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Much of the course will be devoted to linear programming (LP), the study of the optimization of
a linear function of several variables subject to linear inequality constraints. Here “programming”
should be understood in the sense of planning — more like TV programming than computer
programming — and linear refers to the types of functions involved.

Some examples are

• Finding the shortest path between a series of hubs,

• Investment planning,

• Learning from data, e.g. for recommendation systems

Mathematical programming is the art and science of transforming these types of problems into
mathematical language, and solving them. We often use computers to solve mathematical pro-
gramming problems, but the practice of mathematical programming existed long before computers
were widespread.

There are many forms such a problem can take. We start with a (column) vector x ∈ IRn of
decision variables. We want to maximize a linear objective function cTx for c ∈ IRn subject to linear
inequalities Ax ≤ b for A ∈ IRm×n, b ∈ IRm. The inequality is componentwise; if ai is the ith row of
A, and bi is the ith component of b, then we want to have aix ≤ bi for i = 1, . . . ,m. Any decision
vector x for which Ax ≤ b is called a (basic) feasible point (or a feasible solution). We call the set

Q(A, b) := {x ∈ IRn : Ax ≤ b}

of points satisfying all the constraints the feasible region or feasible set. For any feasible solution
x, cTx is the value of x. A feasible solution x∗ is optimal if it attains the maximum value (if it
exists) among all feasible solutions. For any x ∈ Q, cTx is a value of the linear program, and cTx∗,
for x∗ optimal, is the maximal/optimal value of the linear program. Note that all our vectors are
columns, and that a subscripted letter could be a component of a vector (like bi) or itself a vector
(like ai). We write:

max cTx

subject to Ax ≤ b,

or sometimes just max(cTx : Ax ≤ b).
We will study the following things:

• What is the geometry of the feasible region Q(A, b)?

• What form do optimal solutions take?

• How can we know if a given solution is optimal?
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• How can we efficiently find an optimal solution?

Let’s consider a concrete example.

Example 1 (Product Mix): The Marie-Antoinette bakery makes high-end bread and cakes. Each
loaf requires 3 pounds of flour and 2 hours of oven time, while each cake requires just 1 pound of
flour but 4 hours of oven time. There are 7 pounds of flour and 8 hours of oven time available, and
all other ingredients are in ample supply. (Note that this is a very small operation, and the oven
can handle only one bakery product at a time!) Each loaf and each cake makes a $5 profit. How
many loaves and how many cakes should be made to maximize the bakery’s profit?

If we let x1 and x2 denote the numbers of loaves and cakes made (our decision variables), then
the objective function to be maximized is 5x1 + 5x2. The flour constraint is 3x1 + x2 ≤ 7, while
the oven constraint is 2x1 + 4x2 ≤ 8. Are these all the constraints? No. The numbers of loaves
and cakes cannot be negative, so we get

max 5x1 + 5x2
3x1 + x2 ≤ 7,
2x1 + 4x2 ≤ 8,
x1 ≥ 0, x2 ≥ 0.

We might argue that x1 and x2 should be integers, but this makes our problem an integer linear
programming problem, which is potentially much harder to solve. So for now we allow x1 and x2
to take on any real values. This might be a reasonable approximation for a problem instance of
more realistic size: perhaps xj is the number of batches (say of 100 loaves or 100 cakes) made, so
fractions are possible.

Our problem above is of the form max{cTx : Ax ≤ b}, where A =

[
3 2 −1 0
1 4 0 −1

]T
(note

that the rows of A give the coefficients of the constraints), c =

(
5
5

)
= (5, 5)T and b = (7, 8, 0, 0)T .

We can solve such a small problem graphically, by drawing the feasible region in IR2:
We can also draw “isoprofit” lines of the form z = 5x1 +5x2, each of which show points of equal

profit. By moving the isoprofit line up and to the right as much as possible, we see that (2; 1) looks
like a good point; it gives a profit of $15.

This is pretty convincing, but can we get an algebraic proof that this solution is optimal, which
might work even if we can’t draw a picture? Yes! Any feasible point must satisfy the two constraints

3x1 + x2 ≤ 7,
2x1 + 4x2 ≤ 8,

and so satisfies their sum: 5x1 + 5x2 ≤ 15. But we also have a feasible point, x = (2; 1), which
gives objective function value 15, therefore it must be optimal!

Let us modify our example a bit. What if the profit per loaf becomes $7 and per cake $4? The
objective function is now 7x1 + 4x2. Adding the constraints no longer works, but we could take
positive multiples of them first:

2 × 3x1 + x2 ≤ 7,
+ 1/2 × 2x1 + 4x2 ≤ 8,

7x1 + 4x2 ≤ 18,
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Figure 1: The feasible region and an isoprofit line for Example 1.

and the feasible point (2; 1) gives exactly $18 revenue, so is still optimal.
What if the objective function becomes x1 + 4x2? Simple algebra suggests

−2/5 × 3x1 + x2 ≤ 7,
+ 11/10 × 2x1 + 4x2 ≤ 8,

x1 + 4x2 ≤ 6??

Is this valid? No!! Multiplying an inequality by a negative number changes its sense, and we can’t
then add the resulting inequalities.

Instead, we can proceed as follows:

1 × 2x1 + 4x2 ≤ 8,
+ 1 × −x1 ≤ 0,

x1 + 4x2 ≤ 8,

and x = (0; 2) is feasible and gives an objective function value $8.
Let’s generalize this discussion. For each constraint aix ≤ bi, we want to multiply it by yi ≥ 0,
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so that we have
y1 × (a1x ≤ b1)
y2 × (a2x ≤ b2)

...
+ ym × (amx ≤ bm)

cTx ≤ yT b

So we generate an upperbound of
∑

i yibi = yT b. Also, for each xi, we want to have exactly ci
copies of xi. Thus we want

y1a11 + y2a21 + · · ·+ ymam1 = c1

y1a12 + y2a22 + · · ·+ ymam2 = c2
...

y1a1n + y2a2n + · · ·+ ymamn = cn,

or AT y = c. Then by the same arguments as above we have that for any feasible x, cTx ≤ yT b. We
summarize this argument in the following lemma.

Lemma 1 Let y be a column vector that satisfies y ≥ 0 and AT y = c, then for any x satisfying
Ax ≤ b we have that cTx ≤ yT b.

Proof: We know that bi ≥ aix for all i. Multiplying this inequality by the non-negative yi, we
get that yibi ≥ yi(aix). Adding these constraints up for all i, we get

m∑
i=1

yibi ≥
m∑
i=1

yi(aix)

=

m∑
i=1

yi

n∑
j=1

aijxj

=

n∑
j=1

(
m∑
i=1

yiaij

)
xj

=

n∑
j=1

cjxj .

More compactly,
yT b ≥ yT (Ax) = (yTA)x = (AT y)Tx = cTx.

2

Our goal is to derive the best upper bound for the linear program that can be derived this way,
i.e., the upper bound w = yT b that has the smallest value of the problem. We can write this as
another linear program: min(yT b : AT y = c, y ≥ 0) which is called the dual linear program. The
original linear program is called the primal. The lemma above then implies what is known as the
weak duality theorem.
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