ORIE 6300 Mathematical Programming I

October 5, 2016

Topic: Mateo Díaz

Recitation 7

Lecturer: Calvin Wylie

Lagrangian Relaxation

Today we will consider a method for producing a bound on the optimal of value of problems of the form form:

$$\begin{array}{ll} \min & c^T x \\ \text{s.t.} & Ax = b \\ & x \in X. \end{array}$$
 (1)

Intuitively, we think about the constraint $x \in X$ as "easy" and the constraints $Ax \geq b$ as "hard". As an example, the set X may be $\{x \geq 0 : x \text{ integer}, Cx = d\}$, where C is a graph incidence matrix. Such a set can be quickly optimized over using the network simplex algorithm discussed in a previous recitation.

Now, we will relax the "hard" constraints $Ax \ge b$ by removing them and inserting a penalty for violations. Let λ be a vector in \mathbb{R}^m , and consider the new problem:

$$\min_{x \in X} c^T x + \lambda^T (Ax - b)$$
s.t. $x \in X.$

$$(2)$$

Let $L(\lambda)$ be the optimal objective value of this program. Interesting, we can use any λ to get a lower bound on the optimal value of our original problem.

Proposition 1 Let Z^* be the optimal objective of the original problem (1). Then, for any $\lambda \in \mathbb{R}^m$ we have that $L(\lambda) \leq Z^*$.

Proof: Using the definitions,

$$Z^* = \min_{x \in X} \{ c^T x \mid Ax = b \}$$

=
$$\min_{x \in X} \{ c^T x + \lambda^T (Ax - b) \mid Ax = b \}$$

$$\geq \min_{x \in X} \{ c^T x + \lambda^T (Ax - b) \} = L(\lambda).$$

The Lagrangian Dual

To get the best possible lower bound, consider the problem:

$$L^* = \max_{\lambda} L(\lambda) = \max_{\lambda} \min_{x \in X} c^T x + \lambda^T (Ax - b)$$

We call this the Lagrangian dual problem. Note that thanks to Proposition 1 we immediately get weak Duality, i.e. $L^* \leq Z^*$. In general, no strong duality results hold, however, lower bounds are still very useful in practice.

Note that for a fixed x, $c^T x + \lambda^T (Ax - b)$ defines a hyperplane in \mathbb{R}^m . Taking the point-wise minimum of a set of hyperplanes yields a concave, piecewise-linear function (as in Figure).

Figure 1: Example of point-wise minimum (blue) of hyperplanes.

Now, the natural question is how to solve the Lagrangian dual?

Finite case

If $X = \{x^1, \ldots, x^k\}$ is a finite set, then we can compute the value L^* by the following LP:

$$\begin{array}{ll} \max_{(q,\lambda)} & q \\ \text{s.t.} & q \end{array} \leq c^T x^i + \lambda^T (A x^i - b) \quad i = 1 \dots, k \\ \end{array}$$

Note that when X is large, this is inefficient. However taking the dual of this LP, we get:

$$\min \sum_{j} y_j(c^T x^j) \\ \text{s.t.} : \sum_{j} y_j(A_i x^j - b_i) = 0 \quad \forall i = 1, \dots, m \\ \sum_{j} y_j = 1 \\ y \ge 0$$

If we rearrange the equations, and use the fact that $\sum_{j} y_{j} = 1$, we get an equivalent representation:

min
$$c^T \left(\sum_j y_j x^j \right)$$

s.t.: $A \left(\sum_j y_j x^j \right) = b$
 $\sum_j y_j = 1$
 $y \ge 0$

Letting conv(X) be the convex hull of X, note that $x \in \text{conv}(X)$ iff $x = \sum_j \alpha_j x^j$, $\sum_j \alpha_j = 1$, $\alpha \ge 0$, $x^i \in X$. Hence, this LP is exactly the same as optimizing over the convex hull of X. Hence, this can be written as:

$$\begin{array}{ll} \min & c^T x \\ \text{s.t.} & Ax = b \\ & x \in \operatorname{conv}(X) \end{array}$$

Hence, L^* can be computed by solving this LP. This is why it is call Lagrangian relaxation, we are relaxing the restriction $x \in X$ to $x \in \text{conv}(X)$.

Infinite case

We could be tempted to use a Gradient Descent algorithm to solve this problem, the only issue with this is that the function that we are trying to optimize is not smooth every where. In fact, let $\lambda \in \mathbb{R}^m$ be fixed, if x^* is the unique minimizer of

$$\min_{x \in X} \{ c^T x + \lambda^T (Ax - b) \}$$

then, $\nabla L(\lambda) = Ax^* - b$. However, if there are multiple optimal x_1^*, \ldots (i.e. many hyperplanes are intersecting that point) then we only get super gradients. Recall that a subgradient of a convex function $f: \mathbb{R}^n \to \mathbb{R}$ at $x \in \mathbb{R}^n$ is a vector $g \in \mathbb{R}^n$ such that

$$f(y) \ge f(x) + g^T(y - x)$$
 for all $y \in \mathbb{R}^n$.

Analogously, for a concave function a supergradient should satisfy, $f(y) \leq f(x) + g^T(y-x)$.

Proposition 2 Let x_1^* be one of the minimizers defined before, then, $Ax_1^* - b$ is a supergradient of L at λ .

Proof: Pick any $\mu \in \mathbf{R}^m$, we'd like to show $L(\mu) \leq L(\lambda) + (Ax_1^* - b)^T(\mu - \lambda)$. Note that $L(\mu) \leq c^T x_1^* + \mu^T (Ax_1^* - b)$ by definition. Then, summing and subtracting $\lambda^T (Ax_1^* - b)$ we get

$$L(\mu) \le c^T x_1^* + \lambda^T (A x_1^* - b) + (A x_1^* - b)^T (\mu - \lambda)$$

$$L(\lambda) + (A x_1^* - b)^T (\mu - \lambda).$$

We could use this fact to derive a supergradient method to maximize $L(\cdot)$. Consider the following algorithm

- 1. Choose starting $\lambda^0 \in \mathbf{R}^m$.
- 2. Repeat:
 - (a) Solve $x^* := \min_{x \in X} \{ c^T x + (\lambda^k)^T (Ax b) \}$ (This should be fast since we assumed that $x \in X$ is an easy constraint).
 - (b) If $Ax^* b = 0$ stop (you've reached an optimum). Otherwise, set $\lambda^{k+1} := \lambda^k + t^k (Ax^* - b)$.

In practice, people use a more relaxed stopping criteria, such as $||Ax^*b|| \leq \varepsilon$ for a small $\varepsilon > 0$. This method is guaranteed to converge (very slowly) if the sequence of step sizes $\{t^k\}_k$ satisfies that $t^k \to 0$ as k goes to infinity and $\sum_{k=0}^{\infty} t^k = \infty$.