September 8, 2016

Lecture 6

Lecturer: Damek Davis

Scribe: Angela Zhou

1 Recap

- Every bounded polyhedron is a polytope; we proved this using set polars and the separating hyperplane theorem.
- The normal cone of a closed, convex set $S \subseteq \mathbb{R}^n$ is defined as

$$N_S: \mathbb{R}^n \to 2^{\mathbb{R}}$$

(power set on all points).

$$N_{S}(x) = \begin{cases} \left\{ g \in \mathbb{R}^{n} | (\forall z \in S) \ g^{T}(z-x) \leq 0 \right\} & \text{if } x \in S \\ \emptyset & \text{if } x \notin S \end{cases}$$

Normal cones characterize

• interiors and boundaries of convex sets:

 $N_S(x) = 0 \iff x \in int(S) \text{ and } N_S(x) \supseteq \{0\} \iff x \in \partial S,$

• Normal cones characterize projections: $X = P_S(y) \iff y - x \in N_S(x)$.

Theorem 1 (General Optimality Conditions) Let $S \subseteq \mathbb{R}^n$ be a nonempty, closed, convex set and let $c \in \mathbb{R}^n$. Then the following are equivalent:

1. x^* solves:

$$\max_{x \in S} c^T x \tag{1}$$

- 2. $c \in N_S(x^*)$
- 3. $x^* = P_S(x^* + c)$

Proof: Observe that x^* solves (1) if, and only if, $c^T(x - x^*) \leq 0$ which is true if, and only if, $c \in N_S(x^*)$. The inclusion $c \in N_S(x^*)$ holds if, and only if, $c = x^* + c - x^* \in N_s(x^*)$, which is true if, and only if, $x^* = P_S(x^* + c)$.

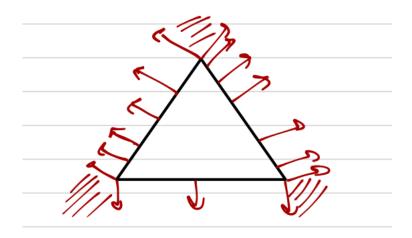
The following Corollary shows that bounded convex sets are round: whichever direction you pick, you can always find a point where that direction is in the normal cone.

Lemma 2 Let $c \in \mathbb{R}^n$. Let S be a nonempty, closed, bounded, convex set. Then

$$(\forall c \in \mathbb{R}^n), (\exists x(c) \in S) : c \in N_S(x(c))$$

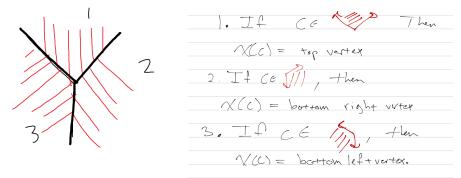
Proof: Let x(c) be the maximizer of $c^T x$ over S. By the previous theorem and the Weierstrass' theorem, $c \in N_S(x(c))$.

Example Suppose we take a triangle and write down its normal cone directions:



Given $c \in \mathbb{R}^n$, $f(x) = c^T x$ is maximized at one of three points:

Partition the space of \mathbb{R}^n into three cells, each corresponding to the normal cone at a different vertex. Then depending on which cell c is in, choose the corresponding vertex at which the normal cone is located. The previous theorem then shows that $c^T x$ is maximized at that vertex.



2 Normal cone of a polyhedral set

In this class we care most about the normal cone of a polyhedron.

Theorem 3 Let $A \in \mathbb{R}^{m \times n}$ and let $b \in \mathbb{R}^m$. Consider the polyhedron $Q(A, b) = \{x | Ax \leq b\}$. Suppose $x \in Q(A, b)$, then $N_{Q(A,b)}(x) = \{A^T y | y \in \mathbb{R}^m \text{ such that } y \geq 0 \text{ and } y^T(b - Ax) = 0\}$.

