1 Recap

- Every bounded polyhedron is a polytope; we proved this using set polars and the separating hyperplane theorem.
- The normal cone of a closed, convex set $S \subseteq \mathbb{R}^{n}$ is defined as

$$
N_{S}: \mathbb{R}^{n} \rightarrow 2^{\mathbb{R}^{n}}
$$

(power set on all points).

$$
N_{S}(x)= \begin{cases}\left\{g \in \mathbb{R}^{n} \mid(\forall z \in S) g^{T}(z-x) \leq 0\right\} & \text { if } x \in S \\ \emptyset & \text { if } x \notin S\end{cases}
$$

Normal cones characterize

- interiors and boundaries of convex sets:

$$
N_{S}(x)=0 \Longleftrightarrow x \in \operatorname{int}(S) \text { and } N_{S}(x) \supsetneq\{0\} \Longleftrightarrow x \in \partial S,
$$

- Normal cones characterize projections: $X=P_{S}(y) \Longleftrightarrow y-x \in N_{S}(x)$.

Theorem 1 (General Optimality Conditions) Let $S \subseteq \mathbb{R}^{n}$ be a nonempty, closed, convex set and let $c \in \mathbb{R}^{n}$. Then the following are equivalent:

1. x^{*} solves:

$$
\begin{equation*}
\max _{x \in S} c^{T} x \tag{1}
\end{equation*}
$$

2. $c \in N_{S}\left(x^{*}\right)$
3. $x^{*}=P_{S}\left(x^{*}+c\right)$

Proof: Observe that x^{*} solves (1) if, and only if, $c^{T}\left(x-x^{*}\right) \leq 0$ which is true if, and only if, $c \in N_{S}\left(x^{*}\right)$. The inclusion $c \in N_{S}\left(x^{*}\right)$ holds if, and only if, $c=x^{*}+c-x^{*} \in N_{s}\left(x^{*}\right)$, which is true if, and only if, $x^{*}=P_{S}\left(x^{*}+c\right)$.

The following Corollary shows that bounded convex sets are round: whichever direction you pick, you can always find a point where that direction is in the normal cone.

Lemma 2 Let $c \in \mathbb{R}^{n}$. Let S be a nonempty, closed, bounded, convex set. Then

$$
\left(\forall c \in \mathbb{R}^{n}\right),(\exists x(c) \in S): c \in N_{S}(x(c))
$$

Proof: Let $x(c)$ be the maximizer of $c^{T} x$ over S. By the previous theorem and the Weierstrass' theorem, $c \in N_{S}(x(c))$.

Example Suppose we take a triangle and write down its normal cone directions:

Given $c \in \mathbb{R}^{n}, f(x)=c^{T} x$ is maximized at one of three points:
Partition the space of \mathbb{R}^{n} into three cells, each corresponding to the normal cone at a different vertex. Then depending on which cell c is in, choose the corresponding vertex at which the normal cone is located. The previous theorem then shows that $c^{T} x$ is maximized at that vertex.

2 Normal cone of a polyhedral set

In this class we care most about the normal cone of a polyhedron.
Theorem 3 Let $A \in \mathbb{R}^{m \times n}$ and let $b \in \mathbb{R}^{m}$. Consider the polyhedron $Q(A, b)=\{x \mid A x \leq b\}$. Suppose $x \in Q(A, b)$, then $N_{Q(A, b)}(x)=\left\{A^{T} y \mid y \in \mathbb{R}^{m}\right.$ such that $y \geq 0$ and $\left.y^{T}(b-A x)=0\right\}$.

The condition that $y^{T}(b-A x)$ is equivalent to the complementarity conditions $b_{i}-a_{i} x>0 \Longrightarrow$ $y_{i}=0$ and $y_{i}>0 \Longrightarrow b_{i}-a_{i} x>0$. This fact is actually the key to linear programming duality. Proof:

Let $Y=\left\{A^{T} y \mid y \geq 0, y^{T}(b-A x)=0\right\}$.
" \supseteq ":
Suppose $y \in \mathbb{R}^{m}, y^{T}(b-A x)=0$. Let $z \in Q(A, b)$ and expand:

$$
y^{T} A(z-x)=\sum_{i: a_{i} x \neq b_{i}} y_{i} a_{i}(z-x)+\sum_{j: a_{j} x=b_{j}} y_{j} a_{j}(z-x)
$$

