
ORIE 6300 Mathematical Programming I October 5, 2016

Recitation 7

Lecturer: Calvin Wylie Topic: Mateo Dı́az

Lagrangian Relaxation

Today we will consider a method for producing a bound on the optimal of value of problems of the
form form:

min cTx
s.t. Ax = b

x ∈ X.
(1)

Intuitively, we think about the constraint x ∈ X as “easy” and the constraints Ax ≥ b as
“hard”. As an example, the set X may be {x ≥ 0 : x integer, Cx = d}, where C is a graph
incidence matrix. Such a set can be quickly optimized over using the network simplex algorithm
discussed in a previous recitation.

Now, we will relax the “hard” constraints Ax ≥ b by removing them and inserting a penalty
for violations. Let λ be a vector in IRm, and consider the new problem:

min cTx+ λT (Ax− b)
s.t. x ∈ X. (2)

Let L(λ) be the optimal objective value of this program. Interesting, we can use any λ to get
a lower bound on the optimal value of our original problem.

Proposition 1 Let Z∗ be the optimal objective of the original problem (1). Then, for any λ ∈ IRm

we have that L(λ) ≤ Z∗.

Proof: Using the definitions,

Z∗ = min
x∈X
{cTx | Ax = b}

= min
x∈X
{cTx+ λT (Ax− b) | Ax = b}

≥ min
x∈X
{cTx+ λT (Ax− b)} = L(λ).

2

The Lagrangian Dual

To get the best possible lower bound, consider the problem:

L∗ = max
λ

L(λ) = max
λ

min
x∈X

cTx+ λT (Ax− b)

7-1



We call this the Lagrangian dual problem. Note that thanks to Proposition 1 we immediately get
weak Duality, i.e. L∗ ≤ Z∗. In general, no strong duality results hold, however, lower bounds are
still very useful in practice.

Note that for a fixed x, cTx + λT (Ax − b) defines a hyperplane in IRm. Taking the point-wise
minimum of a set of hyperplanes yields a concave, piecewise-linear function (as in Figure).

Figure 1: Example of point-wise minimum (blue) of hyperplanes.

Now, the natural question is how to solve the Lagrangian dual?

Finite case

If X = {x1, . . . , xk} is a finite set, then we can compute the value L∗ by the following LP:

max(q,λ) q

s.t. q ≤ cTxi + λT (Axi − b) i = 1 . . . , k

Note that when X is large, this is inefficient. However taking the dual of this LP, we get:

min
∑

j yj(c
Txj)

s.t. :
∑

j yj(Aix
j − bi) = 0 ∀i = 1, . . . ,m∑

j yj = 1

y ≥ 0

If we rearrange the equations, and use the fact that
∑

j yj = 1, we get an equivalent representation:

min cT
(∑

j yjx
j
)

s.t. : A
(∑

j yjx
j
)

= b∑
j yj = 1

y ≥ 0

7-2



Letting conv(X) be the convex hull of X, note that x ∈ conv(X) iff x =
∑

j αjx
j ,
∑

j αj =

1, α ≥ 0, xi ∈ X. Hence, this LP is exactly the same as optimizing over the convex hull of X.
Hence, this can be written as:

min cTx
s.t. Ax = b

x ∈ conv(X)

Hence, L∗ can be computed by solving this LP. This is why it is call Lagrangian relaxation, we
are relaxing the restriction x ∈ X to x ∈ conv(X).

Infinite case

We could be tempted to use a Gradient Descent algorithm to solve this problem, the only issue
with this is that the function that we are trying to optimize is not smooth every where. In fact, let
λ ∈ IRm be fixed, if x∗ is the unique minimizer of

min
x∈X
{cTx+ λT (Ax− b)}

then, ∇L(λ) = Ax∗ − b. However, if there are multiple optimal x∗1, . . . (i.e. many hyperplanes are
intersecting that point) then we only get super gradients. Recall that a subgradient of a convex
function f : IRn → IR at x ∈ IRn is a vector g ∈ IRn such that

f(y) ≥ f(x) + gT (y − x) for all y ∈ IRn.

Analogously, for a concave function a supergradient should satisfy, f(y) ≤ f(x) + gT (y − x).

Proposition 2 Let x∗1 be one of the minimizers defined before, then, Ax∗1− b is a supergradient of
L at λ.

Proof: Pick any µ ∈ IRm, we’d like to show L(µ) ≤ L(λ) + (Ax∗1 − b)T (µ − λ). Note that
L(µ) ≤ cTx∗1 + µT (Ax∗1 − b) by definition. Then, summing and subtracting λT (Ax∗1 − b) we get

L(µ) ≤ cTx∗1 + λT (Ax∗1 − b) + (Ax∗1 − b)T (µ− λ)

L(λ) + (Ax∗1 − b)T (µ− λ).

2

We could use this fact to derive a supergradient method to maximize L(·). Consider the following
algorithm

1. Choose starting λ0 ∈ IRm.

2. Repeat:

(a) Solve x∗ := minx∈X{cTx + (λk)T (Ax − b)} (This should be fast since we assumed that
x ∈ X is an easy constraint).

(b) If Ax∗ − b = 0 stop (you’ve reached an optimum).
Otherwise, set λk+1 := λk + tk(Ax∗ − b).

In practice, people use a more relaxed stopping criteria, such as ‖Ax∗b‖ ≤ ε for a small
ε > 0. This method is guaranteed to converge (very slowly) if the sequence of step sizes {tk}k
satisfies that tk → 0 as k goes to infinity and

∑∞
k=0 t

k =∞.

7-3