The condition that $y^T(b - Ax)$ is equivalent to the complementarity conditions $b_i - a_i x > 0 \implies y_i = 0$ and $y_i > 0 \implies b_i - a_i x > 0$. This fact is actually the key to linear programming duality. **Proof:**

Let $Y = \{A^T y | y \ge 0, y^T (b - Ax) = 0\}.$ " \supseteq ": Suppose $y \in \mathbb{R}^m, y^T (b - Ax) = 0$. Let $z \in Q(A, b)$ and expand:

$$y^{T}A(z-x) = \sum_{i:a_{i}x \neq b_{i}} y_{i}a_{i}(z-x) + \sum_{j:a_{j}x=b_{j}} y_{j}a_{j}(z-x)$$

By assumption $y_i = 0$ if $a_i x \neq b_i$, so the first sum is zero. We're left with

$$=\sum_{j:a_jx=b_j}y_j(a_jz-b_j)\leq 0$$

which implies that $A^T y \in N_{Q(A,b)}$.

"⊆":

Suppose $g \in N_{Q(A,b)}(x)$ and $g \notin Y$. We wish to reach a contradiction.

By the separating hyperplane theorem, there exists a vector $\hat{a} \in \mathbb{R} \setminus \{0\}$ and a number $\hat{b} \in \mathbb{R}$ s.t.

$$(\forall w \in Y) \ \hat{a}^T w < b < \hat{a}^T g$$

Clearly, $0 \in Y$. Therefore, $0 = \hat{a}^T 0 < b$, i.e., b > 0.

Moreover, because $A^T = \begin{bmatrix} a_1^T & \dots & a_m^T \end{bmatrix}$, where a_i is the *i*th row vector of A, we find that for any i such that $a_i x = b_i$, we have

$$(\forall \lambda \ge 0) \ \lambda \hat{a}^T a_i^T = \hat{a}^T A \lambda e_i < \hat{b},$$

where e_i denotes the all-zeros vector with a 1 in the *i*th component. Note that $A^T \lambda e_i$ is in the Y set because it's in the range of $A^T y$ for an appropriate choice of y. Thus, that $(\forall \lambda > 0)$, $\hat{a}^T a^T < \frac{\hat{b}}{\lambda}$. Therefore take $\lambda \to \infty$ and note that $\frac{b}{\lambda} \to 0$ to show that $\hat{a}^T a_i^T \leq 0$.

Now, for each $\epsilon > 0$, define $z(\epsilon) = x + \epsilon \hat{a}$. We claim that $\exists \epsilon > 0$ s.t.

- 1. $z(\epsilon) \in Q(A, b)$; and
- 2. $g^T(z(\epsilon) x) > \epsilon \hat{b} > 0$ which contradicts the inclusion $g \in N_{Q(A,b)}(x)$.

Proof of 1: Suppose that $a_i x = b_i$, which implies that $a_i \hat{a} \leq 0$. Then for all $\epsilon > 0$, $a_i z(\epsilon) = a_i(x + \epsilon \hat{a}) \leq a_i x \leq b_i$.

If $a_i x < b_i$ and $a_i \hat{a} \le 0$, then a similar argument shows that for all $\epsilon > 0$, we have $a_i z(\epsilon) \le b_i$. On the other hand, if $a_i x < b_i$ and $a_i \hat{a} > 0$, then for all $0 < \epsilon < \frac{b_i - a_i x}{a_i \hat{a}}$, we have

$$a_i z(\epsilon) = a_i x + \epsilon a_i \hat{a}$$

$$\leq a_i x + \frac{b_i - a_i x}{a_i \hat{a}}$$

$$= b_i.$$

Therefore, we set $\epsilon = \min\left\{\frac{b_i - a_i x}{a_i \hat{a}} | a_i \hat{a} > 0\right\}$ and find that $z(\epsilon) \in Q(A, b)$.

Proof of 2: By assumption, take $\hat{a}^T g > \hat{b} > 0$, which implies that

$$g^{T}(z(\epsilon) - x) = g^{T}(x + \epsilon \hat{a} - x) = \epsilon g^{T} \hat{a} > \epsilon b > 0$$

Normal cones arising in dual linear programs are now easy to compute.

