ORIE 6300 Mathematical Programming I

October 5, 2016

Recitation 7

Lecturer: Calvin Wylie

Lagrangian Relaxation

Today we will consider a method for producing a bound on the optimal of value of problems of the form form:

$$
\begin{array}{ll}
\min & c^{T} x \\
\text { s.t. } & A x=b \tag{1}\\
& x \in X .
\end{array}
$$

Intuitively, we think about the constraint $x \in X$ as "easy" and the constraints $A x \geq b$ as "hard". As an example, the set X may be $\{x \geq 0: x$ integer, $C x=d\}$, where C is a graph incidence matrix. Such a set can be quickly optimized over using the network simplex algorithm discussed in a previous recitation.

Now, we will relax the "hard" constraints $A x \geq b$ by removing them and inserting a penalty for violations. Let λ be a vector in \mathbf{R}^{m}, and consider the new problem:

$$
\begin{array}{ll}
\min & c^{T} x+\lambda^{T}(A x-b) \\
\text { s.t. } & x \in X . \tag{2}
\end{array}
$$

Let $L(\lambda)$ be the optimal objective value of this program. Interesting, we can use any λ to get a lower bound on the optimal value of our original problem.

Proposition 1 Let Z^{*} be the optimal objective of the original problem (1). Then, for any $\lambda \in \mathbf{R}^{m}$ we have that $L(\lambda) \leq Z^{*}$.

Proof: Using the definitions,

$$
\begin{aligned}
Z^{*} & =\min _{x \in X}\left\{c^{T} x \mid A x=b\right\} \\
& =\min _{x \in X}\left\{c^{T} x+\lambda^{T}(A x-b) \mid A x=b\right\} \\
& \geq \min _{x \in X}\left\{c^{T} x+\lambda^{T}(A x-b)\right\}=L(\lambda) .
\end{aligned}
$$

The Lagrangian Dual

To get the best possible lower bound, consider the problem:

$$
L^{*}=\max _{\lambda} L(\lambda)=\max _{\lambda} \min _{x \in X} c^{T} x+\lambda^{T}(A x-b)
$$

We call this the Lagrangian dual problem. Note that thanks to Proposition 1 we immediately get weak Duality, i.e. $L^{*} \leq Z^{*}$. In general, no strong duality results hold, however, lower bounds are still very useful in practice.

Note that for a fixed $x, c^{T} x+\lambda^{T}(A x-b)$ defines a hyperplane in \mathbf{R}^{m}. Taking the point-wise minimum of a set of hyperplanes yields a concave, piecewise-linear function (as in Figure).

Figure 1: Example of point-wise minimum (blue) of hyperplanes.

Now, the natural question is how to solve the Lagrangian dual?

Finite case

If $X=\left\{x^{1}, \ldots, x^{k}\right\}$ is a finite set, then we can compute the value L^{*} by the following LP:

$$
\begin{array}{ll}
\max _{(q, \lambda)} & q \\
\text { s.t. } & q \leq c^{T} x^{i}+\lambda^{T}\left(A x^{i}-b\right) \quad i=1 \ldots, k
\end{array}
$$

Note that when X is large, this is inefficient. However taking the dual of this LP, we get:

$$
\begin{array}{ll}
\min & \sum_{j} y_{j}\left(c^{T} x^{j}\right) \\
\text { s.t. : } & \sum_{j} y_{j}\left(A_{i} x^{j}-b_{i}\right)=0 \quad \forall i=1, \ldots, m \\
& \sum_{j} y_{j}=1 \\
& y \geq 0
\end{array}
$$

If we rearrange the equations, and use the fact that $\sum_{j} y_{j}=1$, we get an equivalent representation:

$$
\begin{array}{ll}
\min & c^{T}\left(\sum_{j} y_{j} x^{j}\right) \\
\text { s.t. : } & A\left(\sum_{j} y_{j} x^{j}\right)=b \\
& \sum_{j} y_{j}=1 \\
& y \geq 0
\end{array}
$$

