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Last time we discussed how to take dual of an LP in two different ways. Today we will talk
about the geometry of linear programs.

1 Geometry of Linear Programs

First we need some definitions.

Definition 1 A set S ⊆ <n is convex if ∀x, y ∈ S, λx+ (1− λ)y ∈ S, ∀λ ∈ [0, 1].

Figure 1: Examples of convex and non convex sets

Given a set of inequalities we define the feasible region as P = {x ∈ <n : Ax ≤ b}. We say that
P is a polyhedron.

Which points on this figure can have the optimal value? Our intuition from last time is that

Figure 2: Example of a polyhedron. “Circled” corners are feasible and “squared” are non feasible

optimal solutions to linear programming problems occur at “corners” of the feasible region. What
we’d like to do now is to consider formal definitions of the “corners” of the feasible region.
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One idea is that a point in the polyhedron is a corner if there is some objective function that
is minimized there uniquely.

Definition 2 x ∈ P is a vertex of P if ∃c ∈ <n with cTx < cT y,∀y 6= x, y ∈ P .

Another idea is that a point x ∈ P is a corner if there are no small perturbations of x that are
in P .

Definition 3 Let S be a convex set in <n. Then x ∈ S is an extreme point of S if x cannot be
written as λy + (1− λ)z for y, z ∈ S, y, z 6= x, 0 ≤ λ ≤ 1.

Note that it is possible that these two definitions are equivalent under some condition. Observe
that for a unit disk, the points on the boundary are both extreme points and vertices. Given any
x on the boundary of the disk, the vector c = −x satisfies cTx < cT y for all ‖y‖ ≤ 1 with y 6= x.
However, because these definitions are generalized for all convex sets - not just polyhedra - a point
could possibly be extreme but not be a vertex. One set of examples are the points on an oval where
the line segments of the sides meet the curves of the ends.

Figure 3: Four extreme points in a two-dimensional convex set that are not vertices.

A final possible definition is an algebraic one. We note that a corner of a polyhedron is char-
acterized by a point at which several constraints are simultaneously satisfied. For any given x, let
A= be the constraints satisfied with equality by x; (that is, ai such that aix = bi). Let A< be the
constraints ai such that aix < bi.

Definition 4 Call x ∈ <n a basic solution of P if A= has rank n. x is a basic feasible solution of
P if it also lies inside P (so each constraint is either in A= or A<).

Since there are only a finite number of constraints defining P , there are only a finite number
of ways to choose A=, and if rank(A=) = n then x is uniquely determined by A=. So there are at
most

(
m
n

)
basic solutions. Now we want to show that all these definitions are equivalent.

Theorem 1 (Characterization of Vertices). Let P be defined as above. The following are
equivalent:

(1) x is a vertex of P .

(2) x is an extreme point of P .

(3) x is a basic feasible solution of P .
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Proof: We first prove that (1)⇒ (2). Let x be a vertex of P and suppose by way of contradiction
that x is not an extreme point of P . Since x is a vertex, ∃c ∈ <m such that cTx < cT y for all
y ∈ P, y 6= x. Because x is not an extreme point, there exist y, z ∈ P , y, z 6= x, 0 ≤ λ ≤ 1 such that
x = λy + (1− λ)z. Therefore cTx < cT y and cTx < cT z. Thus

cTx < λcT y + (1− λ)cT z = cT (λy + (1− λ)z) = cTx.

This gives us a contradiction, so x must be an extreme point.
We now prove (2) ⇒ (3), by proving the contrapositive, that ¬(3) ⇒ ¬(2). If x is not a basic

feasible solution and x ∈ P , then the column rank of A= is less than n. Hence there is a direction
vector 0 6= y ∈ <n such that A=y = 0 (i.e. the columns of A= are linearly dependent). We want
to show that for some ε > 0, x+ εy ∈ P and x− εy ∈ P . Then we will have shown that x can be
written as a convex combination of two other points of P , since then x = 1

2(x + εy) + 1
2(x − εy) ,

which contradicts x being an extreme point. To show that x+ εy ∈ P and x− εy ∈ P , we want to
show that

(a) A=(x+ εy) ≤ b=.

(b) A<(x+ εy) ≤ b<.

(c) A=(x− εy) ≤ b=.

(d) A<(x− εy) ≤ b<.

For the first inequality we have that

A=(x+ εy) = A=x+ εA=y = A=x = b=

since A=y = 0. Showing the third is similar.
For proving second we can find the appropriate ε > 0, we first note that since A<x < b<,

b<−A<x > 0, so we can choose a small ε > 0 such that εA<y ≤ b<−A<x and −εA<y ≤ b<−A<x.
Thus for showing the second inequality we note that

A<(x+ εy) = A<x+ εA<y ≤ A<x+ (b< −A<x) = b<

by our choice of ε. Showing the fourth inequality is similar.
Finally, we prove (3) ⇒ (1). Let I = {i : aix = bi} . Set c = −

∑
i∈I a

T
i . Then

cTx =
∑
i∈I

aix = −
∑
i∈I

bi,

and for any y ∈ P ,

cT y = −
∑
i∈i

aiy ≥ −
∑
i∈I

bi = cTx

by the feasibility of y. Then it must be the case that cT y = cTx only if aiy = bi for all i ∈ I.
Thus A=y = b=. However, since x is a basic feasible solution, A= has rank n, so that A=x = b=
has a unique solution x. Then if cTx = cT y, it must be the case that x = y. Hence we have that
cTx = cT y implies that x = y and cTx ≤ cT y for all y ∈ P , and thus x is a vertex. �

3-3



2 Convex Hulls

We now look at another way of specifying a feasible region.

Definition 5 Given v1, v2, . . . , vk ∈ <n, a convex combination of v1, v2, . . . , vk is v =
∑k

i=1 λivi
for some λi such that λi ≥ 0 and

∑k
i=1 λi = 1.

Definition 6 For Q = {v ∈ <n : v is a convex combination of v1, v2, . . . , vk}, we say that Q is a
convex hull of v1, v2, . . . , vk, and we write Q = conv(v1, v2, . . . , vk).

Definition 7 For Q the convex hull of a finite number of vectors v1, v2, . . . , vk, Q is a polytope.

Now we will do some exercises to develop intuition about convex hulls.

Lemma 2 Q is convex.

Proof: Pick any x, y ∈ Q. This implies that

x =
∑k

i=1 αivi αi ≥ 0
∑k

i=1 αi = 1,

y =
∑k

i=1 βivi βi ≥ 0
∑k

i=1 βi = 1.

For λ ∈ [0, 1], then

λx+ (1− λ)y = λ
k∑

i=1

αivi + (1− λ)
k∑

i=1

βivi

=
k∑

i=1

[λαi + (1− λ)βi]vi.

Then we know that λαi + (1− λ)βi ≥ 0 for all i, and that

k∑
i=1

(λαi + (1− λ)βi) = λ

k∑
i=1

αi + (1− λ)

k∑
i=1

βi = 1.

Thus

λx+ (1− λ)y =

k∑
i=1

δivi,

where δi = λαi + (1− λ)βi, so that δi ≥ 0 for all i, and
∑k

i=1 δi = 1. Thus λx+ (1− λ)y ∈ Q. �
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