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Twice Continuously Differentiable Functions 1

Recall that a function f : Rn → R is differentiable at x if ∃ v ∈ Rn and o : Rn → R such that

f(y) = f(x) + 〈v, y − x〉+ o(y − x) ∀y ∈ Rn,

and

lim
y→x

y − x
‖y − x‖

= 0.

Call v the gradient of f and write ∇f(x) = v. If ∇f is continuous say f is C1 and write f ∈ C1.

Definition 1 f is twice differentiable at x if ∇f is continuous at x and there exist o : Rn → R and
a linear operator ∇2f(x) such that

f(y) = f(x) + 〈∇f(x), y − x〉+
1

2
〈 y − x,∇f(x)(y − x)〉+ o(y − x) ∀y ∈ Rn,

and

lim
y→x

y − x
‖y − x‖2

= 0.

Write f ∈ C2.

Theorem 1 (Taylor’s theorem) For any x, y ∈ Rn,

∇f(y) = ∇f(x) +

∫ 1

0
∇2f(x+ t(y − x))(y − x)dt.

Theorem 2 f ∈ C2 is L-Lipschitz differentiable iff ‖∇2f(x)‖ ≤ L ∀x.

Proof: Suppose ‖∇2f(x)‖ ≤ L ∀x. Then, by Taylor’s theorem,

‖∇f(x)−∇f(y)‖ = ‖
∫ 1

0
∇2f(x+ t(y − x))(y − x)dt‖

≤
∫ 1

0
‖∇2f(x+ t(y − x))(y − x)‖dt

≤
∫ 1

0
‖∇2f(x+ t(y − x))‖‖y − x‖dt

≤
∫ 1

0
L‖y − x)‖dt

= ‖y − x‖.
1Based on Nesterov, Yurii. Introductory lectures on convex optimization: A basic course.
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Now let f be L-Lipschitz differentiable, s ∈ Rn and α > 0. We have

αL‖s‖ ≥ ‖∇f(x+ αs)−∇f(x)‖

= ‖
∫ 1

0
∇2f(x+ αts)αsdt‖

= ‖
∫ α

0
∇2f(x+ ws)sdw‖,

where the last equality follows by making the change of variables w = αt. Thus,

1

α
‖
∫ α

0
∇2f(x+ ws)sdw‖ ≤ L‖s‖

Taking the limit when α→ 0 we obtain

‖∇2f(x)s‖ ≤ L.

Since this is true for every s ∈ Rn, it follows that ‖∇2f(x)‖ ≤ L. �

Example 1 Let f(x) = α+ 〈a, x〉. Then

f(y) = f(x) + 〈a, y − x〉 .

Thus, ∇f(x) ≡ a and ∇2f(x) ≡ 0.

Example 2 Let f(x) = α+ 〈a, x〉+ 1
2 〈x,Ax〉, where A is symmetric. We have

f(y) = α+ 〈a, y〉+
1

2
〈y,Ay〉

= f(x) + 〈a+Ax, y − x〉+
1

2
〈y − x,A(y − x)〉 .

Thus, ∇f(x) = a+Ax and ∇2f(x) ≡ A.

Theorem 3 Suppose x∗ is a local minimizer of f ∈ C2. Then ∇f(x∗) = 0 and ∇2f(x∗) � 0.

Proof: Last recitation we proved that ∇f(x∗) = 0, so it remains to prove that ∇2f(x∗) � 0.
Since x∗ is a local minimizer, there exists r > 0 such that f(y) ≥ f(x∗) ∀y ∈ Br(x∗). Moreover,
since ∇f(x∗) = 0,

f(y) = f(x∗) +
1

2

〈
y − x∗,∇2f(x∗)(y − x∗)

〉
+ o(y − x∗).

Thus,

1

2
〈 y − x∗,∇f(x∗)(y − x∗)〉+ o(y − x∗) ≥ 0.

Let u be a unit vector and let yε = x∗ + εu. For ε small enough, yε ∈ Br(x∗). Thus,

1

2

〈
yε − x∗,∇2f(x∗)(yε − x∗)

〉
+ o(yε − x∗) ≥ 0.

Divide by ‖yε − x∗‖2 and let ε→ 0 to obtain〈
s,∇2f(x∗)s

〉
≥ 0.

This finishes the proof. �
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