ORIE 6300 Mathematical Programming I October 5, 2016

Recitation 7

Lecturer: Calvin Wylie Topic: Mateo Diaz

Lagrangian Relaxation

Today we will consider a method for producing a bound on the optimal of value of problems of the
form form:

min ¢’z
st. Ar=0b (1)
Tz e X.

Intuitively, we think about the constraint z € X as “easy” and the constraints Az > b as
“hard”. As an example, the set X may be {x > 0 : z integer,Cx = d}, where C is a graph
incidence matrix. Such a set can be quickly optimized over using the network simplex algorithm
discussed in a previous recitation.

Now, we will relax the “hard” constraints Ax > b by removing them and inserting a penalty
for violations. Let A be a vector in R™, and consider the new problem:

min ¢’z 4+ AT (Az —b) (2)
st. zelX.

Let L(A) be the optimal objective value of this program. Interesting, we can use any A to get
a lower bound on the optimal value of our original problem.

Proposition 1 Let Z* be the optimal objective of the original problem (1). Then, for any A € R™
we have that L(\) < Z*.

Proof: Using the definitions,
Z* =min{c'z | Az =
;Iél)f(l{c x| Az = b}
= min{c 'z + N (Az — b) | Az = b}

reX

> mi)r(l{cT:U + M (Az —b)} = L(N).
xe

The Lagrangian Dual

To get the best possible lower bound, consider the problem:

L* = max L(\) = maxmin ¢’z + AT (Az — b)
A A zeX

7-1

We call this the Lagrangian dual problem. Note that thanks to Proposition 1 we immediately get
weak Duality, i.e. L* < Z*. In general, no strong duality results hold, however, lower bounds are
still very useful in practice.

Note that for a fixed x, ¢’z + AT (Az — b) defines a hyperplane in R™. Taking the point-wise
minimum of a set of hyperplanes yields a concave, piecewise-linear function (as in Figure).

Figure 1: Example of point-wise minimum (blue) of hyperplanes.

Now, the natural question is how to solve the Lagrangian dual?

Finite case

If X = {z',..., 2"} is a finite set, then we can compute the value L* by the following LP:

max,) 4 ' '
s.t. q <clz' + 2 \T(Axt —b) i=1...,k

Note that when X is large, this is inefficient. However taking the dual of this LP, we get:

min), y;(clad)

s.t. ijj(Aixj —b)=0 Vi=1,....,m
ijj =1
y=>0

If we rearrange the equations, and use the fact that > ;Yj =1, we get an equivalent representation:
min ¢! (Z] yjzrj)

st.: A (Z] ijL‘j) =b

ijjzl
y>0

7-2

Letting conv(X) be the convex hull of X, note that x € conv(X) iff z = 3, o, >y =
1, a >0, * € X. Hence, this LP is exactly the same as optimizing over the convex hull of X.
Hence, this can be written as:

min Lz
st. Ax=2b
x € conv(X)

Hence, L* can be computed by solving this LP. This is why it is call Lagrangian relaxation, we
are relaxing the restriction z € X to x € conv(X).

Infinite case

We could be tempted to use a Gradient Descent algorithm to solve this problem, the only issue
with this is that the function that we are trying to optimize is not smooth every where. In fact, let
A € R™ be fixed, if z* is the unique minimizer of

g T T
Ax —
irg)r{l{c r+ N (Az —b)}

then, VL(\) = Ax* — b. However, if there are multiple optimal z7,... (i.e. many hyperplanes are
intersecting that point) then we only get super gradients. Recall that a subgradient of a convex
function f: R"™ — R at x € R" is a vector g € R" such that

fy) > f(x) + g5 (y—2z) forally € R™
Analogously, for a concave function a supergradient should satisfy, f(y) < f(z) + ¢ (y —).

Proposition 2 Let z] be one of the minimizers defined before, then, Az} —b is a supergradient of
L at .

Proof: Pick any u € R™, we'd like to show L(u) < L()\) + (Axi — b)T(u —). Note that
L(p) < ot + pT' (Ax} — b) by definition. Then, summing and subtracting AT (Az} — b) we get
L(p) < c'af + AT (Az] —b) + (Az] —b)" (1 — A)
L) + (Az] =)T (- \).
g

We could use this fact to derive a supergradient method to maximize L(-). Consider the following
algorithm

1. Choose starting \° € R™.
2. Repeat:

(a) Solve x* := mingex{c’z + (A¥)T(Az — b)} (This should be fast since we assumed that
x € X is an easy constraint).

(b) If Az* —b = 0 stop (you've reached an optimum).
Otherwise, set \¥+1 .= \F t#(Az* — b).

In practice, people use a more relaxed stopping criteria, such as ||Az*b|| < e for a small
e > 0. This method is guaranteed to converge (very slowly) if the sequence of step sizes {t*}
satisfies that t* — 0 as k goes to infinity and Yoo th = .

7-3