Letting $\operatorname{conv}(X)$ be the convex hull of X, note that $x \in \operatorname{conv}(X)$ iff $x=\sum_{j} \alpha_{j} x^{j}, \sum_{j} \alpha_{j}=$ $1, \alpha \geq 0, x^{i} \in X$. Hence, this LP is exactly the same as optimizing over the convex hull of X. Hence, this can be written as:

$$
\begin{array}{ll}
\min & c^{T} x \\
\text { s.t. } & A x=b \\
& x \in \operatorname{conv}(X)
\end{array}
$$

Hence, L^{*} can be computed by solving this LP. This is why it is call Lagrangian relaxation, we are relaxing the restriction $x \in X$ to $x \in \operatorname{conv}(X)$.

Infinite case

We could be tempted to use a Gradient Descent algorithm to solve this problem, the only issue with this is that the function that we are trying to optimize is not smooth every where. In fact, let $\lambda \in \mathbf{R}^{m}$ be fixed, if x^{*} is the unique minimizer of

$$
\min _{x \in X}\left\{c^{T} x+\lambda^{T}(A x-b)\right\}
$$

then, $\nabla L(\lambda)=A x^{*}-b$. However, if there are multiple optimal x_{1}^{*}, .. (i.e. many hyperplanes are intersecting that point) then we only get super gradients. Recall that a subgradient of a convex function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ at $x \in \mathbf{R}^{n}$ is a vector $g \in \mathbf{R}^{n}$ such that

$$
f(y) \geq f(x)+g^{T}(y-x) \quad \text { for all } y \in \mathbf{R}^{n} .
$$

Analogously, for a concave function a supergradient should satisfy, $f(y) \leq f(x)+g^{T}(y-x)$.
Proposition 2 Let x_{1}^{*} be one of the minimizers defined before, then, $A x_{1}^{*}-b$ is a supergradient of L at λ.

Proof: Pick any $\mu \in \mathbf{R}^{m}$, we'd like to show $L(\mu) \leq L(\lambda)+\left(A x_{1}^{*}-b\right)^{T}(\mu-\lambda)$. Note that $L(\mu) \leq c^{T} x_{1}^{*}+\mu^{T}\left(A x_{1}^{*}-b\right)$ by definition. Then, summing and subtracting $\lambda^{T}\left(A x_{1}^{*}-b\right)$ we get

$$
\begin{aligned}
& L(\mu) \leq c^{T} x_{1}^{*}+\lambda^{T}\left(A x_{1}^{*}-b\right)+\left(A x_{1}^{*}-b\right)^{T}(\mu-\lambda) \\
& L(\lambda)+\left(A x_{1}^{*}-b\right)^{T}(\mu-\lambda) .
\end{aligned}
$$

We could use this fact to derive a supergradient method to maximize $L(\cdot)$. Consider the following algorithm

1. Choose starting $\lambda^{0} \in \mathbf{R}^{m}$.
2. Repeat:
(a) Solve $x^{*}:=\min _{x \in X}\left\{c^{T} x+\left(\lambda^{k}\right)^{T}(A x-b)\right\}$ (This should be fast since we assumed that $x \in X$ is an easy constraint).
(b) If $A x^{*}-b=0$ stop (you've reached an optimum).

Otherwise, set $\lambda^{k+1}:=\lambda^{k}+t^{k}\left(A x^{*}-b\right)$.
In practice, people use a more relaxed stopping criteria, such as $\left\|A x^{*} b\right\| \leq \varepsilon$ for a small $\varepsilon>0$. This method is guaranteed to converge (very slowly) if the sequence of step sizes $\left\{t^{k}\right\}_{k}$ satisfies that $t^{k} \rightarrow 0$ as k goes to infinity and $\sum_{k=0}^{\infty} t^{k}=\infty$.

