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Feasibility and Unboundedness 1

Consider a linear program in arbitrary form. We know that it can potentially be infeasible or have
unbounded optimal objective. Additionally, if it’s feasible and not unbounded, we can show the
existence of an optimal solution by applying the Weierstrass Theorem. Hence, this gives three
options for the types of solutions a linear program can have.

Additionally, the dual of a linear program is itself a linear program, so the same three options
apply. Hence, the first natural question is what combinations of these can appear for a primal-dual
pair of linear programs?

P\D I O U

I ? ? ?

O ? ? ?

U ? ? ?

Let’s try to fill in some of these boxes.

First, recall the weak duality theorem: If x is a feasible solution to a minimization linear pro-
gram and y is a feasible solution to its dual, then bT y ≤ cx.

Suppose the primal minimization program is unbounded. This immediately implies that the dual
must be infeasible. Similarly, if the dual is unbounded, this immediately implies that the primal
must be infeasible. To see this in the first case, let y be any feasible solution to the dual. Since
the primal is unbounded, there exists an x̂ such that cx̂ < bT y, contradicting the Weak Duality
Theorem. Hence, no such y exists. The other argument can be proved identically.

Hence, our table now looks like:

P\D I O U

I ? ? X
O ? ? X

U X X X

1Based on previous notes of Chaoxu Tong
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Given the above theorem, it seems natural to ask whether the reverse implication holds. Does
primal infeasibility imply dual unboundedness? Consider the following LP:

max [2, -1] x

s.t.

[
1 −1
−1 1

]
x ≤

[
1
−2

]
x ≥ 0

Its corresponding dual is:

max [-1, 2] y

s.t.

[
1 −1
−1 1

]
y ≤

[
−2
1

]
y ≥ 0

Note that the primal is infeasible and that the dual feasible region is exactly the primal feasible
region, hence, both are infeasible. This adds another option to our table, giving:

Finally, using Strong Duality Theorem we know when one of primal or the dual has an optimal
solution, they both must have an optimal solution. Hence our table looks like:

P\D I O U

I X X X
O X X X

U X X X

Farkas Lemma and its Application

First recall the Farkas’ Lemma :

Theorem 1 (Farkas’ Lemma) If A ∈ Rm×n and b ∈ Rm, then exactly one of the following holds:

1. ∃x ≥ 0 such that Ax = b

2. ∃y such that AT y ≥ 0, bT y < 0

Proof: First we show that we can’t have both (1) and (2). Assume for contradiction ∃x̂ such
that Ax̂ = b, x̂ ≥ 0, and ∃ŷ such that AT ŷ ≥ 0, yT b ≤ 0. Note that ŷTAx̂ = ŷT (Ax̂) = ŷT b < 0
since by (1), Ax̂ = b and by (2) ŷT b < 0. But also ŷTAx̂ = (ŷTA)x̂ = (AT ŷ)T x̂ ≥ 0 since by (2)
AT ŷ ≥ 0 and by (1) x̂ ≥ 0.

Now we must show that if (1) doesn’t hold, then (2) does. To do this, let v1, v2, . . . , vn be the
columns of A. Define

Q = cone(v1, . . . , vn) ≡ {s ∈ <m : s =

n∑
i=1

λivi, λi ≥ 0, ∀i}.
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This is a conic combination of the columns of A, which differs from a convex combination since we
don’t require that

∑n
i=1 λi = 1. Then Ax =

∑n
i=1 xivi, there exists an x such that Ax = b and

x ≥ 0 if and only if b ∈ Q as x’s are weights λi.
So if (1) does not hold then b /∈ Q. We show that condition (2) must hold. We know that

Q is nonempty (since 0 ∈ Q), closed (see Lecture 8), and convex, so we can apply the separating
hyperplane theorem. The theorem implies that there exists α ∈ <m, α 6= 0, and β such that
αT b > β and αT s < β for all s ∈ Q. Since 0 ∈ Q, we know that β > 0. Note also that λvi ∈ Q for
all λ > 0. Then since αT s < β for all s ∈ Q, we have αT (λvi) ∈ Q for all λ > 0, so that αT vi < β/λ
for all λ > 0. Since β > 0, as λ→∞, we have that αT vi ≤ 0. Thus by setting y = −α, we obtain
yT b < 0 and yT vi ≥ 0 for all i. Since the vi are the columns of A, we get that AT y ≥ 0. Thus
condition (2) holds. 2

Here is another form of the Farkas Lemma:

Theorem 2 (Alternative Farkas’ Lemma) Exactly one of the following holds:

1. ∃x ≥ 0 such that Ax ≤ b

2. ∃y such that AT y ≥ 0, bT y < 0, y ≥ 0

Proof: Note Ax ≤ b, x ≥ 0 is feasible if and only if Ax+ s = b, x, s ≥ 0 is feasible. Apply the
original Farkas Lemma to this new system. 2

Let’s see an application of the Farkas Lemma. Note that we can only prove that unboundedness
implies infeasibility for linear programs and not the converse in the previous section. We now prove
a related implication for the unboundedness of feasible regions of linear programs.

Theorem 3 (Clark’s Theorem) Given the following primal and dual LPs, if one of them is
feasible, then the feasible region for one of them is non-empty and unbounded.

Primal LP: Dual LP:
min cTx max yT b
s.t.: Ax ≥ b s.t.: AT y ≤ c

x ≥ 0 y ≥ 0

It’s important to note that the result of the theorem is that the feasible region of one of the
LPs is unbounded, but it may not be the case that the LP has unbounded objective function value
with the given objective function.

Proof: There are three possibilities to consider.

1. The primal is infeasible and the dual is unbounded.

2. The dual is infeasible and the primal is unbounded.

3. Both the primal and dual are feasible and not unbounded (hence have optimal solution).

In the first two cases, we immediately have the result we want. Hence, suppose we’re in the last
case. Now, let ĉ = [−1,−1, . . . ,−1] and consider the following systems:

1. ∃ŷ such that AT ŷ ≤ ĉ, ŷ ≥ 0
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2. ∃x̂ such that Ax̂ ≥ 0, ĉT x̂ < 0, x̂ ≥ 0

Alternative Farkas’ lemma tells us exact one of them holds.
If (2) holds, let x̂ be a feasible solution to (2) and x be a feasible solution to primal LP and

λ > 0. Note x̂ is not 0 because ĉT x̂ < 0. Then

A(x+ λx̂) = Ax+ λAx̂ ≥ b+ λ ∗ 0 = b

So x+ λx̂ is feasible for all λ ≥ 0. Feasible region for primal LP is unbounded and we’re done.
Otherwise if (1) holds, let ŷ be a feasible solution to (1) (note ŷ is not 0 because AT ŷ ≤ ĉ)

and let y be a feasible solution to dual LP. Then using a similar argument as above, we can show
that for any λ ≥ 0, y + λŷ is feasible for the dual, which shows the feasible region for dual LP is
unbounded and we’re done. 2
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