ORIE 6300 Mathematical Programming I
 Lecture 5
 Lecturer: Damek Davis
 Scribe: Rundong Wu

1 Review

A while back, we defined polyhedrons and polytopes as follows.
Definition $1 A$ Polyhedron is $P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$
Definition $2 A$ Polytope is given by $Q=\operatorname{conv}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$, where the v_{i} are the vertices of the polytope, for k finite.

Also recall the equivalence of extreme points, vertices and basic feasible solutions, and recall the definition of a bounded polyhedron.

Definition 3 A polyhedron P is bounded iff $\exists M>0$ such that $\|x\| \leq M, \forall x \in P$.
We showed bounded polyhedra were polytopes by taking the extreme points and seeing that they were the vertices for P as a polytope.

Recall also the Separating Hyperplane Theorem from a previous lecture.
Theorem 1 (Separating Hyperplane) Let $C \subseteq \mathbb{R}^{n}$ be a closed, nonempty and convex set. Let $y \in \mathbb{R}^{n} \backslash C$ and let

$$
x^{*}=P_{C}(y):=\operatorname{argmin}_{x \in C} \frac{1}{2}\|x-y\|^{2} .
$$

Then there exists a number $b \in \mathbb{R}$, such that with $a=y-x^{*}$, we have

$$
(\forall x \in C) \quad a^{T} x \leq a^{T} x^{*}<b<a^{T} y
$$

2 The polar of a set

Now we want to prove that polytopes are bounded polyhedra. To do this, we need to introduce one more concept.

Definition 4 Let $S \subseteq \mathbb{R}^{n}$. We call the set

$$
S^{\circ}=\left\{z \in \mathbb{R}^{n}: z^{T} x \leq 1, \forall x \in S\right\},
$$

the polar set of S.

Figure 1: The polar of the ℓ_{∞} ball is the ℓ_{1} norm ball.

Example 1 (Polars of the ℓ_{∞} and ℓ_{1} balls.) Consider $S=\left\{\left(x_{1}, x_{2}\right):-1 \leq x_{1} \leq 1,-1 \leq\right.$ $\left.x_{2} \leq 1\right\}$, the region is shown in the left of Figure 1.

By definition, $x \in S^{\circ}$ if, and only if, $\left|x_{1}\right|+\left|x_{2}\right|=\sup _{\left(z_{1}, z_{2}\right) \in S}\left\{x_{1} z_{1}+x_{2} z_{2}\right\} \leq 1$. Thus, $S^{\circ}=\left\{x \in \mathbb{R}^{n}:\left|x_{1}\right|+\left|x_{2}\right| \leq 1\right\}$, which is shown on the right hand side of Figure 1.

Now let's consider $S^{\circ \circ}$. By definition, $x \in\left(S^{\circ}\right)^{\circ}$ if, and only if, $\max \left\{\left|z_{1}\right|,\left|z_{2}\right|\right\}=\sup _{\left|x_{1}\right|+\left|x_{2}\right| \leq 1}\left\{x_{1} z_{1}+\right.$ $\left.x_{2} z_{2}\right\} \leq 1 . T h u s,\left(S^{\circ}\right)^{\circ}=\left\{\left(x_{1}, x_{2}\right):-1 \leq x_{1} \leq 1,-1 \leq x_{2} \leq 1\right\}=S$.

Lemma 2 If C is a closed convex subset of \mathbb{R}^{n} with $0 \in C$, then $C^{\circ \circ}:=\left(C^{\circ}\right)^{\circ}=C$.

Proof:

- (ِ) Suppose that $x \in C$. Then $x \in C^{\circ \circ}$ if, and only if, $z^{T} x \leq 1$ for all $z \in C^{\circ}$. This is clearly true because $z \in C^{\circ}$ implies that $z^{T} x \leq 1$.
- (\subseteq) We will show that if $x \notin C$, then $x \notin C^{\circ \circ}$. First note that C is closed and convex with at least $z=0 \in C$. If $x \notin C$, then by the Separating Hyperplane Theorem, there exists $0 \neq a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$ with $a^{T} x>b>a^{T} z$ for all $z \in C$. Since $0 \in C$, we have $b>0$. Let $\tilde{a}=a / b \neq 0$. Therefore $\tilde{a}^{T} x>1>\tilde{a}^{T} z$, for all $z \in C$. This implies $\tilde{a} \in C^{\circ}$. But $\tilde{a}^{T} x>1$, so $x \notin C^{\circ \circ}$.

Therefore $C^{\circ \circ}=C$.

3 Polytopes are Bounded Polyhedra

Now we can prove our result, at least sort of. We'll assume that 0 is in the interior of the polytope. We claim that this can be done without loss of generality; this is because we can translate the polytope to have $0 \in P$, apply the following proof and then translate back if needed.

