ORIE 6300 Mathematical Programming I

September 1, 2016

Lecture 4

Lecturer: Damek Davis

Scribe: Chamsi Hssaine

1 Introduction

Last time we talked about polyhedra and polytopes. This time we will define bounded polyhedra and discuss their relationship with polytopes. Recall from the last lecture the following definitions.

A polyhedron is $P = \{x \in \mathbb{R}^n : Ax \leq b\}, A \in \mathbb{R}^{m \times n}, m \geq n$. A polyhope is $Q = \operatorname{conv}(v_1, \ldots, v_k)$ for finite k. $x \in P$ is a vertex if $\exists c \in \mathbb{R}^n$ such that $c^T x < c^T y$ for all $y \in P, y \neq x$. $x \in P$ is an extreme point if $\nexists y, z \in P$ $y, z \neq x$ such that $x = \lambda y + (1 - \lambda)z, \lambda \in [0, 1]$. $x \in P$ is a basic feasible solution if $x \in P$ and it is basic (i.e., the rank of A_{\pm} is n). The three above definitions agree for Q(A, b).

Notice that the number of vertices of P is finite since given the m constraints in $Ax \leq b$, we can choose n of them to be met with equality; thus there are at most $\binom{m}{n}$ basic solutions.

2 Polyhedra and Polytopes

Now we are interested in the following two questions:

- Q1: When is a polytope a polyhedron?
- A1: A polytope is always a polyhedron.
- Q2: When is a polyhedron a polytope?
- A2: A polyhedron is almost always a polytope.

We can give a counterexample to show why a polyhedron is not always but almost always a polytope: an unbounded polyhedra is not a polytope. See Figure 1.

Lemma 1 All polytopes $Q := conv(v_1, \ldots, v_k)$ are bounded.

Proof: $x \in Q \implies x = \sum_{i=1}^k \lambda_i v_i$, where $\sum_{i=1}^k \lambda_i = 1, \lambda_i = 0 \quad \forall i = 1, \dots, k$.

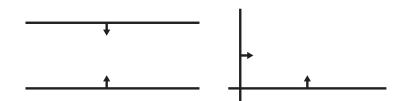


Figure 1: Examples of unbounded polyhedra that are not polytopes. (left) No extreme points, (right) one extreme point.

By the triangle inequality:

$$\|x\| \leq \sum_{i=1}^{k} \|\lambda_i v_i\|$$
$$= \sum_{i=1}^{k} \lambda_i v_i$$
$$\leq \max_i \|v_i\| \sum_{i=1}^{k} \lambda_i$$
$$= \max_i \|v_i\|.$$

Definition 1 A polyhedron P is bounded if $\exists M > 0$, such that $||x|| \leq M$ for all $x \in P$.

What we can show is this: every bounded polyhedron is a polytope, and vice versa. In this lecture, we will show one side of the proof in one direction; we will show the other direction in the next lecture. To start with, we need the following lemma.

Lemma 2 Any polyhedron $P = \{x \in \Re^n : Ax \leq b\}$ is convex.

Proof: If $x, y \in P$, then $Ax \leq b$ and $Ay \leq b$. Therefore,

$$A(\lambda x + (1 - \lambda)y) = \lambda Ax + (1 - \lambda)Ay \le \lambda b + (1 - \lambda)b = b.$$

Thus $x + (1 - \lambda)y \in P$.

3 Representation of Bounded Polyhedra

We can now show the following theorem.

Theorem 3 (*Representation of Bounded Polyhedra*) A bounded polyhedron P is the set of all convex combinations of its vertices, and is therefore a polytope.

Proof: Let v_1, v_2, \ldots, v_k be the vertices of P. Since $v_i \in P$ and P is convex (by previous lemma), then any convex combination $\sum_{i=1}^k \lambda_i v_i \in P$. So it only remains to show that any $x \in P$ can be written as $x = \sum_{i=1}^k \lambda_i v_i$, with $\lambda_i \ge 0$ and $\sum_{i=1}^k \lambda_i = 1$.

Let A_{\pm} be all the constraints that x meets with equality (all rows a_i such that $a_i x = b_i$). Let ra(x) be the rank of the corresponding A_{\pm} . Recall from last time that ra(x) = n if and only if x is a vertex of P. Now we prove the theorem by induction on n - ra(x).

Base case: Let n - ra(x) = 0. Then ra(x) = n and since $x \in P$, x is a basic feasible solution, and therefore a vertex of P.