By assumption $y_{i}=0$ if $a_{i} x \neq b_{i}$, so the first sum is zero. We're left with

$$
=\sum_{j: a_{j} x=b_{j}} y_{j}\left(a_{j} z-b_{j}\right) \leq 0
$$

which implies that $A^{T} y \in N_{Q(A, b)}$.
" \subseteq ":
Suppose $g \in N_{Q(A, b)}(x)$ and $g \notin Y$. We wish to reach a contradiction.
By the separating hyperplane theorem, there exists a vector $\hat{a} \in \mathbb{R} \backslash\{0\}$ and a number $\hat{b} \in \mathbb{R}$ s.t.

$$
(\forall w \in Y) \hat{a}^{T} w<b<\hat{a}^{T} g
$$

Clearly, $0 \in Y$. Therefore, $0=\hat{a}^{T} 0<b$, i.e., $b>0$.
Moreover, because $A^{T}=\left[\begin{array}{lll}a_{1}^{T} & \ldots & a_{m}^{T}\end{array}\right]$, where a_{i} is the i th row vector of A, we find that for any i such that $a_{i} x=b_{i}$, we have

$$
(\forall \lambda \geq 0) \lambda \hat{a}^{T} a_{i}^{T}=\hat{a}^{T} A \lambda e_{i}<\hat{b}
$$

where e_{i} denotes the all-zeros vector with a 1 in the i th component. Note that $A^{T} \lambda e_{i}$ is in the Y set because it's in the range of $A^{T} y$ for an appropriate choice of y. Thus, that $(\forall \lambda>0), \hat{a}^{T} a^{T}<\frac{\hat{b}}{\lambda}$. Therefore take $\lambda \rightarrow \infty$ and note that $\frac{b}{\lambda} \rightarrow 0$ to show that $\hat{a}^{T} a_{i}^{T} \leq 0$.

Now, for each $\epsilon>0$, define $z(\epsilon)=x+\epsilon \hat{a}$. We claim that $\exists \epsilon>0$ s.t.

1. $z(\epsilon) \in Q(A, b)$; and
2. $g^{T}(z(\epsilon)-x)>\epsilon \hat{b}>0$ which contradicts the inclusion $g \in N_{Q(A, b)}(x)$.

Proof of 1: Suppose that $a_{i} x=b_{i}$, which implies that $a_{i} \hat{a} \leq 0$. Then for all $\epsilon>0, a_{i} z(\epsilon)=$ $a_{i}(x+\epsilon \hat{a}) \leq a_{i} x \leq b_{i}$.

If $a_{i} x<b_{i}$ and $a_{i} \hat{a} \leq 0$, then a similar argument shows that for all $\epsilon>0$, we have $a_{i} z(\epsilon) \leq b_{i}$.
On the other hand, if $a_{i} x<b_{i}$ and $a_{i} \hat{a}>0$, then for all $0<\epsilon<\frac{b_{i}-a_{i} x}{a_{i} \hat{a}}$, we have

$$
\begin{aligned}
a_{i} z(\epsilon) & =a_{i} x+\epsilon a_{i} \hat{a} \\
& \leq a_{i} x+\frac{b_{i}-a_{i} x}{a_{i} \hat{a}} \\
& =b_{i} .
\end{aligned}
$$

Therefore, we set $\epsilon=\min \left\{\left.\frac{b_{i}-a_{i} x}{a_{i} \hat{a}} \right\rvert\, a_{i} \hat{a}>0\right\}$ and find that $z(\epsilon) \in Q(A, b)$.
Proof of 2: By assumption, take $\hat{a}^{T} g>\hat{b}>0$, which implies that

$$
g^{T}(z(\epsilon)-x)=g^{T}(x+\epsilon \hat{a}-x)=\epsilon g^{T} \hat{a}>\epsilon b>0
$$

Normal cones arising in dual linear programs are now easy to compute.
Theorem 4 Let $c \in \mathbb{R}^{m}$ and let $Y=\left\{y \in \mathbb{R}^{m} \mid y \geq 0, A^{T} y=c\right\}$, and let $y \in Y$. Then, we have

$$
N_{Y}(y)=\left\{-b \mid \exists x \in \mathbb{R}^{n} \text { with } A x \leq b, y^{T}(b-A x)=0\right\}
$$

Proof: Write:

$$
Y=\left\{y \left\lvert\,\left[\begin{array}{c}
-I \\
A^{T} \\
-A^{T}
\end{array}\right] y \leq\left[\begin{array}{c}
0 \\
c \\
-c
\end{array}\right]\right.\right\}
$$

