ORIE 6300 Mathematical Programming I

September 6, 2016

Scribe: Rundong Wu

Lecture 5

Lecturer: Damek Davis

1 Review

A while back, we defined polyhedrons and polytopes as follows.

Definition 1 A Polyhedron is $P = \{x \in \mathbb{R}^n : Ax \leq b\}$

Definition 2 A Polytope is given by $Q = conv(v_1, v_2, ..., v_k)$, where the v_i are the vertices of the polytope, for k finite.

Also recall the equivalence of extreme points, vertices and basic feasible solutions, and recall the definition of a bounded polyhedron.

Definition 3 A polyhedron P is bounded iff $\exists M > 0$ such that $||x|| \leq M$, $\forall x \in P$.

We showed bounded polyhedra were polytopes by taking the extreme points and seeing that they were the vertices for P as a polytope.

Recall also the Separating Hyperplane Theorem from a previous lecture.

Theorem 1 (Separating Hyperplane) Let $C \subseteq \mathbb{R}^n$ be a closed, nonempty and convex set. Let $y \in \mathbb{R}^n \setminus C$ and let

$$x^* = P_C(y) := \operatorname{argmin}_{x \in C} \frac{1}{2} ||x - y||^2.$$

Then there exists a number $b \in \mathbb{R}$, such that with $a = y - x^*$, we have

$$(\forall x \in C) \qquad a^T x \le a^T x^* < b < a^T y.$$

2 The polar of a set

Now we want to prove that polytopes are bounded polyhedra. To do this, we need to introduce one more concept.

Definition 4 Let $S \subseteq \mathbb{R}^n$. We call the set

$$S^{\circ} = \{ z \in \mathbb{R}^n : z^T x \le 1, \, \forall x \in S \},\$$

the polar set of S.

Figure 1: The polar of the ℓ_{∞} ball is the ℓ_1 norm ball.

Example 1 (Polars of the ℓ_{∞} and ℓ_1 balls.) Consider $S = \{(x_1, x_2) : -1 \leq x_1 \leq 1, -1 \leq x_2 \leq 1\}$, the region is shown in the left of Figure 1.

By definition, $x \in S^{\circ}$ if, and only if, $|x_1| + |x_2| = \sup_{(z_1, z_2) \in S} \{x_1 z_1 + x_2 z_2\} \leq 1$. Thus, $S^{\circ} = \{x \in \mathbb{R}^n : |x_1| + |x_2| \leq 1\}$, which is shown on the right hand side of Figure 1.

Now let's consider $S^{\circ\circ}$. By definition, $x \in (S^{\circ})^{\circ}$ if, and only if, $\max\{|z_1|, |z_2|\} = \sup_{|x_1|+|x_2|\leq 1}\{x_1z_1+x_2z_2\} \leq 1$. Thus, $(S^{\circ})^{\circ} = \{(x_1, x_2): -1 \leq x_1 \leq 1, -1 \leq x_2 \leq 1\} = S$.

Lemma 2 If C is a closed convex subset of \mathbb{R}^n with $0 \in C$, then $C^{\circ\circ} := (C^{\circ})^{\circ} = C$.

Proof:

- (\supseteq) Suppose that $x \in C$. Then $x \in C^{\circ\circ}$ if, and only if, $z^T x \leq 1$ for all $z \in C^{\circ}$. This is clearly true because $z \in C^{\circ}$ implies that $z^T x \leq 1$.
- (\subseteq) We will show that if $x \notin C$, then $x \notin C^{\circ\circ}$. First note that C is closed and convex with at least $z = 0 \in C$. If $x \notin C$, then by the Separating Hyperplane Theorem, there exists $0 \neq a \in \mathbb{R}^n$ and $b \in \mathbb{R}$ with $a^T x > b > a^T z$ for all $z \in C$. Since $0 \in C$, we have b > 0. Let $\tilde{a} = a/b \neq 0$. Therefore $\tilde{a}^T x > 1 > \tilde{a}^T z$, for all $z \in C$. This implies $\tilde{a} \in C^{\circ}$. But $\tilde{a}^T x > 1$, so $x \notin C^{\circ\circ}$.

Therefore $C^{\circ\circ} = C$.

3 Polytopes are Bounded Polyhedra

Now we can prove our result, at least sort of. We'll assume that 0 is in the interior of the polytope. We claim that this can be done without loss of generality; this is because we can translate the polytope to have $0 \in P$, apply the following proof and then translate back if needed.

