of matrix, namely for P that project onto the first $n-1$ components of x.
n-columns

$$
P=\left[\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & \cdots & 1 & 0
\end{array}\right] \quad(n-1) \text {-rows }
$$

Why? First by induction, if we show that $\operatorname{PQ}(A, b)$ is a polyhedron, then we can repeatedly remove any number of coordinates of x and still get a polyhedron. For example we could remove $x_{n}, x_{n-1}, \ldots, x_{n-k}$ and the resulting set is still a polyhedron.

Then write down the set

$$
\bar{Q}=\left\{\left.\left[\begin{array}{c}
y \\
x
\end{array}\right] \right\rvert\, A x \leq b, L x-y \leq 0,-L x+y \leq 0\right\} .
$$

Notice that $\left[\begin{array}{ll}y & x\end{array}\right]^{T} \in \bar{Q}$ if, and only if, $A x \leq b$ and $L x=y$.
If we remove the last $n+m$ coordinates of all vectors in \bar{Q}, the resulting set is still a polyhedron. Upon noticing that this set is $L Q(A, b)=\{L x \mid A x \leq b\}$ the conclusion of the theorem follows.

So lets work with P which projects onto the first $n-1$ coordinates. Let

$$
\begin{aligned}
I_{0} & =\left\{i \in\{1, \ldots, m\} \mid a_{i n}=0\right\} \\
I_{+} & =\left\{i \in\{1, \ldots, m\} \mid a_{i n}>0\right\} \\
I_{-} & =\left\{i \in\{1, \ldots, m\} \mid a_{i n}<0\right\}
\end{aligned}
$$

Then create a new matrix $\tilde{A} \in \mathbb{R}^{m \times n}$ and a new vector $\tilde{b} \in \mathbb{R}^{m}$.

$$
\tilde{A}=\left[\begin{array}{c}
\tilde{a}_{1} \\
\vdots \\
\tilde{a}_{m}
\end{array}\right], \quad \tilde{b}=\left[\begin{array}{c}
\tilde{b}_{1} \\
\vdots \\
\tilde{b}_{m}
\end{array}\right]
$$

where

$$
\tilde{a}_{i}=\left\{\begin{array}{ll}
a_{i} & \text { if } i \in I_{0} \\
\frac{a_{i}}{a_{i n}} & \text { if } i \in I_{+} \cup I_{-}
\end{array}, \quad \tilde{b}_{i}= \begin{cases}b_{i} & \text { if } i \in I_{0} \\
\frac{b_{i}}{a_{i n}} & \text { if } i \in I_{+} \cup I_{-}\end{cases}\right.
$$

Then $\tilde{a}_{i}=\left[\gamma_{i}, \tau_{i}\right] \in R^{1 \times m}$ with $\tau_{i} \in\{1,0\}$. Let $\bar{x}=\left(x_{1}, \ldots, x_{n-1}\right)$. Then $Q(A, b)$ is described by three types of inequalities.

$$
\begin{aligned}
\gamma_{i} \bar{x}+0 x_{n} & \leq \tilde{b}_{i} & & i \in I_{0} \\
\gamma_{i} \bar{x}+x_{n} & \leq \tilde{b}_{i} & & i \in I_{+} \\
\gamma_{i} \bar{x}+x_{n} & \geq \tilde{b}_{i} & & i \in I_{-} .
\end{aligned}
$$

Then rearrange,

$$
\begin{aligned}
0 & \leq \tilde{b}_{i}-\gamma_{i} \bar{x} & & i \in I_{0} \\
x_{n} & \leq \tilde{b}_{i}-\gamma_{i} \bar{x} & & i \in I_{+} \\
x_{n} & \geq \tilde{b}_{i}-\gamma_{i} \bar{x} & & i \in I_{-} .
\end{aligned}
$$

A point \bar{x} is in $P Q(A, b)$ if, and only if, $\exists x_{n} \in \mathbb{R}$ s.t

$$
\begin{gathered}
0 \leq \tilde{b}_{i}-\gamma_{i} \bar{x}, \quad i \in I_{0} \\
\max _{i \in I_{-}}\left\{\tilde{b}_{i}-\gamma_{i} \bar{x}\right\} \leq \min _{i \in I_{+}}\left\{\tilde{b}_{i}-\gamma_{i} \bar{x}\right\}
\end{gathered}
$$

i.e. if, and only if,

$$
\begin{aligned}
0 \leq \tilde{b}_{i}-\gamma_{i} \bar{x}, & i \in I_{0} \\
\tilde{b}_{k}-\gamma_{k} \bar{x} \leq x_{n} \leq \tilde{b}_{i}-\gamma_{i} \bar{x}, & \forall k \in I_{-}, i \in I_{+} .
\end{aligned}
$$

Thus $\bar{x} \in P Q(A, b)$ if and only if it satisfies a system of linear inequalities. Thus, $P Q(A, b)$ is a polyhedron.

Corollary 5 Consider two polyhedra $Q\left(A_{1}, b_{1}\right), Q\left(A_{2}, b_{2}\right) \subseteq \mathbb{R}^{n}$, then $Q\left(A_{1}, b_{1}\right)+Q\left(A_{2}, b_{2}\right)$ and $Q\left(A_{1}, b_{1}\right)-Q\left(A_{2}, b_{2}\right)$ are polyhedra and therefore closed.

Remarks:

1. We implicitly used the fact that $\left\{A^{T} \mid y \geq 0, y^{T}(b-A x)=0\right\}$ was closed when proving the normal cone identities.
2. Calvin explicitly used the closedness of the above set to prove Farkas' Lemma.
3. Fourier-Motzkin elimination is a specific example of something called "Quantifier elimination." Used to prove certain classes of sets are closed under a variety of operations.

References

[1] J. Renegar. A Mathematical View of Interior-Point Methods in Convex Optimization. Society for Industrial and Applied Mathematics, 2001.