Then by previous theorem:

$$
N_{Y}(y)=\left\{\left.\left[\begin{array}{lll}
-I & A^{T} & -A^{T}
\end{array}\right]\left[\begin{array}{c}
s \\
t \\
w
\end{array}\right] \right\rvert\,\left[\begin{array}{c}
s \\
t \\
w
\end{array}\right] \geq 0,\left[\begin{array}{c}
s \\
t \\
w
\end{array}\right]^{T}\left(\left[\begin{array}{c}
-I \\
A^{T} \\
-A^{T}
\end{array}\right] y-\left[\begin{array}{c}
0 \\
c \\
-c
\end{array}\right]\right) \geq 0\right\}
$$

Equivalently:

$$
=\left\{-s+A t-A w \mid s, t, w \geq 0, s^{T}(-y)+t^{T}\left(A^{T} y-c\right)+w^{T}\left(-A^{T} y+c\right)=0\right\}
$$

Replace t, w with $z=t-w$ and let $A^{T} y=c$, to get

$$
\begin{aligned}
& =\left\{-s+A z \mid s \geq 0, s^{T} y=0\right\} \\
& =\left\{\bar{b} \mid \bar{b} \leq A z, y^{T}(\bar{b}-A z)=0\right\}
\end{aligned}
$$

where we solved for s in this expression and used the identity that $s=A z-b \geq 0$. Replace z with $-x$ and \bar{b} by $-b$ to get.

$$
=\left\{-b \mid A x \leq b, y^{T}(b-A x)=0\right\}
$$

3 Strong Duality

Consider the primal linear program

$$
p^{*}=\operatorname{maximize}_{A x \leq b} c^{T} x
$$

and the dual linear program

$$
d^{*}=\operatorname{minimize}_{\substack{A^{T} y=c \\ y \geq 0}} b^{T} y
$$

Then exactly one of the following holds:

- Both the primal and dual problems are infeasible, i.e., $p^{*}=-\infty$ and $d^{*}=\infty$.
- The maximizer of the primal and the minimizer of the dual exist, i.e., p^{*} and d^{*} are finite and $p^{*}=d^{*}$.
- The primal objective is unbounded over the feasible set and the dual is infeasible, i.e., $d^{*}=\infty$ and $p^{*}=\infty$.
- The dual objective is unbounded over the feasible set and the primal is infeasible, i.e., $p^{*}=-\infty$ and $d^{*}=-\infty$

Proof: Proof of strong duality

- Part 1: See Homework 2 where you provided an example of primal and dual both being infeasible.
- Part 2:
- (a) Suppose that p^{*} is finite and let x^{*} maximizes the primal program. Then, by Theorem 1, we have $c \in N_{Q(a, b)}\left(x^{*}\right)=\left\{A^{T} y \mid y \geq 0, y^{T}\left(b-A x^{*}\right)=0\right\}$. So we can take any such y from the normal cone and write $c=A^{T} y^{*}$ where $y^{*} \geq 0,\left(y^{*}\right)^{T}\left(b-A x^{*}\right)=0$. Then y^{*} is dual feasible and

$$
p^{*}=c^{T} x^{*}=\left(A^{T} y^{*}\right)^{T} x^{*}=\left(y^{*}\right)^{T} A x^{*}=\left(y^{*}\right)^{T} b
$$

Thus by weak duality, y^{*} is dual optimal and $p^{*}=d^{*}$.

- (b) Suppose d^{*} is finite and let y^{*} be a minimizer of the dual. In order to apply Theorem 1, we need to replace the dual objective by $-b^{T} y$. Then

$$
-b \in N_{\left\{y \mid A^{T} y=c, y \geq 0\right\}}\left(y^{*}\right)=\left\{-\bar{b} \mid A x \leq \bar{b},\left(y^{*}\right)^{T}(\bar{b}-A x)\right\}
$$

Choose any x^{*} such that $A x^{*} \leq b$ and $\left(y^{*}\right)^{T}\left(b-A x^{*}\right)=0$. Then

$$
d^{*}=\left(y^{*}\right)^{T} b=\left(y^{*}\right)^{T}\left(A x^{*}\right)=\left(A^{T} y^{*}\right) x^{*}=c^{T} x^{*} .
$$

Thus, by weak duality, we conclude that x^{*} is primal optimal and $p^{*}=d^{*}$.
The rest of the proof will be presented in the next lecture.