Theorem 3 If $Q \subseteq \mathbb{R}^n$ is a polytope with 0 in the interior of Q, then Q is a (bounded) polyhedron.

Proof: Our proof strategy is as follows. (1) We will first show that the polar of a polytope is a polyhedron. (2) We then show that that since the polytope has 0 in its interior, then the polar of the polytope is bounded. So then $P = Q^{\circ}$ is a bounded polyhedron. (3) We know from a previous lecture that any bounded polyhedron is a polytope, so $P = Q^{\circ}$ is a polytope. (4) But then applying the proof that the polar of a polytope is a polyhedron, we get that $P^{\circ} = Q^{\circ \circ} = Q$ (by the lemma above) is a polyhedron. It is easy to prove that a polytope is bounded. Thus, we must prove (1) and (2).

(1) We first prove that the polar of Q is a polyhedron. Let $P = Q^{\circ}$. Then we know that $P^{\circ} = Q^{\circ \circ} = Q$. Since Q is a polytope, $Q = \operatorname{conv}\{v_1, \ldots, v_k\}$ for some k finite vectors $v_1, \ldots, v_k \in \mathbb{R}^n$. We claim that

$$P = \{ z \in \mathbb{R}^n : v_i^T z \le 1, \, i = 1, \dots, k \}.$$

One the one hand, $P = Q^{\circ} = \{z \in \mathbb{R}^n : x^T z \leq 1, \forall x \in Q\}$, so $v_i^T z = z^T v_i \leq 1$ for i = 1, 2, ..., k, which implies that $P \subseteq \{z \in \mathbb{R}^n : v_i^T z \leq 1, i = 1, ..., k\}$. On the other hand, if $z^T v_i \leq 1$ for i = 1, ..., k, then for any $x \in Q$, with $x = \sum_{i=1}^k \lambda_i v_i$ for some $\lambda_i \geq 0, \sum_i \lambda_i = 1$, we have

$$z^T x = z^T \sum_{i=1}^k \lambda_i v_i = \sum_{i=1}^k \lambda_i (z^T v_i) \le \sum_{i=1}^k \lambda_i = 1,$$

which proves the claim. Thus P is a polyhedron.

(2) Because $0 \in int(Q)$, there exists some $\epsilon > 0$ such that all $x \in \mathbb{R}^n$ with $||x|| < \epsilon$ lie in Q. If $z \in P, z \neq 0$, then, because $||x|| < \epsilon$, we have

$$x=\frac{\epsilon}{2}\frac{z}{||z||}\in Q.$$

Because $P = Q^{\circ}$,

$$x^T z \le 1 \quad \Rightarrow \quad \frac{\epsilon z^T z}{2||z||} \le 1 \quad \Rightarrow \quad ||z|| \le \frac{2}{\epsilon}.$$

Hence P is a bounded polyhedron.

4 Normal Cone

Modern optimization theory crucially relies on a concept called the *normal cone*.

Definition 5 Let $S \subset \mathbb{R}^n$ be a closed, convex set. The normal cone of S is the set-valued mapping $N_S : \mathbb{R}^n \to 2^{\mathbb{R}^n}$, given by

$$N_S(x) = \begin{cases} \{g \in \mathbb{R}^n | (\forall z \in S) \ g^T(z - x) \le 0\} & \text{if } x \in S \\ \emptyset & \text{if } x \notin S \end{cases}$$

Figure 2: Normal cones of several convex sets.

Example 2 We compute several normal cones; see Figure 2.

- 1. Let $S = \{z\}$. $N_S(x) = \begin{cases} \mathbb{R}^n & \text{if } x = z \\ \emptyset & \text{otherwise} \end{cases}$
- 2. Let S = [0, 1].

$$N_S(x) = \begin{cases} \mathbb{R}_{\leq 0} & \text{if } x = 0\\ \mathbb{R}_{\geq 0} & \text{if } x = 1\\ \{0\} & \text{if } x \in (0, 1)\\ \emptyset & \text{otherwise} \end{cases}$$

3. Let $S = \{x \mid ||x|| \le 1, x \in \mathbb{R}^n\}.$

$$N_S(x) = \begin{cases} \mathbb{R}_{\geq 0} x & if \|x\| = 1\\ \{0\} & if \|x\| < 1\\ \emptyset & otherwise \end{cases}$$

4. The normal cone of a triangle, computed at some but not all points, is depicted in Figure 2.

Normal cones satisfy several useful properties.

