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1 Recap

• Every bounded polyhedron is a polytope; we proved this using set polars and the separating
hyperplane theorem.

• The normal cone of a closed, convex set S ⊆ Rn is defined as

NS : Rn → 2R
n

(power set on all points).

NS(x) =

{{
g ∈ Rn| (∀z ∈ S) gT (z − x) ≤ 0

}
if x ∈ S

∅ if x /∈ S

Normal cones characterize

• interiors and boundaries of convex sets:

NS(x) = 0 ⇐⇒ x ∈ int(S) and NS(x) ) {0} ⇐⇒ x ∈ ∂S,

• Normal cones characterize projections: X = PS(y) ⇐⇒ y − x ∈ NS(x).

Theorem 1 (General Optimality Conditions) Let S ⊆ Rn be a nonempty, closed, convex set
and let c ∈ Rn. Then the following are equivalent:

1. x∗ solves:

max
x∈S

cTx (1)

2. c ∈ NS(x∗)

3. x∗ = PS(x∗ + c)

Proof: Observe that x∗ solves (1) if, and only if, cT (x − x∗) ≤ 0 which is true if, and only if,
c ∈ NS(x∗). The inclusion c ∈ NS(x∗) holds if, and only if, c = x∗ + c− x∗ ∈ Ns(x∗), which is true
if, and only if, x∗ = PS(x∗ + c). �

The following Corollary shows that bounded convex sets are round: whichever direction you pick,
you can always find a point where that direction is in the normal cone.

Lemma 2 Let c ∈ Rn. Let S be a nonempty, closed, bounded, convex set. Then

(∀c ∈ Rn) , (∃x(c) ∈ S) : c ∈ NS(x(c))

Proof: Let x(c) be the maximizer of cTx over S. By the previous theorem and the Weierstrass’
theorem, c ∈ NS(x(c)). �
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Example Suppose we take a triangle and write down its normal cone directions:

Given c ∈ Rn, f(x) = cTx is maximized at one of three points:
Partition the space of Rn into three cells, each corresponding to the normal cone at a different

vertex. Then depending on which cell c is in, choose the corresponding vertex at which the normal
cone is located. The previous theorem then shows that cTx is maximized at that vertex.

2 Normal cone of a polyhedral set

In this class we care most about the normal cone of a polyhedron.

Theorem 3 Let A ∈ Rm×n and let b ∈ Rm. Consider the polyhedron Q(A, b) = {x|Ax ≤ b}.
Suppose x ∈ Q(A, b), then NQ(A,b)(x) = {AT y|y ∈ Rm such that y ≥ 0 and yT (b−Ax) = 0}.

The condition that yT (b−Ax) is equivalent to the complementarity conditions bi− aix > 0 =⇒
yi = 0 and yi > 0 =⇒ bi − aix > 0. This fact is actually the key to linear programming duality.
Proof:

Let Y = {AT y|y ≥ 0, yT (b−Ax) = 0}.
“⊇”:
Suppose y ∈ Rm, yT (b−Ax) = 0. Let z ∈ Q(A, b) and expand:

yTA(z − x) =
∑

i:aix 6=bi

yiai(z − x) +
∑

j:ajx=bj

yjaj(z − x)
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By assumption yi = 0 if aix 6= bi, so the first sum is zero. We’re left with

=
∑

j:ajx=bj

yj(ajz − bj) ≤ 0,

which implies that AT y ∈ NQ(A,b).
“⊆”:
Suppose g ∈ NQ(A,b)(x) and g /∈ Y . We wish to reach a contradiction.

By the separating hyperplane theorem, there exists a vector â ∈ R \ {0} and a number b̂ ∈ R s.t.

(∀w ∈ Y ) âTw < b < âT g

Clearly, 0 ∈ Y . Therefore, 0 = âT 0 < b, i.e., b > 0.
Moreover, because AT =

[
aT1 ... aTm

]
, where ai is the ith row vector of A, we find that for any

i such that aix = bi, we have
(∀λ ≥ 0) λâTaTi = âTAλei < b̂,

where ei denotes the all-zeros vector with a 1 in the ith component. Note that ATλei is in the Y

set because it’s in the range of AT y for an appropriate choice of y. Thus, that (∀λ > 0) , âTaT < b̂
λ .

Therefore take λ→∞ and note that b
λ → 0 to show that âTaTi ≤ 0.

