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The Transportation Problem 1

Suppose there are a set, S, of suppliers, each with supply si and a set, D, of customers each with
demand dj that must be met. Further, suppose that each unit shipped from supply node i to
demand node j incurs a cost cij . Let xij equal the amount to ship from i ∈ S to j ∈ D, of cij per
unit. Find a minimum-cost shipping scheme that satisfies all the demand and supply restrictions.

Clearly, this problem is only feasible if
∑

i si ≥
∑

j dj . Without loss of generality, suppose∑
i si =

∑
j dj since otherwise we can set a dummy demand node k with dk =

∑
i si−

∑
j dj . Then

we can formulate this as an linear program by:

min
∑

i∈S,j∈D cijxij
s.t.

∑
j∈D xij = si ∀i ∈ S∑
i∈S xij = dj ∀j ∈ D

xij ≥ 0.

In some cases, we might wish to restrict the value of xij to be integral.
First, note that the rows of the constraint matrix are linearly dependent because:∑

i∈S

∑
j∈D

xij =
∑
i∈S

si =
∑
j∈D

dj =
∑
j∈D

∑
i∈S

xij

i.e., adding all the rows in the first constraint set gives the same result as adding all the rows of the
second constraint set. Hence, without loss of generality, we can remove one constraint arbitrarily.

1Based on previous notes of Chaoxu Tong
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Let |S| = m, |D| = n. Rank of constraint matrix is n+m−1. Consider a graphical representation
of this problem where G is a bipartite graph with vertex sets corresponding to S and D and an
edge set E = S ×D, i.e., {i, j} ∈ E for every i ∈ S, j ∈ D, i.e., G = (S ∪D,EB), EB = {(i, j) ∈
E|xij > 0}. Note that each decision variable corresponds to an edge in the graph. Hence, a basic
solution to the LP corresponds to some subgraph.

e.g.

Claim 1 The subgraph corresponding to a basic solution to the LP doesn’t contain cycles. Cycle =
{(i1, j1), (j1, i2), ..., (jk, i1)}

Proof: Let C be a cycle in the corresponding subgraph induced by the basic solution. Then
C = i1 → j1 → . . .→ jk → i1 where il ∈ S, jl ∈ D. i.e., C = {(i1, j1), (j1, i2), ..., (jk, i1)}.

Consider the vector yij which equals 1 if yij corresponds a cycle edge from S to D, −1 if yij
corresponds to a cycle edge from D to S, and 0 otherwise.

Note that for every node in the cycle, there is exactly one edge ’entering’ and one ’leaving’.
Hence, it must be that Ay = 0, where A is our constraint matrix.

So, consider any basis B and suppose C is a cycle using only our basis variables. Let AB be
the corresponding basis matrix and yB be the matching components of y. Since yi = 0 for i 6∈ B.

0 = Ay =
[
AB AN

] [yB
yN

]
= AByB +ANyN = AByB +AN0

constraints AB having full rank.
Noting that our graph has n+m vertices, and each basis has n+m− 1 edges (since there are

that many constraints), and each basis cannot contain a cycle, it follows that each basic solution
corresponds to a spanning tree of our graph. 2

Dual:
max

∑m
i=1 ui +

∑n
j=1 vi

s.t. ui + vj ≤ cij , ∀i, j

Since one constraint in the primal was redundant, one variable in the dual can be set arbitrarily.
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Algorithm Idea

Assume we start with an initial basic feasible solution, (xB, xN )
Solve ui + vj = cij ,∀(i, j) ∈ B (Easy since one can be set arbitrarily, then solve for all others

since basis induces a spanning tree)
(complementary slackness condition)
Check if ui + vi ≤ cij ,∀(i, j) ∈ N (Dual feasibility). If so, it’s optimal. Otherwise, uî + vĵ > cîĵ ,

for some (̂i, ĵ) ∈ N . We’ll see in lecture that putting (̂i, ĵ) in the basis will improve solution. Add
edge (̂i, ĵ) to the subgraph. This will create a cycle.

Alternatingly increase (from i → j) and decrease (from j → k) flow around edges in the cycle
to preserve 0 net flow. Let δ = min(i,j){xij : xij is a basic variable , (i, j) is a decreasing edge}.
Increase all ’forward’ edges by δ, decrease all ’backward’ edges by δ. Remove from the basis an
edge which achieves the minimum.
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