Inductive Step: Suppose we have shown that for any $y \in P$ such that $n - ra(y) < \ell$ for some $\ell > 0$, y can be written as a convex combination of v_1, v_2, \ldots, v_k . Consider $x \in P$ with $ra(x) = n - \ell < n$. Then the rank of $A_{=} < n$, and thus there exists z such that $A_{=}z = 0$. Since P is bounded, there exist constants $\overline{\alpha} > 0$ and $\underline{\alpha} < 0$ such that $x + \alpha z \in P$ if and only if $\underline{\alpha} \le \alpha \le \overline{\alpha}$. Geometrically, this is equivalent to moving from x in the direction αz until we run into a constraint.

Then we can express x as

$$x = \frac{\overline{\alpha}}{\overline{\alpha} - \underline{\alpha}}(x + \underline{\alpha}z) + \frac{-\underline{\alpha}}{\overline{\alpha} - \underline{\alpha}}(x + \overline{\alpha}z).$$

Therefore, x is a convex combinations of two points in P. Now all we need to show is that $x + \underline{\alpha}z$ and $x + \overline{\alpha}z$ are convex combinations of vertices. Since $x + \overline{\alpha}z \in P$, but $x + \alpha z \notin P$ for $\alpha > \overline{\alpha}$, there exists some constraint a_j such that $a_jx < b_j$, but $a_j(x + \overline{\alpha}z) = b_j$. This implies that $ra(x + \overline{\alpha}z) > ra(x)$, so then $n - ra(x + \overline{\alpha}z) < n - ra(x) = \ell$. Therefore, $x + \overline{\alpha}z$ can be expressed as a convex combination of vertices v_1, v_2, \ldots, v_k by induction; we suppose $x + \overline{\alpha}z = \sum_{i=1}^k \alpha_i v_i$, where $\alpha_i \ge 0$ and $\sum_{i=1}^k \alpha_i = 1$. Similarly, it must be the case that $x + \underline{\alpha}z$ is a convex combination of the vertices, and we can write $x + \underline{\alpha}z = \sum_{i=1}^k \beta_i v_i$, where $\beta_i \ge 0$ and $\sum_{i=1}^k \beta_i = 1$.

Therefore, we have

$$x = \frac{\overline{\alpha}}{\overline{\alpha} - \underline{\alpha}} (x + \underline{\alpha}z) + \frac{-\underline{\alpha}}{\overline{\alpha} - \underline{\alpha}} (x + \overline{\alpha}z)$$
$$= \frac{\overline{\alpha}}{\overline{\alpha} - \underline{\alpha}} \sum_{i=1}^{k} \alpha_{i} v_{i} + \frac{-\underline{\alpha}}{\overline{\alpha} - \underline{\alpha}} \sum_{i=1}^{k} \beta_{i} v_{i}$$
$$= \sum_{i=1}^{k} \left(\frac{\overline{\alpha}}{\overline{\alpha} - \underline{\alpha}} \alpha_{i} + \frac{-\underline{\alpha}}{\overline{\alpha} - \underline{\alpha}} \beta_{i} \right) v_{i}$$
$$= \sum_{i=1}^{k} \delta_{i} v_{i},$$

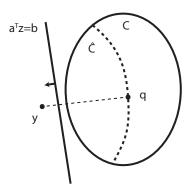


Figure 2: Separating hyperplane

where $\delta_i = \frac{\overline{\alpha}}{\overline{\alpha} - \underline{\alpha}} \alpha_i + \frac{-\underline{\alpha}}{\overline{\alpha} - \underline{\alpha}} \beta_i \ge 0$ and

$$\sum_{i=1}^{k} \delta_{i} = \sum_{i=1}^{k} \left(\frac{\overline{\alpha}}{\overline{\alpha} - \underline{\alpha}} \alpha_{i} + \frac{-\underline{\alpha}}{\overline{\alpha} - \underline{\alpha}} \beta_{i} \right)$$
$$= \frac{\overline{\alpha}}{\overline{\alpha} - \underline{\alpha}} \sum_{i=1}^{k} \alpha_{i} + \frac{-\underline{\alpha}}{\overline{\alpha} - \underline{\alpha}} \sum_{i=1}^{k} \beta_{i}$$
$$= \frac{\overline{\alpha}}{\overline{\alpha} - \underline{\alpha}} + \frac{-\underline{\alpha}}{\overline{\alpha} - \underline{\alpha}} = 1.$$

Thus x is a convex combination of the vertices.

4 Separating Hyperplane Theorem

To begin showing the proof in the opposite direction (that is, showing that every polytope is a bounded polyhedron), we will need a theorem called the *separating hyperplane theorem*. To prove the theorem, we will use the following theorem from analysis, which we give without proof.

Theorem 4 (Weierstrass) Let $C \subseteq \Re^n$ be a closed, non-empty and bounded set. Let $f : C \to \Re$ be continuous on C. Then f attains a maximum (and a minimum) on some point of C.