Proposition 4 Let $S \subseteq \mathbb{R}^n$ be a nonempty, closed, convex set. Then the following hold:

1. If $x \in S$, then $N_S(x)$ is a convex cone, i.e.

$$(\forall \lambda_1 \ge 0), (\forall \lambda_2 \ge 0), (\forall g_1 \in N_S(x)), (\forall g_2 \in N_S(x)) \ \lambda_1 g_1 + \lambda_2 g_2 \in N_S(x).$$

- 2. Let $y \in \mathbb{R}^n \setminus S$, then $P_S(y) = x \iff y x \in N_S(x)$.
- 3. If $x \in int(S)$, then $N_S(x) = \{0\}$.
- 4. If $x \in S$ and $x \notin int(S)$, then $N_S(x) \supseteq \{0\}$.

Proof:

1. We leave the proof of part 1 as an exercise.

2. (\Rightarrow): By separating hyperplane theorem, with $a = y - P_S(y) = y - x, \exists b \in \mathbb{R}, s.t.$

$$\begin{array}{ll} (\forall z \in S) & a^T z \leq a^T P_S(y) \leq a^T y \\ \Rightarrow & a^T (z - P_S(y)) \leq 0 \\ \Rightarrow & a \in N_S(P_S(y)) \end{array}$$

 (\Leftarrow) : If $y - x \in N_S(x)$, then

$$\begin{aligned} \forall z \in S & (y-x)^T (z-x) \leq 0 \\ \Leftrightarrow & (y-x)^T (y-x) + (y-x)^T (z-y) \leq 0 \\ \Rightarrow & ||y-x||^2 \leq (y-x)^T (y-z) \leq ||y-x|| \ ||y-z|| \ (Cauchy - Schwarz \ inequality) \\ \Rightarrow & ||y-x|| \leq ||y-x|| \ \leq ||y-z||, \ \forall z \in S \\ \Rightarrow & x = P_S(y) \end{aligned}$$

3. Suppose that $g \in N_S(x)$. Because $x \in int(S)$, there exists $\epsilon > 0$, such that $x + \epsilon g \in S$. Therefore, we have

$$g^{T}((x + \epsilon g) - x) \le 0$$

$$\Rightarrow \qquad \epsilon g^{T}g \le 0$$

$$\Rightarrow \qquad g = 0.$$

Hence, $N_S(x) = \{0\}.$

4. Since $x \notin int(S)$, there exists a sequence $y^k \in \mathbb{R}^n \setminus S$, s.t. $y^k \to x$ as $k \to \infty$. We leave it as an exercise to prove that if $x^k = P_S(y^k)$, then $x^k \to x$, $k \to \infty$.

Let $g^k = \frac{y^k - x^k}{\|y^k - x^k\|}$. Then, by part 5, we have $g^k \in N_S(x^k)$. Without loss of generality, we can assume that $g^k \to g \in \mathbb{R}^n$, with $\|g\| = 1$.

We claim that $g \in N_S(x)$. To prove the claim, note that since $g^k \in N_S(x^k)$, we have $(g^k)^T(z-x^k) \leq 0$, and

$$g^{T}(z-x) = (g-g^{k})^{T}(z-x) + (g^{k})^{T}(z-x) = (g-g^{k})^{T}(z-x) + (g^{k})^{T}(x^{k}-x) + (g^{k})^{T}(z-x^{k}) \leq (g-g^{k})^{T}(z-x) + (g^{k})^{T}(x^{k}-x) \rightarrow 0 \text{ as } k \rightarrow \infty$$

So for all $z \in S$, we have $g^T(z - x) \leq 0$, which means $g \in N_S(x)$. Obviously $0 \in N_S(x)$, so $\{0\} \subseteq N_S(x)$.

Proposition 5 shows that normal cones detect the boundary and interior of convex sets.

Corollary 5 Let $S \subseteq \mathbb{R}^n$ be a nonempty, closed, convex set. Then

- $N_S(x) = \{0\}$ if, and only if, $x \in int(S)$.
- $N_S(x) \supseteq \{0\}$ if, and only if, $x \in S \setminus int(S)$.