
ORIE 6300 Mathematical Programming I October 12, 2016

Recitation 8

Lecturer: Calvin Wylie Topic: Angela Zhou

Column Generation

This is a problem from the paper industry. Paper is produced in W inch long rolls called raws in
which W is very large. These raws are cut into smaller lengths called finals for sale according to
demand. Suppose there is demand for bi rolls of length si ≤W , where i = 1, . . . ,m. The goal is to
find a way to cut raws into finals such that we use the minimum possible number of raws. A clear
upper-bound for this problem is

∑m
i=1 bi = N (i.e., using one complete roll of paper to produce

each one of the rolls needed).
This will be an integer program since we can’t decide to cut fractional numbers of raws. There

are multiple ways to model this problem,but we want to formulate it as an integer linear program.
We want the integer formulation to lead to a good LP relaxation, whose solution is not too “off”
from the solution to the integer program.

One possible formulation uses the idea of a “pattern”: given a raw of a certain length, you have
certain lengths of demand that you need to satisfy, so you always cut your rod into discrete pieces
of some of these lengths. There’s only a finite number of patterns that you can cut the rod in.

We will represent a pattern as a column vector Aj , where the length is m, and each component
of the column vector tells you how many pieces of size i do you cut from the raw. For the pattern
to be feasible, elements are all positive, and the pattern cannot represent something that would
require length greater than W to cut.

m∑
i

aijsi ≤W

for example: W = 10, s1 = 5, s2 = 3, s3 = 2. One possible pattern is A1 =

2
0
0

, A2 =

1
1
1

,

A2 =

0
2
2

, ... there are 7 feasible patterns.

Let xj be the number of raws to cut with pattern j. Let A be the matrix of all patterns.
Our problem can be written as

min
∑
j

xj

s.t.Ax ≥ b

x ≥ 0 integer

8-1



So the integer program is

Minimize
∑
j

xj

subject to Ax ≥ b

x ≥ 0 are integers.

where aij = the number of finals of size si in the pattern j.
How good is the LP relaxation? If we removed the integer constraint and solved the LP how

good would this solution be? If we solve the LP with the simplex method, we know we would get
at most m of the xj > 0 (basic variables), since the size of our basis is m. If we round every xj > 0
up to the nearest integer, since A is nonnegative, this gives us a feasible solution to the integer
program. The gap between the minimum LP solution and the true integer solution is at most m.

This is good because this m is independent of the scale of the demands - there are formulations
where the gap between the LP solution and bounding can grow without bound if you scale up the
demands. The optimality gap is only proportional to how many sizes there are, not the scale of
your demand.

The issue with solving this problem is that once we grow in dimension, the number of possible
patterns grows exponentially in the number of possible sizes. It won’t be possible to fit the LP in
memory.

Issue: # of the columns could be very large. We can exploit that for the simplex method to
work, you only need to keep the current basis in memory. The size of the basis is only m << n.

0.1 Column Generation

As there are exponentially many feasible patterns, we do not want to consider them all simultane-
ously. To run the revised simplex method, we need only to:

1. find initial basic feasible solution.

2. decide if all non-basic j has cj ≥ 0, or find Aj such that cj < 0.

We can generate an initial basis of feasible patterns A = [A1, . . . , Am], where Aj is a pattern
that produces bw/sjc finals of type j and no other finals, so Ajj = bw/sjc and Aij = 0 for all i 6= j.
As the sub-matrix of these columns is diagonal with positive diagonal entries, it is full rank and
forms a basis. A feasible x for these patterns is xj = bj/bw/sjc, and xi = 0 for i 6∈ B, as then
Ax = b.

Given a basis, we can compute the reduced costs directly from the formulas y = (AT
B)−1cB and

c̄j = cj − AT
j y. As there are exponentially many cj and Aj , we need an efficient method to find a

c̄j which will be negative. However, cj = 1 for every j, so the reduced cost for j is non-negative if
and only if AT

j y ≤ 1. Thus all reduced costs are non-negative if and only if AT
j y ≤ 1 for all j. This

8-2



motivates the following integer program:

Maximize
m∑
i=1

yiai

subject to
m∑
i=1

siai ≤W

ai ≥ 0 are integers.

where ai is the number of finals of size i to cut for pattern a, si is the size of the ith final type,
and the constraint ensures that the pattern is feasible. As any such feasible pattern a will be a
column of A, so solving this integer program will give us the column with the least reduced cost.
Thus if the optimal objective function value is less than 1, then there are no columns with negative
reduced costs, otherwise the optimal a is a column with negative reduced cost. So we are optimal if
AT

j y ≤ 1, ∀j. It’s not feasible to check this for all j! What we can do is write another optimization
which generates some Aj that proves that there is no column Aj that makes this less than or equal
to 1; or if there is something greater than 1, provides it to us.

Consider the optimization problem, where ai is like choosing a particular pattern: we want to
constrain it to feasible patterns.

max
a

m∑
i=1

yiai

s.t.

m∑
i=1

siai ≤W

a ≥ 0 integer

If we can indeed maximize this and the optimal value is less than 1, this certifies optimality
of our basis. If instead we maximize this and find that the objective value is greater than 1, that
optimal a corresponds to a pattern that we should introduce into our basis!

If yTa∗ ≤ 1 our current basis is optimal since c̄j ≤ 0 for all non-basic j.
If yTaT > 1 then a should be introduced into basis.
We should verify that we can solve this subproblem - it’s an instance of the knapsack problem.

Let W be the weight constraint of the knapsack, yi be the value of the items we are putting in. This
can be solved via dynamic programming. However, it’s NP-Hard so this is probably less doable for
large n.

The dynamic programming solution is to take your first item, assume you put one item in the
knapsack, what is the value of the other solutions? You work backwards from there: it’s easy to
consider the maximum value obtained by adding one item.

Analogously there exists constraint generation where there’s too many constraints to consider,
rather than variables. It’s basically the dual of this approach! If you take the dual of an LP with too
many variables you’ll get a program with too many constraints. e.g. for the TSP LP relaxation,
the best approach uses constraint generation. For the TSP you have an exponential number of
‘hard’ constraints. All these techniques rely on the existence of an efficient way of solving the
subproblems.

8-3


