November 9, 2016

Topic:

Recitation 12

Lecturer: Calvin Wylie

Twice Continuously Differentiable Functions¹

Recall that a function $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at x if $\exists v \in \mathbb{R}^n$ and $o: \mathbb{R}^n \to \mathbb{R}$ such that

$$f(y) = f(x) + \langle v, y - x \rangle + o(y - x) \ \forall y \in \mathbb{R}^n,$$

and

$$\lim_{y \to x} \frac{y - x}{\|y - x\|} = 0.$$

Call v the gradient of f and write $\nabla f(x) = v$. If ∇f is continuous say f is C^1 and write $f \in C^1$.

Definition 1 f is twice differentiable at x if ∇f is continuous at x and there exist $o : \mathbb{R}^n \to \mathbb{R}$ and a linear operator $\nabla^2 f(x)$ such that

$$f(y) = f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2} \langle y - x, \nabla f(x)(y - x) \rangle + o(y - x) \ \forall y \in \mathbb{R}^n,$$

and

$$\lim_{y \to x} \frac{y - x}{\|y - x\|^2} = 0.$$

Write $f \in C^2$.

Theorem 1 (Taylor's theorem) For any $x, y \in \mathbb{R}^n$,

$$\nabla f(y) = \nabla f(x) + \int_0^1 \nabla^2 f(x + t(y - x))(y - x)dt.$$

Theorem 2 $f \in C^2$ is L-Lipschitz differentiable iff $\|\nabla^2 f(x)\| \leq L \ \forall x$.

Proof: Suppose $\|\nabla^2 f(x)\| \leq L \forall x$. Then, by Taylor's theorem,

$$\begin{aligned} \|\nabla f(x) - \nabla f(y)\| &= \|\int_0^1 \nabla^2 f(x + t(y - x))(y - x)dt\| \\ &\leq \int_0^1 \|\nabla^2 f(x + t(y - x))(y - x)\|dt \\ &\leq \int_0^1 \|\nabla^2 f(x + t(y - x))\|\|y - x\|dt \\ &\leq \int_0^1 L\|y - x\|dt \\ &= \|y - x\|. \end{aligned}$$

¹Based on Nesterov, Yurii. Introductory lectures on convex optimization: A basic course.

Now let f be L-Lipschitz differentiable, $s \in \mathbb{R}^n$ and $\alpha > 0$. We have

$$\begin{split} \alpha L \|s\| &\geq \|\nabla f(x+\alpha s) - \nabla f(x)\| \\ &= \|\int_0^1 \nabla^2 f(x+\alpha ts) \alpha s dt\| \\ &= \|\int_0^\alpha \nabla^2 f(x+ws) s dw\|, \end{split}$$

where the last equality follows by making the change of variables $w = \alpha t$. Thus,

$$\frac{1}{\alpha} \| \int_0^\alpha \nabla^2 f(x + ws) s dw \| \le L \|s\|$$

Taking the limit when $\alpha \to 0$ we obtain

$$\left\|\nabla^2 f(x)s\right\| \le L$$

Since this is true for every $s \in \mathbb{R}^n$, it follows that $\|\nabla^2 f(x)\| \leq L$.

Example 1 Let $f(x) = \alpha + \langle a, x \rangle$. Then

$$f(y) = f(x) + \langle a, y - x \rangle.$$

Thus, $\nabla f(x) \equiv a$ and $\nabla^2 f(x) \equiv 0$.

Example 2 Let $f(x) = \alpha + \langle a, x \rangle + \frac{1}{2} \langle x, Ax \rangle$, where A is symmetric. We have

$$\begin{aligned} f(y) &= \alpha + \langle a, y \rangle + \frac{1}{2} \langle y, Ay \rangle \\ &= f(x) + \langle a + Ax, y - x \rangle + \frac{1}{2} \langle y - x, A(y - x) \rangle \,. \end{aligned}$$

Thus, $\nabla f(x) = a + Ax$ and $\nabla^2 f(x) \equiv A$.

Theorem 3 Suppose x^* is a local minimizer of $f \in C^2$. Then $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \succeq 0$.

Proof: Last recitation we proved that $\nabla f(x^*) = 0$, so it remains to prove that $\nabla^2 f(x^*) \succeq 0$. Since x^* is a local minimizer, there exists r > 0 such that $f(y) \ge f(x^*) \ \forall y \in B_r(x^*)$. Moreover, since $\nabla f(x^*) = 0$,

$$f(y) = f(x^*) + \frac{1}{2} \left\langle y - x^*, \nabla^2 f(x^*)(y - x^*) \right\rangle + o(y - x^*).$$

Thus,

$$\frac{1}{2} \langle y - x^*, \nabla f(x^*)(y - x^*) \rangle + o(y - x^*) \ge 0.$$

Let u be a unit vector and let $y_{\epsilon} = x^* + \epsilon u$. For ϵ small enough, $y_{\epsilon} \in B_r(x^*)$. Thus,

$$\frac{1}{2} \left\langle y_{\epsilon} - x^*, \nabla^2 f(x^*)(y_{\epsilon} - x^*) \right\rangle + o(y_{\epsilon} - x^*) \ge 0.$$

Divide by $||y_{\epsilon} - x^*||^2$ and let $\epsilon \to 0$ to obtain

 $\left\langle s, \nabla^2 f(x^*)s \right\rangle \ge 0.$

This finishes the proof.

12-2