
ORIE 6300 Mathematical Programming I September 13, 2016

Lecture 7

Lecturer: Damek Davis Scribe: Jianqiu Wang

1 Review

Last time we talked about normal cone of polyhedra:

N{x|Ax≤b}(x) = {AT y|y ≥ 0, yT (b−Ax) = 0}
N{y|y≥0,AT y=c}(y) = {−b|(∃x)Ax ≤ b, yT (b−Ax) = 0}

We also proved strong duality in feasible case.

2 Strong Duality (Continued)

Lemma 1 Let c ∈ Rn, suppose that p∗ = sup {cTx|x ∈ Q(A, b)} is finite, then ∃x∗ ∈ Q(A, b), so
that p∗ = cTx∗

Proof: Let S1 = {x|cTx = p∗} and S2 = Q(A, b),. Suppose that S1 ∩ S2 = ∅. We have the
following claim:

Claim 2 S1 − S2 = {x− x̄|cTx = p∗, Ax̄ ≤ b} is closed.

We will prove this claim in the next lecture.
Thus by Separating Hyperplane Theorem:

∃ (â ∈ Rn\{0}, b̂ ∈ R), s.t. sup
x∈S1

âTx < b̂ < inf
y∈S2

âT y.

We know ∀ ε > 0, ∃ xε ∈ S2, s.t. p∗ − ε ≤ cTxε ≤ p∗. Because S1 ⊂ {x|âTx ≤ b̂}, we have
dist(xε, S1) ≥ dist(xε, {x|âTx ≤ b̂}) (where dist(x, S) = ‖x−PS(x)‖ denotes the distance of a point
to a closed convex set S).

We leave following two conclusions as exercises (x+ := max{x, 0})

1. PS1(x) = x− cT x−p∗
‖c‖2 c;

2. P{x|âT x≤b̂}(x) = x− (âT x−b̂)+
‖â‖2 â.

Thus

dist(xε, S1) = ‖xε − PS1(xε)‖

= ‖xε −
(
xε −

cTx− p∗

‖c‖2
c

)
‖

=
‖cTxε − p∗‖
‖c‖

≤ ε

‖c‖
,

7-1



and, by a similar argument,

dist(xε, {x|âTx ≤ b̂}) = ‖xε − P{x|âT x≤b̂}(xε)‖

=
|âTxε − b|
‖â‖

.

By assumption, we have

0 < inf
x∈S2

|âTx− b̂|
‖â‖

≤ inf
ε>0

|âTxε − b̂|
‖â‖

= inf
ε>0

dist(xε, {x|âTx ≤ b̂}) ≤ inf
ε>0

dist(xε, S1) ≤ inf
ε≥0

ε

‖c‖
= 0

We have reached a contradiction, so

∃x∗ ∈ Q(A, b) s.t. cTx∗ = p∗.

2

Theorem 3 (Strong Duality Infeasible Case) Consider the linear programs:

p∗ = max(cTx|Ax ≤ b), d∗ = min(bT y|AT y = c, y ≥ 0)

3. d∗ =∞ and primal is unbounded and p∗ =∞,
4. p∗ = −∞ and dual is unbounded and d∗ = −∞

Proof of 3:
(a) Suppose d∗ = ∞ and the primal is feasible. If ∃x∗ ∈ Q(A, b), s.t. cTx∗is maximal, then
c ∈ NQ(A,b)(x

∗) = {AT y|y ≥ 0, yT (b−Ax∗) = 0}. Any y that satisfies c = AT y, y ≥ 0 is feasible for
the dual. This contradicts the infeasibility of the dual. Thus p∗ =∞ and Q(A, b) is unbounded.
(b) If Q(A, b) is unbounded, and p∗ =∞, then by weak dualiyty theorem, d∗ ≥ p∗ =∞ 2

Proof of 4: We leave it as an exercise. 2

3 Consequence of Strong Duality

Theorem 4 (Theorem of Alternatives) Exactly one of the following hold:

1. ∃x, s.t. Ax ≤ b,
2. ∃y, s.t. AT y = 0, bT y < 0, y ≥ 0.

Proof: We firstly prove 1 and 2 cannot hold simultaneously. If x satisfies 1 and y satisfies 2,
then 0 = yT (Ax) ≤ yT b < 0.
Secondly, suppose 1 is false, then max{s|Ax + s1 ≤ b, s ≤ 0} always has a solution (we are
maximizing a negative number). Write this program in matrix form:[

A 1
0 1

] [
x
s

]
≤

[
b
0

]
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This linear program has an optimal solution (x∗, s∗) and optimal value s∗ < 0. By strong duality,
the dual

min bT y

s.t

[
AT 0
1T 1

] [
y
t

]
=

[
0
1

]
y ≥ 0, t ≥ 0

has an optimal solution (y∗, t∗) with optimal value bT y∗ = s∗ < 0 and AT y∗ = 0, y∗ ≥ 0.
Now suppose 2 is false, then 1 cannot be false (otherwise 2 would be true), hence 1 is true. 2

4 Sentivity Analysis and Value Function

Definition 1 (Maximal Value Function) v(u) = max{cTx|Ax ≤ b+ u}.

We have following two natural questions:

1. Can we bound the value function in terms of v(0)? If v(u) is particularly expensive to
compute, knowing a bound on it in terms of v(0) can help us determine whether it might be
worth it to re-solve the linear program.

2. What is the rate of change, i.e., the derivative of v?

Lemma 5 Suppose v(0) exists and x∗(0) ∈ Q(A, b) satisfies cTx∗(0) = p∗. Let dom(v) := {u|v(u) >
−∞}. Then following three hold:

1. ∀u ∈ Rm, v(u) <∞;

2. v is concave;

3. v is piecewise linear.

Proof of 1: Since x∗(0) exists, we know ∃y0 ≥ 0, s.t. AT y0 = c (by strong duality), so
V (u) = max {cTx|Ax ≤ b + u} ≤ min{(b + u)T y|y ≥ 0, AT y = c} ≤ (b + u)T y0 < ∞ (by weak
duality). 2

Proof of 2: Let u1, u2 ∈ dom(v) and let λ ∈ [0, 1]. By strong duality,

v(λu1 + (1− λ)u2) = min{(b+ λu1 + (1− λ)u2)
T y|y ≥ 0, AT y = c}

= min{λ(b+ u1)
T y + (1− λ)(b+ u2)

T y|y ≥ 0, AT y = c}
≥ λmin{(b+ u1)

T y|y ≥ 0, AT y = c}+ (1− λ)min{(b+ u2)
T y|y ≥ 0, AT y = c}

= λv(u1) + (1− λ)v(u2).

2

Proof of 3: By the results of Recitation 4, we have, for all u ∈ dom(v),

v(u) = min
{

(b+ u)T y|AT y = c, y ≥ 0
}

= min
{

(b+ u)T yk|y1, . . . , yE are extreme points of {y|AT y = c, y ≥ 0}
}
.

2
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