Suppose $f(x) = \frac{1}{2}||x - y||$, for all $x \in C$. We'd like to apply Weierstrass' theorem to find the minimizer of f in C, but C may not be bounded. To get around this, we pick some $q \in C$, which we can do since C is non-empty. Then, let $\hat{C} = \{x \in C : ||q - y|| \ge ||x - y||\}$. \hat{C} is closed, non-empty and bounded; we see that \hat{C} is bounded since for $x \in \hat{C}$, we have $||x|| \le ||y|| + ||y - x||$ by the triangle inequality and $||y|| + ||y - x|| \le ||y|| + ||q - y||$ by the definition of \hat{C} ; both ||y|| and ||q - y|| are constant terms. Now we can apply Weierstrass' theorem on \hat{C} to find a point z that minimizes f.

Theorem 5 (Separating Hyperplane) Let $C \subseteq \Re^n$ be closed, non-empty and convex set. Let $y \notin C$, then there exists a hyperplane $a \neq 0$, $a \in \Re^n$, $b \in \Re$, such that $a^T y > b$ and $a^T x < b$, for all $x \in C$.

Proof: Define

$$f(x) = \frac{1}{2}||x - y||^2$$
$$\hat{C} = \{x \in C : ||q - y|| \ge ||q - x||\}$$

Apply Weierstrass' theorem. Let z be the minimizer of f in \hat{C} . Note that for any $x \in C \setminus \hat{C}$, $f(z) \leq f(q) < f(x)$, and therefore z minimizes f over all of C, since any $x \notin \hat{C}$ must have been further away from y than q.

Let a = y - z. Then $a \neq 0$, since $z \in C, y \notin C$. Let $b = \frac{1}{2}(a^Ty + a^Tz)$. Then,

$$0 < a^T a = a^T (y - z) = a^T y - a^T z$$

so then

$$a^T y > a^T z \quad \Rightarrow \quad 2a^T y > a^T y + a^T z \quad \Rightarrow \quad a^T y > \frac{1}{2}(a^T y + a^T z) = b.$$

It remains to show that $a^T x < b$ for all $x \in C$. Let $x_{\lambda} = (1 - \lambda)z + \lambda x \in C$ for $0 < \lambda \leq 1$. Since z minimizes f over C, $f(z) \leq f(x_{\lambda})$. Thus,

$$f(x_{\lambda}) = \frac{1}{2}((1-\lambda)z + \lambda x - y)^{T}((1-\lambda)z + \lambda x - y) = \frac{1}{2}(z-y+\lambda(x-z))^{T}(z-y+\lambda(x-z)) \\ \ge \frac{1}{2}(z-y)^{T}(z-y) = f(z).$$

Rewriting, we obtain

$$\frac{1}{2}[2(z-y)^T\lambda(x-z) + \lambda^2(x-z)^T(x-z)] \ge 0$$

$$(z-y)^T(x-z) + \frac{1}{2}\lambda(x-z)^T(x-z) \ge 0$$

$$a^T(z-x) + \frac{1}{2}\lambda(x-z)^T(x-z) \ge 0$$

or

$$a^{T}(z-x) \ge -\frac{1}{2}\lambda(x-z)^{T}(x-z).$$

But we can take $\lambda \to 0$ arbitrarily small, so $a^T(z-x) \ge 0$ which implies $a^T z \ge a^T x$. Using the fact that $a^T z < a^T y$,

$$b = \frac{1}{2}(a^T y + a^T z) \ge \frac{1}{2}(2a^T z) = a^T z > a^T x.$$

Corollary 6 Suppose C and D are closed, convex, nonempty, and $C \cap D = \emptyset$. Define $C - D = \{x - y | x \in C, y \in D\}$, and suppose C - D is closed.

Then, $\exists a \in \mathbb{R}^n \setminus \{0\}, b \in \mathbb{R}$ such that

$$\sup_{x \in C} a^T x < b < \inf_{y \in D} a^T y.$$

Proof: We leave it as an exercise to the reader to prove that Y = C - D is convex. Since $C \cap D = \emptyset$, we have $0 \notin C - D$. Then, by the separating hyperplane theorem, $\exists a \in \mathbb{R}^n \setminus \{0\}, \overline{b} \in \mathbb{R}$ such that, $\forall x \in C, \forall y \in D$

$$a^{T}(x-y) < \overline{b} < 0$$
$$\implies \sup_{x \in C} a^{T}x - \overline{b} \le \inf_{y \in D} a^{T}y.$$

Because $\overline{b} < 0$, we know that $\sup_{x \in C} a^T x < \inf_{y \in D} a^T y$. Thus, to finish the proof, let

$$b = \frac{1}{2} \left(\sup_{x \in C} a^T x + \inf_{y \in D} a^T y \right).$$