Theorem 3 If $Q \subseteq \mathbb{R}^{n}$ is a polytope with 0 in the interior of Q, then Q is a (bounded) polyhedron.
Proof: Our proof strategy is as follows. (1) We will first show that the polar of a polytope is a polyhedron. (2) We then show that that since the polytope has 0 in its interior, then the polar of the polytope is bounded. So then $P=Q^{\circ}$ is a bounded polyhedron. (3) We know from a previous lecture that any bounded polyhedron is a polytope, so $P=Q^{\circ}$ is a polytope. (4) But then applying the proof that the polar of a polytope is a polyhedron, we get that $P^{\circ}=Q^{\circ \circ}=Q$ (by the lemma above) is a polyhedron. It is easy to prove that a polytope is bounded. Thus, we must prove (1) and (2).
(1) We first prove that the polar of Q is a polyhedron. Let $P=Q^{\circ}$. Then we know that $P^{\circ}=Q^{\circ \circ}=Q$. Since Q is a polytope, $Q=\operatorname{conv}\left\{v_{1}, \ldots, v_{k}\right\}$ for some k finite vectors $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$. We claim that

$$
P=\left\{z \in \mathbb{R}^{n}: v_{i}^{T} z \leq 1, i=1, \ldots, k\right\} .
$$

One the one hand, $P=Q^{\circ}=\left\{z \in \mathbb{R}^{n}: x^{T} z \leq 1, \forall x \in Q\right\}$, so $v_{i}^{T} z=z^{T} v_{i} \leq 1$ for $i=1,2, \ldots, k$, which implies that $P \subseteq\left\{z \in \mathbb{R}^{n}: v_{i}^{T} z \leq 1, i=1, \ldots, k\right\}$. On the other hand, if $z^{T} v_{i} \leq 1$ for $i=1, \ldots, k$, then for any $x \in Q$, with $x=\sum_{i=1}^{k} \lambda_{i} v_{i}$ for some $\lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1$, we have

$$
z^{T} x=z^{T} \sum_{i s=1}^{k} \lambda_{i} v_{i}=\sum_{i=1}^{k} \lambda_{i}\left(z^{T} v_{i}\right) \leq \sum_{i=1}^{k} \lambda_{i}=1,
$$

which proves the claim. Thus P is a polyhedron.
(2) Because $0 \in \operatorname{int}(Q)$, there exists some $\epsilon>0$ such that all $x \in \mathbb{R}^{n}$ with $\|x\|<\epsilon$ lie in Q. If $z \in P, z \neq 0$, then, because $\|x\|<\epsilon$, we have

$$
x=\frac{\epsilon}{2} \frac{z}{\|z\|} \in Q .
$$

Because $P=Q^{\circ}$,

$$
x^{T} z \leq 1 \quad \Rightarrow \quad \frac{\epsilon z^{T} z}{2\|z\|} \leq 1 \quad \Rightarrow \quad\|z\| \leq \frac{2}{\epsilon}
$$

Hence P is a bounded polyhedron.

4 Normal Cone

Modern optimization theory crucially relies on a concept called the normal cone.
Definition 5 Let $S \subset \mathbb{R}^{n}$ be a closed, convex set. The normal cone of S is the set-valued mapping $N_{S}: \mathbb{R}^{n} \rightarrow 2^{\mathbb{R}^{n}}$, given by

$$
N_{S}(x)= \begin{cases}\left\{g \in \mathbb{R}^{n} \mid(\forall z \in S) g^{T}(z-x) \leq 0\right\} & \text { if } x \in S \\ \emptyset & \text { if } x \notin S\end{cases}
$$

(1)

(2)

(3)

Figure 2: Normal cones of several convex sets.

Example 2 We compute several normal cones; see Figure 2.

1. Let $S=\{z\}$.

$$
N_{S}(x)= \begin{cases}\mathbb{R}^{n} & \text { if } x=z \\ \emptyset & \text { otherwise }\end{cases}
$$

2. Let $S=[0,1]$.

$$
N_{S}(x)= \begin{cases}\mathbb{R}_{\leq 0} & \text { if } x=0 \\ \mathbb{R}_{\geq 0} & \text { if } x=1 \\ \{0\} & \text { if } x \in(0,1) \\ \emptyset & \text { otherwise }\end{cases}
$$

3. Let $S=\left\{x \mid\|x\| \leq 1, x \in \mathbb{R}^{n}\right\}$.

$$
N_{S}(x)= \begin{cases}\mathbb{R}_{\geq 0} x & \text { if }\|x\|=1 \\ \{0\} & \text { if }\|x\|<1 \\ \emptyset & \text { otherwise }\end{cases}
$$

4. The normal cone of a triangle, computed at some but not all points, is depicted in Figure 2.

Normal cones satisfy several useful properties.
Proposition 4 Let $S \subseteq \mathbb{R}^{n}$ be a nonempty, closed, convex set. Then the following hold:

1. If $x \in S$, then $N_{S}(x)$ is a convex cone, i.e.

$$
\left(\forall \lambda_{1} \geq 0\right),\left(\forall \lambda_{2} \geq 0\right),\left(\forall g_{1} \in N_{S}(x)\right),\left(\forall g_{2} \in N_{S}(x)\right) \lambda_{1} g_{1}+\lambda_{2} g_{2} \in N_{S}(x)
$$

2. Let $y \in \mathbb{R}^{n} \backslash S$, then $P_{S}(y)=x \Longleftrightarrow y-x \in N_{S}(x)$.
3. If $x \in \operatorname{int}(S)$, then $N_{S}(x)=\{0\}$.
4. If $x \in S$ and $x \notin \operatorname{int}(S)$, then $N_{S}(x) \supsetneq\{0\}$.

Proof:

1. We leave the proof of part 1 as an exercise.
2. (\Rightarrow) : By separating hyperplane theorem, with $a=y-P_{S}(y)=y-x, \exists b \in \mathbb{R}$, s.t.

$$
\begin{array}{rcc}
(\forall z \in S) & a^{T} z \leq a^{T} P_{S}(y) \leq a^{T} y \\
& \Rightarrow & a^{T}\left(z-P_{S}(y)\right) \leq 0 \\
& \Rightarrow & a \in N_{S}\left(P_{S}(y)\right)
\end{array}
$$

(\Leftarrow) : If $y-x \in N_{S}(x)$, then

$$
\begin{array}{cc}
\forall z \in S & (y-x)^{T}(z-x) \leq 0 \\
\Longleftrightarrow & (y-x)^{T}(y-x)+(y-x)^{T}(z-y) \leq 0 \\
\Rightarrow & \|y-x\|^{2} \leq(y-x)^{T}(y-z) \leq\|y-x\|\|y-z\| \text { (Cauchy-Schwarz inequality) } \\
\Rightarrow & \|y-x\| \leq\|y-z\|, \forall z \in S \\
\Rightarrow & x=P_{S}(y)
\end{array}
$$

3. Suppose that $g \in N_{S}(x)$. Because $x \in \operatorname{int}(S)$, there exists $\epsilon>0$, such that $x+\epsilon g \in S$. Therefore, we have

$$
\begin{array}{cc}
& g^{T}((x+\epsilon g)-x) \leq 0 \\
\Rightarrow & \epsilon g^{T} g \leq 0 \\
\Rightarrow & g=0 .
\end{array}
$$

Hence, $N_{S}(x)=\{0\}$.
4. Since $x \notin \operatorname{int}(S)$, there exists a sequence $y^{k} \in \mathbb{R}^{n} \backslash S$, s.t. $y^{k} \rightarrow x$ as $k \rightarrow \infty$. We leave it as an exercise to prove that if $x^{k}=P_{S}\left(y^{k}\right)$, then $x^{k} \rightarrow x, k \rightarrow \infty$.
Let $g^{k}=\frac{y^{k}-x^{k}}{\left\|y^{k}-x^{k}\right\|}$. Then, by part 5 , we have $g^{k} \in N_{S}\left(x^{k}\right)$. Without loss of generality, we can assume that $g^{k} \rightarrow g \in \mathbb{R}^{n}$, with $\|g\|=1$.
We claim that $g \in N_{S}(x)$. To prove the claim, note that since $g^{k} \in N_{S}\left(x^{k}\right)$, we have $\left(g^{k}\right)^{T}\left(z-x^{k}\right) \leq 0$, and

$$
\begin{aligned}
g^{T}(z-x) & =\left(g-g^{k}\right)^{T}(z-x)+\left(g^{k}\right)^{T}(z-x) \\
& =\left(g-g^{k}\right)^{T}(z-x)+\left(g^{k}\right)^{T}\left(x^{k}-x\right)+\left(g^{k}\right)^{T}\left(z-x^{k}\right) \\
& \leq\left(g-g^{k}\right)^{T}(z-x)+\left(g^{k}\right)^{T}\left(x^{k}-x\right) \\
& \rightarrow 0 \text { as } k \rightarrow \infty
\end{aligned}
$$

So for all $z \in S$, we have $g^{T}(z-x) \leq 0$, which means $g \in N_{S}(x)$. Obviously $0 \in N_{S}(x)$, so $\{0\} \subsetneq N_{S}(x)$.

Proposition 5 shows that normal cones detect the boundary and interior of convex sets.
Corollary 5 Let $S \subseteq \mathbb{R}^{n}$ be a nonempty, closed, convex set. Then

- $N_{S}(x)=\{0\}$ if, and only if, $x \in \operatorname{int}(S)$.
- $N_{S}(x) \supsetneq\{0\}$ if, and only if, $x \in S \backslash \operatorname{int}(S)$.