Theorem 4 Let $c \in \mathbb{R}^m$ and let $Y = \{y \in \mathbb{R}^m | y \ge 0, A^T y = c\}$, and let $y \in Y$. Then, we have

$$N_Y(y) = \left\{ -b | \exists x \in \mathbb{R}^n \text{ with } Ax \le b, y^T(b - Ax) = 0 \right\}$$

Proof: Write:

$$Y = \left\{ y \mid \begin{bmatrix} -I \\ A^T \\ -A^T \end{bmatrix} y \le \begin{bmatrix} 0 \\ c \\ -c \end{bmatrix} \right\}.$$

Then by previous theorem:

$$N_Y(y) = \left\{ \begin{bmatrix} -I & A^T & -A^T \end{bmatrix} \begin{bmatrix} s \\ t \\ w \end{bmatrix} \middle| \begin{bmatrix} s \\ t \\ w \end{bmatrix} \geq 0, \begin{bmatrix} s \\ t \\ w \end{bmatrix}^T \left(\begin{bmatrix} -I \\ A^T \\ -A^T \end{bmatrix} y - \begin{bmatrix} 0 \\ c \\ -c \end{bmatrix} \right) \geq 0 \right\}$$

Equivalently:

$$= \{-s + At - Aw | s, t, w \ge 0, s^{T}(-y) + t^{T}(A^{T}y - c) + w^{T}(-A^{T}y + c) = 0\}$$

Replace t, w with z = t - w and let $A^T y = c$, to get

$$= \{-s + Az | s \ge 0, s^T y = 0\}$$
$$= \{\overline{b} | \overline{b} \le Az, y^T (\overline{b} - Az) = 0\},\$$

where we solved for s in this expression and used the identity that $s = Az - b \ge 0$. Replace z with -x and \overline{b} by -b to get.

$$= \{-b | Ax \le b, y^T (b - Ax) = 0\}.$$

3 Strong Duality

Consider the primal linear program

$$p^* = \text{maximize}_{Ax < b} c^T x$$

and the dual linear program

$$d^* = \underset{\substack{y \ge 0}{\text{minimize}}}{\text{minimize}}_{A^T y = c} b^T y$$

Then exactly one of the following holds:

- Both the primal and dual problems are infeasible, i.e., $p^* = -\infty$ and $d^* = \infty$.
- The maximizer of the primal and the minimizer of the dual exist, i.e., p^* and d^* are finite and $p^* = d^*$.
- The primal objective is unbounded over the feasible set and the dual is infeasible, i.e., $d^* = \infty$ and $p^* = \infty$.
- The dual objective is unbounded over the feasible set and the primal is infeasible, i.e., $p^* = -\infty$ and $d^* = -\infty$

Proof: Proof of strong duality

- Part 1: See Homework 2 where you provided an example of primal and dual both being infeasible.
- Part 2:

- (a) Suppose that p^* is finite and let x^* maximizes the primal program. Then, by Theorem 1, we have $c \in N_{Q(a,b)}(x^*) = \{A^T y | y \ge 0, y^T (b - Ax^*) = 0\}$. So we can take any such y from the normal cone and write $c = A^T y^*$ where $y^* \ge 0, (y^*)^T (b - Ax^*) = 0$. Then y^* is dual feasible and

$$p^* = c^T x^* = (A^T y^*)^T x^* = (y^*)^T A x^* = (y^*)^T b$$

Thus by weak duality, y^* is dual optimal and $p^* = d^*$.

- (b) Suppose d^* is finite and let y^* be a minimizer of the dual. In order to apply Theorem 1, we need to replace the dual objective by $-b^T y$. Then

$$-b \in N_{\{y|A^T y=c, y \ge 0\}}(y^*) = \{-\bar{b}|Ax \le \bar{b}, (y^*)^T(\bar{b} - Ax)\}$$

Choose any x^* such that $Ax^* \leq b$ and $(y^*)^T(b - Ax^*) = 0$. Then

$$d^* = (y^*)^T b = (y^*)^T (Ax^*) = (A^T y^*) x^* = c^T x^*.$$

Thus, by weak duality, we conclude that x^* is primal optimal and $p^* = d^*$.

The rest of the proof will be presented in the next lecture.