Now, for each ε > 0, define z(ε) = x+ εâ. We claim that ∃ε > 0 s.t.

1. z(ε) ∈ Q(A, b); and

2. gT (z(ε)− x) > εb̂ > 0 which contradicts the inclusion g ∈ NQ(A,b)(x).

Proof of 1: Suppose that aix = bi, which implies that aiâ ≤ 0. Then for all ε > 0, aiz(ε) =
ai(x+ εâ) ≤ aix ≤ bi.

If aix < bi and aiâ ≤ 0, then a similar argument shows that for all ε > 0, we have aiz(ε) ≤ bi.
On the other hand, if aix < bi and aiâ > 0, then for all 0 < ε < bi−aix

aiâ
, we have

aiz(ε) = aix+ εaiâ

≤ aix+
bi − aix
aiâ

= bi.

Therefore, we set ε = min
{
bi−aix
aiâ
|aiâ > 0

}
and find that z(ε) ∈ Q(A, b).

Proof of 2: By assumption, take âT g > b̂ > 0, which implies that

gT (z(ε)− x) = gT (x+ εâ− x) = εgT â > εb > 0

�
Normal cones arising in dual linear programs are now easy to compute.

Theorem 4 Let c ∈ Rm and let Y = {y ∈ Rm|y ≥ 0, AT y = c}, and let y ∈ Y . Then, we have

NY (y) =
{
−b|∃x ∈ Rn with Ax ≤ b, yT (b−Ax) = 0

}
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Proof: Write:

Y =

y |
 −IAT
−AT

 y ≤
 0
c
−c

 .

Then by previous theorem:

NY (y) =

[−I AT −AT
] st
w

 ∣∣∣
st
w

 ≥ 0,

st
w

T  −IAT
−AT

 y −
 0
c
−c

 ≥ 0


Equivalently:

= {−s+At−Aw|s, t, w ≥ 0, sT (−y) + tT (AT y − c) + wT (−AT y + c) = 0}

Replace t, w with z = t− w and let AT y = c, to get

= {−s+Az|s ≥ 0, sT y = 0}

= {b|b ≤ Az, yT (b−Az) = 0},

where we solved for s in this expression and used the identity that s = Az − b ≥ 0. Replace z with
−x and b by −b to get.

= {−b|Ax ≤ b, yT (b−Ax) = 0}.

�

3 Strong Duality

Consider the primal linear program

p∗ = maximizeAx≤b c
Tx

and the dual linear program

d∗ = minimizeAT y=c
y≥0

bT y

Then exactly one of the following holds:

• Both the primal and dual problems are infeasible, i.e., p∗ = −∞ and d∗ =∞.

• The maximizer of the primal and the minimizer of the dual exist, i.e., p∗ and d∗ are finite and
p∗ = d∗.

• The primal objective is unbounded over the feasible set and the dual is infeasible, i.e., d∗ =∞
and p∗ =∞.

• The dual objective is unbounded over the feasible set and the primal is infeasible, i.e., p∗ = −∞
and d∗ = −∞

Proof: Proof of strong duality

• Part 1: See Homework 2 where you provided an example of primal and dual both being
infeasible.

• Part 2:
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– (a) Suppose that p∗ is finite and let x∗ maximizes the primal program. Then, by Theo-
rem 1, we have c ∈ NQ(a,b)(x

∗) = {AT y|y ≥ 0, yT (b−Ax∗) = 0}. So we can take any such
y from the normal cone and write c = AT y∗ where y∗ ≥ 0, (y∗)T (b− Ax∗) = 0. Then y∗

is dual feasible and

p∗ = cTx∗ = (AT y∗)Tx∗ = (y∗)TAx∗ = (y∗)T b

Thus by weak duality, y∗ is dual optimal and p∗ = d∗.

– (b) Suppose d∗ is finite and let y∗ be a minimizer of the dual. In order to apply Theorem 1,
we need to replace the dual objective by −bT y. Then

−b ∈ N{y|AT y=c,y≥0}(y
∗) = {−b|Ax ≤ b, (y∗)T (b̄−Ax)}

Choose any x∗ such that Ax∗ ≤ b and (y∗)T (b−Ax∗) = 0. Then

d∗ = (y∗)T b = (y∗)T (Ax∗) = (AT y∗)x∗ = cTx∗.

Thus, by weak duality, we conclude that x∗ is primal optimal and p∗ = d∗.

The rest of the proof will be presented in the next lecture.
�
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